JPS6240402B2 - - Google Patents

Info

Publication number
JPS6240402B2
JPS6240402B2 JP13786884A JP13786884A JPS6240402B2 JP S6240402 B2 JPS6240402 B2 JP S6240402B2 JP 13786884 A JP13786884 A JP 13786884A JP 13786884 A JP13786884 A JP 13786884A JP S6240402 B2 JPS6240402 B2 JP S6240402B2
Authority
JP
Japan
Prior art keywords
sonde
furnace
layer thickness
charge
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13786884A
Other languages
Japanese (ja)
Other versions
JPS6119712A (en
Inventor
Emi Murakawa
Seiji Taguchi
Yoshiharu Iwashita
Ryoji Takabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP13786884A priority Critical patent/JPS6119712A/en
Priority to US06/751,088 priority patent/US4697453A/en
Priority to CA000486328A priority patent/CA1251945A/en
Publication of JPS6119712A publication Critical patent/JPS6119712A/en
Publication of JPS6240402B2 publication Critical patent/JPS6240402B2/ja
Priority to US07/275,687 priority patent/US4914948A/en
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/0023Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm with a probe suspended by a wire or thread

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高炉半径方向の装入物層厚分布を検出
する装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a device for detecting the charge layer thickness distribution in the radial direction of a blast furnace.

〔従来の技術〕[Conventional technology]

高炉炉頂における装入物の形状や堆積状態の半
径方向分布は、高炉内全体のガス流れ分布および
溶融帯形状に最も強く影響する。従つて、与えら
れた原料性状の条件下では高炉の好調、不調は適
正な装入物分布が確保されているか否かに強く左
右される。
The shape of the charge and the radial distribution of the piled state at the top of the blast furnace have the strongest influence on the gas flow distribution and the shape of the molten zone throughout the blast furnace. Therefore, under the conditions of given raw material properties, the success or failure of a blast furnace is strongly influenced by whether or not proper charge distribution is ensured.

装入物分布は、ベル型高炉ではアーマ位置の調
整によつて制御され、ベルレス高炉では旋回シユ
ートの調整によつて制御される。それらの制御が
適正に行われているか否かは装入物分布を直接観
測するのではなく、炉頂での装入物表面のプロフ
イル、気体温度の半径方向分布や炉壁からの抜熱
量の測定によつて推定している。しかしながらこ
れらのプロフイル、温度分布や抜熱量は、装入物
の粒度構成分布および層厚の半径方向分布や鉱石
とコークスの混合層の厚さなど種々の装入物分布
因子と、高炉送風条件等に影響されるので、プロ
フイル、温度分布や抜熱量からガス流れを精度良
く求めることは難しい。例えば装入物の粒度構成
分布が変化した時、ガス流れの炉内半径方向分布
を一定に保つためにはアーマ位置をどのように変
更すれば良いのかは、現状の制御方法では解決で
きない。
The charge distribution is controlled in bell-type blast furnaces by adjusting the armour position, and in bellless blast furnaces by adjusting the rotating chute. Whether these controls are being carried out properly is determined not by directly observing the charge distribution, but by examining the profile of the charge surface at the top of the furnace, the radial distribution of gas temperature, and the amount of heat removed from the furnace wall. Estimated based on measurements. However, these profiles, temperature distribution, and heat removal depend on various burden distribution factors such as the particle size distribution of the charge, the radial layer thickness distribution, and the thickness of the mixed layer of ore and coke, as well as blast furnace ventilation conditions, etc. It is difficult to accurately determine the gas flow from the profile, temperature distribution, and amount of heat removed. For example, when the particle size distribution of the charge changes, current control methods cannot solve the problem of how to change the armor position in order to maintain a constant radial distribution of gas flow in the furnace.

従つて、アーマ等によつて装入物分布制御を精
度良く行うには、層厚や粒度構成分布等の装入物
の半径方向分布を直接に求める必要がある。
Therefore, in order to accurately control the charge distribution using an armor or the like, it is necessary to directly determine the radial distribution of the charge, such as layer thickness and particle size composition distribution.

またこれまでの模型実験などの解析結果から終
局的に高炉炉況に与える装入物分布の影響はガス
流分布を介してのみでなく、鉱石とコークスの層
厚の半径方向分布において、適切な厚み範囲が各
半径位置で存在することが分つている。
Furthermore, based on the analytical results of model experiments and other studies to date, the final impact of the burden distribution on the blast furnace condition is not only through the gas flow distribution, but also through the appropriate radial distribution of the ore and coke layer thickness. It is known that a thickness range exists at each radial location.

鉱石とコークスの電気電導度の差を利用した電
極式層厚検出器は特開昭50−81903によつて提案
された。それは第4図のように炉頂鉄皮より垂直
方向に昇降可能なゾンデを半径方向に1本もしく
は複数本、装入物層内に一定速度υで挿入し、こ
の時ゾンデ先端にあるプラス極7aおよびマイナ
ス極7bから成る電極対からの電気信号を観測す
る装置である。
An electrode type layer thickness detector using the difference in electrical conductivity between ore and coke was proposed in Japanese Patent Application Laid-Open No. 1981-81903. As shown in Figure 4, one or more sondes that can be raised and lowered vertically from the furnace top shell are inserted in the radial direction into the charge layer at a constant speed υ. This is a device for observing electrical signals from an electrode pair consisting of an electrode 7a and a negative electrode 7b.

この時両電極7aおよび7bがコークス層4内
にあれば、電極間の電気抵抗は小さいが、他方ど
ちらか一方でも鉱石層3内にあれば電極間は絶縁
された状態になる。従つてこの時の電極間の電気
信号は第5図のようになる。コークス層4に対応
する信号部分の時間間隔をτc、鉱石層3に対応
する時間間隔をτとすると、コークス層厚lcお
よび鉱石層厚l0は次式により求めることができ
る。
At this time, if both electrodes 7a and 7b are within the coke layer 4, the electrical resistance between the electrodes is small, but if either one is within the ore layer 3, the electrodes are insulated. Therefore, the electrical signal between the electrodes at this time is as shown in FIG. When the time interval of the signal portion corresponding to the coke layer 4 is τc, and the time interval corresponding to the ore layer 3 is τ0 , the coke layer thickness lc and the ore layer thickness l0 can be determined by the following equations.

lc=τc・υ ………(1) l0=τ・υ ………(2) この検出ゾンデを半径方向に複数個取り付ける
ことによつて各層の層厚の半径方向分布を求める
ことができる。
lc = τc・υ ………(1) l 00・υ ………(2) By installing a plurality of these detection sondes in the radial direction, it is possible to obtain the radial distribution of the layer thickness of each layer. can.

しかし、この装置は、高炉炉頂部にベルや旋回
シユートなどの装入装置があるため限られた部位
にしかゾンデを設置することができない。
However, since this device has a charging device such as a bell or a rotating chute at the top of the blast furnace, the sonde can only be installed in a limited area.

その後、設置の容易な水平ゾンデ型の層厚検出
器が提案された。その最も単純なものとしては第
6図のように、炉壁に一定距離hだけ離して、プ
ラス極とマイナス極の対から成る層厚検出素子5
a,5bを固定し、この両検出素子より得られる
信号より炉壁でのコークス層4および鉱石層3の
層厚を求める方法がある(特開昭52−14447)。
Later, a horizontal sonde-type layer thickness detector, which was easy to install, was proposed. The simplest one is as shown in Figure 6, where a layer thickness detection element 5 consisting of a pair of positive and negative electrodes is placed a certain distance h away from the furnace wall.
There is a method in which the thicknesses of the coke layer 4 and the ore layer 3 on the furnace wall are determined by fixing the detection elements a and 5b and determining the thickness of the coke layer 4 and the ore layer 3 on the furnace wall from the signals obtained from both detection elements (Japanese Patent Application Laid-Open No. 14447/1983).

この時の両検出素子からの電気信号を第7図に
示す。両電極はhだけ離れているので、検出素子
5bからの信号(抵抗B)は5aからの信号(抵
抗A)よりも時間τだけ遅れる。この遅れ時間τ
は装入物降下速度υと次式によつて関係づけられ
る。
FIG. 7 shows the electrical signals from both detection elements at this time. Since both electrodes are separated by h, the signal from detection element 5b (resistance B) lags the signal from 5a (resistance A) by time τ. This delay time τ
is related to the charge descent rate υ by the following equation.

υ=h/τ ………(3) この(3)式と(1)および(2)式によつて各層の層厚を
求めることができる。しかしこの方法では炉壁真
近部における層厚しか検出できない。
υ=h/τ ......(3) The layer thickness of each layer can be determined by this equation (3) and equations (1) and (2). However, this method can only detect the layer thickness in the immediate vicinity of the furnace wall.

一方水平型ゾンデを用いて層厚の半径方向分布
を検出する装置としては、第8図のように高炉装
入物層内に梁を固定し、この梁の半径方向の複数
の位置において互いに高さ方向にhだけ離して電
極7a,7bを設置してなる固定式水平ゾンデ1
1により電極7a,7bからの電極信号を観測す
る装置(特開昭52−151605)、第9図のように炉
壁から炉内装入物層内へ高炉半径方向に挿入でき
る水平ゾンデ12を設置し、モータ15によつて
ゾンデを水平方向に動かして、この時のゾンデ先
端に取り付けられた電極からの電極信号を観測す
る装置(特開昭53−18408)、また第10図のよう
に炉頂装入物面上方の空間に半径方向に可動な親
ゾンデ18を設置し、この上に電極7a,7bを
昇降するための子ゾンデ16を取り付け、電極7
a,7bからの電気信号を観測するものなどがあ
る。
On the other hand, as a device for detecting the radial distribution of layer thickness using a horizontal sonde, a beam is fixed in the blast furnace charge layer as shown in Fig. A fixed horizontal sonde 1 in which electrodes 7a and 7b are installed spaced apart by h in the horizontal direction.
A device for observing electrode signals from electrodes 7a and 7b (Japanese Unexamined Patent Publication No. 52-151605) is installed using 1, and a horizontal sonde 12 that can be inserted into the blast furnace radial direction from the furnace wall into the furnace contents layer as shown in Fig. 9 is installed. Then, a device (Japanese Patent Laid-Open No. 18408/1983) which moves the sonde horizontally by a motor 15 and observes the electrode signal from the electrode attached to the tip of the sonde, and a furnace as shown in Fig. 10 is used. A radially movable parent sonde 18 is installed in the space above the top charge surface, and a child sonde 16 for raising and lowering the electrodes 7a and 7b is attached thereon.
There are those that observe electrical signals from a and 7b.

第8図の装置では梁が固定されているため電極
が摩耗等によつて故障した場合、休風を行つて一
度梁を炉外へ取り出して電極を取り換えることに
なり工事費用が高くなる。
In the apparatus shown in FIG. 8, the beam is fixed, so if the electrode breaks down due to wear or the like, it is necessary to take a break from the air, take the beam out of the furnace, and replace the electrode, which increases construction costs.

第9図の装置では電極が故障した場合でもゾン
デ12を炉外へ引き抜くことができる。しかし、
この装置には電極1個しか取り付けられていない
ので装入物の降下速度を別の方法であらかじめ求
める必要がある。またゾンデ12は装入物層内を
押し分けて炉内へ挿入されるので大動力の駆動モ
ータを要し、ゾンデ12は相当大がかりな装置に
なる。
In the apparatus shown in FIG. 9, even if the electrode fails, the sonde 12 can be pulled out of the furnace. but,
Since this device is equipped with only one electrode, it is necessary to determine the rate of descent of the charge in advance by another method. Further, since the sonde 12 is inserted into the furnace by pushing through the charge layer, a large-power drive motor is required, and the sonde 12 becomes a fairly large-scale device.

これに対して第10図の装置においてはゾンデ
18が炉頂空間を移動するので設備的に安価であ
り、メンテナンスの面でも第8図、第9図の装置
よりも有利である。また電極が故障した場合は電
極7a,7bを上昇してゾンデ18内に納め、ゾ
ンデ18をモータによつて引き抜き炉外で修理で
きる。ところがこの装置においては水平に挿入し
たものを垂直方向に曲げて検出端を装入物層内に
装入するため、検出端の先端4mはフレキシブル
でなければならない。しかしフレキシブルチユー
ブからなる検出プローブ17を用いると、鉱石や
コークスを装入した時装入物の中心方向への流れ
込みによつて検出端が第10図のように炉中心方
向へ押し流されてしまう問題がある。
On the other hand, in the apparatus shown in FIG. 10, since the sonde 18 moves in the furnace top space, the apparatus is inexpensive in terms of equipment, and is more advantageous than the apparatuses shown in FIGS. 8 and 9 in terms of maintenance. If the electrodes fail, the electrodes 7a and 7b are raised and placed inside the sonde 18, and the sonde 18 can be pulled out by the motor and repaired outside the furnace. However, in this device, since the detection end is inserted horizontally and then bent vertically to insert it into the charge layer, the tip 4m of the detection end must be flexible. However, when using the detection probe 17 made of a flexible tube, there is a problem that when ore or coke is charged, the detection end is swept away toward the center of the furnace as the charge flows toward the center, as shown in Figure 10. There is.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以上述べてきた各装置の問題点を解決
するものであり、比較的安価で、かつ装入物の流
れ込みに影響されることなく層厚が測定できる装
置を提供することを目的とする。
The present invention solves the problems of each of the devices described above, and aims to provide a device that is relatively inexpensive and can measure layer thickness without being affected by the flow of the charge. .

〔問題点を解決するための手段〕[Means for solving problems]

第1図、第2図、第3図により本発明を詳細に
説明する。
The present invention will be explained in detail with reference to FIGS. 1, 2, and 3.

本発明装置の全体の構成は第10図と同様であ
るが、子ゾンデにフレキシブルチユーブ17の代
りに電気ケーブルを挿通する連通孔を有する耐熱
性の連設ブロツク21を接続して構成したことを
特徴とする。
The overall configuration of the device of the present invention is the same as that shown in FIG. 10, except that a heat-resistant connecting block 21 having a communication hole through which an electric cable is inserted is connected to the child sonde instead of the flexible tube 17. Features.

第2図に示すように個々の連設ブロツク21は
ピン20によつて接続されるが、接続部に切欠部
25を設けることによつて連設ブロツク21は水
平姿勢から先端が鉛直下方に向く方向にのみ一定
の曲率をもつて屈曲することができる。第1図は
本発明装置の要部を示したもので図示しない子ゾ
ンデ16を動かすことによつて電極7a,7bを
スムーズに昇降させることができる。
As shown in FIG. 2, the individual connected blocks 21 are connected by pins 20, but by providing a notch 25 in the connection part, the connected blocks 21 can be turned vertically downward from a horizontal position. It can be bent with a constant curvature only in one direction. FIG. 1 shows the main parts of the device of the present invention, and by moving a subsonde 16 (not shown), the electrodes 7a and 7b can be smoothly raised and lowered.

装入物の装入時において、連設ブロツク21は
装入物の流れ込みによつて炉中心方向への力を受
ける。このとき連設ブロツク21は第1図に示す
ように親ゾンデ18の先端部に設けたゾンデ先端
ガイド24に支えられて連設ブロツク21が炉中
心方向(第1図の向つて左側方向)に曲らないよ
うになつている。ただしこの時先端ガイド24が
連設ブロツク21から受ける力は、てこの原理に
よつて、プローブ先端が装入物の流れ込みによつ
て炉中心方向へ受ける荷重のl/R倍になる。こ
こでlはゾンデ18と検出プローブ17の先端と
の間の距離、Rは屈曲部の半径である。従つて先
端ガイド24は強度を強くする必要がある。
When charging the charge, the continuous block 21 receives a force toward the center of the furnace due to the flow of the charge. At this time, the connecting block 21 is supported by the sonde tip guide 24 provided at the tip of the parent sonde 18, as shown in FIG. It is designed not to bend. However, at this time, the force that the tip guide 24 receives from the continuous block 21 is 1/R times the load that the probe tip receives toward the center of the furnace due to the inflow of the charge due to the lever principle. Here, l is the distance between the sonde 18 and the tip of the detection probe 17, and R is the radius of the bent portion. Therefore, the tip guide 24 needs to be strong.

層厚を検出するための電極7aは第2図に示す
ように連設ブロツク21に取り付けられる。第3
図は電極をつけた1個のブロツクの断面図であ
る。電極は電気絶縁物19によつて連設ブロツク
21本体より絶縁されている。
The electrode 7a for detecting the layer thickness is attached to the continuous block 21 as shown in FIG. Third
The figure is a cross-sectional view of one block with electrodes attached. The electrodes are insulated from the main body of the continuous block 21 by an electrical insulator 19.

本装置において電極の数は任意の1個または複
数個のブロツク21に取りつける。第11図は多
数の電極7a,7b,7c,7d,7e,…を装
着した検出プローブ17を高炉内に吊下した状態
を示す。鉱石装入時にコークス層が炉中心方向
(第11図の向つて左方向)へ押し流され、コー
クス表面形状が変化し、この結果として層厚が変
化するが、第11図のように電極数を3個以上に
すると、この層厚の変化をを求めることができ
る。今、鉱石装入前のコークス層4の上面が26で
あつたとすれば、電極7dは低抵抗、7c以上の
電極は高抵抗になるが、鉱石装入によつてコーク
ス層厚が変化しその上面が27になつたとすれば、
電極7b,7cが低抵抗になる。このようにして
各電極間の距離が分つているので鉱石装入前後で
のコークス層の層厚の変化を求ることができる。
In this device, any number of electrodes can be attached to one or more blocks 21. FIG. 11 shows a state in which a detection probe 17 equipped with a large number of electrodes 7a, 7b, 7c, 7d, 7e, . . . is suspended in a blast furnace. When ore is charged, the coke layer is pushed toward the center of the furnace (leftward in Figure 11), and the coke surface shape changes, resulting in a change in layer thickness. If the number is three or more, the change in layer thickness can be determined. Now, if the top surface of the coke layer 4 before ore charging is 26, the electrode 7d will have a low resistance, and the electrodes 7c or higher will have a high resistance, but the coke layer thickness changes due to the ore charging, and If the top surface becomes 27,
Electrodes 7b and 7c have low resistance. Since the distance between each electrode is thus known, it is possible to determine the change in the thickness of the coke layer before and after ore charging.

〔実施例〕〔Example〕

炉頂径が10m程度の高炉に本発明の装置を取り
付け炉頂半径方向での装入物層厚分布を測定し
た。この結果を第12図に示す。
The apparatus of the present invention was installed in a blast furnace having a top diameter of about 10 m, and the thickness distribution of the charge layer in the radial direction of the top of the furnace was measured. The results are shown in FIG.

従来、装入物表面のプロフイルを計測して層厚
を求める方法では、コークス層厚は鉱石装入前の
層厚しか求められなかつたが、本発明装置によつ
て鉱石を装入した後のコークス層厚の変化が求め
られるようになり、鉱石装入によつてコークスが
炉中心方向へ流されて炉中心付近でのコークス層
厚が厚くなることが分つた。この結果、装入物の
通気抵抗の炉内分布をより精確に求めることがで
き、第13図に示すように炉頂ガス温度の分布も
プロフイル計測より求めた装入物層厚から算出し
た分布に比べより精度よく再現できた。
Conventionally, with the method of determining the layer thickness by measuring the profile of the surface of the burden, the coke layer thickness could only be determined before the ore was charged. Changes in the thickness of the coke layer were determined, and it was found that charging the ore causes coke to flow toward the center of the furnace, increasing the thickness of the coke layer near the center of the furnace. As a result, the in-furnace distribution of the ventilation resistance of the charge can be determined more accurately, and as shown in Figure 13, the distribution of the furnace top gas temperature is also a distribution calculated from the charge layer thickness determined by profile measurement. It was possible to reproduce the image more accurately than the .

また従来鉱石中の焼結鉱比を下げると炉中心付
近でのガス温度が低下する現象が生じたが、第1
4図に示すように本発明装置によつて、その原因
が炉中心付近で鉱石層が厚くなることに由来する
ことが分つた。そこで炉中心付近で鉱石層が元の
分布状態に戻るようにムーバブルアーマを調節し
たところ、炉中心付近でのガス温度低下を防ぐこ
とができた。
In addition, when the sintered ore ratio in the ore was lowered, the gas temperature near the center of the furnace decreased;
As shown in Figure 4, using the apparatus of the present invention, it was found that the cause of this was that the ore layer became thick near the center of the furnace. Therefore, by adjusting the movable armor so that the ore layer returned to its original distribution near the center of the furnace, it was possible to prevent the gas temperature from decreasing near the center of the furnace.

〔発明の効果〕〔Effect of the invention〕

本発明の装置により、高炉炉頂半径方向の所望
の位置において炉内装入物の流れ込みに影響され
ることなく炉内装入物の層厚を容易に測定でき、
高炉操業に貢献するところが大である。
With the device of the present invention, the layer thickness of the furnace contents can be easily measured at a desired position in the radial direction of the top of the blast furnace without being affected by the flow of the furnace contents,
It greatly contributes to blast furnace operation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の層厚検出装置の要部を示す側
面図、第2図は連設ブロツクの側面図、第3図は
電極を取りつけた連設ブロツクの構造を示す断面
図、第4図は垂直ゾンデ式層厚検出器の説明図、
第5図は垂直ゾンデ式層厚検出器からの電気信号
を示すグラフ、第6図は従来の層厚検出器の説明
図、第7図は第6図の電極式層厚検出器からの電
気信号を示すグラフ、第8図は従来の固定水平ゾ
ンデ式層厚検出器の説明図、第9図は従来の半径
方向可動炉頂ゾンデ式層厚検出器の説明図、第1
0図は半径方向可動炉頂ゾンデ式層厚検出器の説
明図、第11図は電極数が3個以上の本発明装置
の説明図、第12図は装入物層厚測定例を示すグ
ラフ、第13は炉頂ガス温度分布を示すグラフ、
第14図は鉱石層厚の変化を示すグラフである。 1……高炉炉頂ベル、2……高炉炉壁、3……
鉱石層、4……コークス層、5a,5b……層厚
検出素子、6……高炉炉頂鉄皮、7a〜7e……
層厚検出器の電極部、8……垂直ゾンデ、11…
…固定式水平ゾンデ、12……半径方向可動式水
平ゾンデ、15……水平ゾンデ動力モータ、16
……子ゾンデ、17……検出プローブ、18……
親ゾンデ、19……電気絶縁物、20……ピン、
21……連設ブロツク、22……ケーブル挿通
孔、23……電気ケーブル、24……先端ガイ
ド、25……切り欠き、26……鉱石を装入する
前のコークス装入面、27……鉱石を装入した後
のコークス装入面。
Fig. 1 is a side view showing the main parts of the layer thickness detection device of the present invention, Fig. 2 is a side view of the connected blocks, Fig. 3 is a sectional view showing the structure of the connected blocks to which electrodes are attached, and Fig. 4 The figure is an explanatory diagram of a vertical sonde type layer thickness detector.
Figure 5 is a graph showing the electrical signal from the vertical sonde type layer thickness detector, Figure 6 is an explanatory diagram of a conventional layer thickness detector, and Figure 7 is the electric signal from the electrode type layer thickness detector in Figure 6. Graph showing the signal, Fig. 8 is an explanatory diagram of a conventional fixed horizontal sonde type layer thickness detector, Fig. 9 is an explanatory diagram of a conventional radially movable furnace top sonde type layer thickness detector, Fig. 1
Figure 0 is an explanatory diagram of a radially movable furnace top sonde type layer thickness detector, Figure 11 is an explanatory diagram of the device of the present invention with three or more electrodes, and Figure 12 is a graph showing an example of measuring the layer thickness of a charge. , the thirteenth is a graph showing the furnace top gas temperature distribution,
FIG. 14 is a graph showing changes in ore layer thickness. 1... Blast furnace top bell, 2... Blast furnace wall, 3...
Ore layer, 4... Coke layer, 5a, 5b... Layer thickness detection element, 6... Blast furnace top shell, 7a to 7e...
Electrode part of layer thickness detector, 8... Vertical sonde, 11...
...Fixed horizontal sonde, 12...Radially movable horizontal sonde, 15...Horizontal sonde power motor, 16
...Child sonde, 17...Detection probe, 18...
Parent sonde, 19... electrical insulator, 20... pin,
21... Continuous block, 22... Cable insertion hole, 23... Electric cable, 24... Tip guide, 25... Notch, 26... Coke charging surface before charging ore, 27... Coke charging surface after charging ore.

Claims (1)

【特許請求の範囲】[Claims] 1 高炉装入物層の上方の炉頂空間内に半径方向
に移動可能に炉壁を経て挿入されたゾンデとこの
ゾンデ先端部から前記装入物層の表面に向けて上
下動可能な検出プローブとからなる電極式層厚検
出装置において、検出プローブは、電気ケーブル
を挿通する連通孔を穿設した多数の連設ブロツク
を連接してピン結合し、該連接面に部分的に切欠
部を設けて一定方向へのみ一定曲率で屈曲するリ
ンクチエーン状に構成し、上記ブロツクには、そ
の1つもしくは複数個に、絶縁体によつてブロツ
ク本体より電気的に絶縁された電極を取りつけ、
前記ゾンデ先端部には前記検出プローブを垂直方
向下方に案内し保持する先端ガイドを取り付けた
ことを特徴とする装入物層厚検出装置。
1. A sonde inserted into the furnace top space above the blast furnace charge layer through the furnace wall so as to be movable in the radial direction, and a detection probe that is movable up and down from the tip of the sonde toward the surface of the charge layer. In the electrode-type layer thickness detection device, the detection probe consists of a number of connected blocks each having a communication hole through which an electric cable is inserted, which are connected together with a pin, and a notch is partially provided on the connecting surface. The block is constructed in the form of a link chain bent only in a certain direction with a certain curvature, and one or more of the blocks are provided with electrodes that are electrically insulated from the block body by an insulator,
A charge layer thickness detecting device, wherein a tip guide is attached to the tip of the sonde to guide and hold the detection probe vertically downward.
JP13786884A 1984-07-05 1984-07-05 Detecting device of thickness of layer of charged burden Granted JPS6119712A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP13786884A JPS6119712A (en) 1984-07-05 1984-07-05 Detecting device of thickness of layer of charged burden
US06/751,088 US4697453A (en) 1984-07-05 1985-07-02 Apparatus for monitoring burden distribution in furnace
CA000486328A CA1251945A (en) 1984-07-05 1985-07-04 Apparatus for monitoring burden distribution in furnace
US07/275,687 US4914948A (en) 1984-07-05 1988-11-23 Apparatus for monitoring burden distribution in furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13786884A JPS6119712A (en) 1984-07-05 1984-07-05 Detecting device of thickness of layer of charged burden

Publications (2)

Publication Number Publication Date
JPS6119712A JPS6119712A (en) 1986-01-28
JPS6240402B2 true JPS6240402B2 (en) 1987-08-28

Family

ID=15208598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13786884A Granted JPS6119712A (en) 1984-07-05 1984-07-05 Detecting device of thickness of layer of charged burden

Country Status (1)

Country Link
JP (1) JPS6119712A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4914948A (en) * 1984-07-05 1990-04-10 Kawasaki Steel Corp. Apparatus for monitoring burden distribution in furnace
US4697453A (en) * 1984-07-05 1987-10-06 Kawasaki Steel Corp. Apparatus for monitoring burden distribution in furnace
JPH0793051B2 (en) * 1989-01-26 1995-10-09 第一工業製薬株式会社 Copper conductor composition
JP4568233B2 (en) * 2006-01-30 2010-10-27 新日本製鐵株式会社 Method for measuring remaining thickness of wearable members
JP2011047847A (en) * 2009-08-28 2011-03-10 Sanwacon Co Ltd Ground water level detector

Also Published As

Publication number Publication date
JPS6119712A (en) 1986-01-28

Similar Documents

Publication Publication Date Title
EP0060069B1 (en) A probe and a system for detecting wear of refractory wall
JPS6240402B2 (en)
CN104198011A (en) Device and method for measuring liquid level of high-temperature melt in metallurgical furnace
BR112020009548B1 (en) TANK OVEN CONDITION MONITORING
JP4760013B2 (en) Method and apparatus for measuring melt level in blast furnace
JP4752264B2 (en) Method and apparatus for measuring melt level in blast furnace
US5650117A (en) Slag detecting apparatus and method
US12098886B2 (en) Electric induction furnace with lining wear detection system
JP2000192124A (en) Method for measuring molten material level in furnace hearth part of blast furnace and its instrument
SU1133295A1 (en) Probe for controlling charge parameters in blast furnace
JP2005226105A (en) Method and instrument for measuring level of molten material in blast furnace
JP4050893B2 (en) Method and apparatus for evaluating soot level in blast furnace
JPS5850290B2 (en) Sonde for measuring electrical resistance of contents in reduction melting furnace
JP3990560B2 (en) Blast furnace bottom potential difference measuring apparatus and soot level evaluation method in blast furnace
JP2000192123A (en) Method for measuring molten material level in furnace hearth part of blast furnace and instrument therefor
JPS5833082A (en) Method of deciding behavior of charge in furnace in metal smelting furnace, etc.
JPS6325043B2 (en)
JPH0717931B2 (en) Blast furnace furnace interior entrance layer boundary measurement method
JPS59104407A (en) Detector for distribution of burden of blast furnace
Committee on Reaction within Blast Furnace et al. Measurements in Operating Blast Furnaces
JP4181075B2 (en) Early detection method for blast furnace hearth temperature level
JPS5832207B2 (en) Charge deposition layer thickness detection sonde
JPS6230805A (en) Instrument for measuring layer thickness of charge in shaft furnace
JPS6041682B2 (en) Method and device for measuring heat level in a reduction melting furnace
KR101134620B1 (en) Apparatus for inspecting molten iron in blast furnace