JP4568233B2 - Method for measuring remaining thickness of wearable members - Google Patents

Method for measuring remaining thickness of wearable members Download PDF

Info

Publication number
JP4568233B2
JP4568233B2 JP2006021284A JP2006021284A JP4568233B2 JP 4568233 B2 JP4568233 B2 JP 4568233B2 JP 2006021284 A JP2006021284 A JP 2006021284A JP 2006021284 A JP2006021284 A JP 2006021284A JP 4568233 B2 JP4568233 B2 JP 4568233B2
Authority
JP
Japan
Prior art keywords
remaining thickness
wear
wall brick
electrode
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006021284A
Other languages
Japanese (ja)
Other versions
JP2007205717A (en
Inventor
法生 新田
泰次郎 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2006021284A priority Critical patent/JP4568233B2/en
Publication of JP2007205717A publication Critical patent/JP2007205717A/en
Application granted granted Critical
Publication of JP4568233B2 publication Critical patent/JP4568233B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、損耗部材の残存厚みを測定する損耗部材の残存厚み測定方法に関する。 The present invention relates to a residual thickness measuring how the wear member for measuring the residual thickness of the wear member.

従来、内部を直接視認することが困難な容器や配管部材において、内部を材料が流通することにより、容器の隔壁や配管部材を構成する部材が損耗するので、この損耗量を外側から非破壊で計測したいという要求がある。
例えば、高炉においては、溶銑を受ける炉底部分には耐火煉瓦等の炉底耐火物が用いられている。この炉底耐火物は、溶銑流れ等により損耗し、高炉の寿命を律する大きな因子の一つとされ、高炉操業中に炉底耐火物の残存厚みを逐次測定して、高炉の寿命を推定することが要求されている。
Conventionally, in containers and piping members in which it is difficult to see the inside directly, the material that flows through the inside of the container and the members constituting the piping member wears out. There is a request to measure.
For example, in a blast furnace, a bottom refractory such as a refractory brick is used for a bottom portion that receives hot metal. This furnace bottom refractory is worn by hot metal flow and is considered to be one of the major factors governing the life of the blast furnace, and the remaining thickness of the bottom refractory is sequentially measured during blast furnace operation to estimate the life of the blast furnace. Is required.

この炉底耐火物の損耗状況を外側から測定する方法としては、従来、炉底耐火物外面の温度を測定し、測定温度に基づいて、炉底耐火物の残存厚みを推定算出する方法が知られている。
一方、非破壊による絶縁体からなる測定対象の厚み測定方法としては、静電容量を利用した方法も知られており、この厚み測定方法では、測定対象を厚さ方向で挟み込むように電極を配置してコンデンサを形成し、コンデンサの静電容量を測定することにより、測定対象の厚みを推定することができる(例えば、特許文献1、特許文献2参照)。
As a method for measuring the wear state of the bottom refractory from the outside, there is conventionally known a method of measuring the temperature of the outer surface of the bottom refractory and estimating and calculating the remaining thickness of the bottom refractory based on the measured temperature. It has been.
On the other hand, as a method for measuring the thickness of a measurement object made of a non-destructive insulator, a method using capacitance is also known. In this thickness measurement method, electrodes are arranged so as to sandwich the measurement object in the thickness direction. Then, by forming a capacitor and measuring the capacitance of the capacitor, the thickness of the measurement object can be estimated (see, for example, Patent Document 1 and Patent Document 2).

この静電容量による方法を、前記の高炉の炉床耐火物の残存厚み測定に利用する場合、図11に示されるように、炉底耐火物となる炉底側壁煉瓦13の外周面を金属板101で覆って電極を形成し、高炉内部の溶銑Sとの電気的導通を確保して、炉底側壁煉瓦13を介して離隔される溶銑S及び金属板101間の静電容量を検出することにより、炉底側壁煉瓦13の損耗による残存厚みを算出することが考えられる。
この場合、炉底耐火物の誘電率をε(F/m)、残存厚みをd(m)、静電容量をC(F)、電極面積をS(m)とすると、C=ε・S/dという式に基づいて、残存厚みを算出することができる。
When this method using capacitance is used to measure the remaining thickness of the hearth refractory of the blast furnace, as shown in FIG. 11, the outer peripheral surface of the bottom wall brick 13 serving as the hearth refractory is placed on a metal plate. An electrode is formed by covering with 101, ensuring electrical continuity with the hot metal S inside the blast furnace, and detecting the capacitance between the hot metal S and the metal plate 101 separated via the furnace bottom side wall brick 13. Thus, it is conceivable to calculate the remaining thickness due to wear of the furnace bottom side wall brick 13.
In this case, assuming that the dielectric constant of the furnace refractory is ε (F / m), the remaining thickness is d (m), the capacitance is C (F), and the electrode area is S (m 2 ), C = ε · Based on the expression S / d, the remaining thickness can be calculated.

特開平6−109409号公報(図1、図5参照)JP-A-6-109409 (see FIGS. 1 and 5) 特開平6−194114号公報(図3参照)JP-A-6-194114 (see FIG. 3)

しかしながら、このような従来提案されている残存厚みの測定方法では次のような問題がある。すなわち、炉底耐火物外周面の温度を測定して残存厚みを推定する方法では、測定温度のばらつきが大きいため、残存厚みを高精度に推定することが困難であるという問題がある。
また、静電容量により残存厚みを測定する方法では、炉底耐火物の内面、すなわち損耗面に導電性の材料が不可欠であり、内部に溶銑等が存在する特殊な場合を除いては利用が困難であるという問題がある。さらに、高炉等の導電性材料が存在している場合に利用しても、初期の損耗が進行していない状態では、前記の式からも判るように、電極間距離dが長すぎて検出される静電容量の値が小さくなってしまい、やはり高精度に測定することが困難であるという問題がある。
なお、このような課題は、前述した高炉の炉底耐火物のみならず、内部に摺動面を有する機械や容器等の構造体において、損耗面を直接観察することができず、外側から、摺動による残存厚みを測定したい場合にも同様の課題として把握される。
However, such a conventionally proposed method for measuring the remaining thickness has the following problems. That is, in the method of estimating the remaining thickness by measuring the temperature of the outer surface of the furnace bottom refractory, there is a problem that it is difficult to estimate the remaining thickness with high accuracy because the measurement temperature varies greatly.
Also, in the method of measuring the remaining thickness by capacitance, a conductive material is indispensable on the inner surface of the furnace bottom refractory, that is, the worn surface, and it can be used except in special cases where hot metal is present inside. There is a problem that it is difficult. In addition, even when a conductive material such as a blast furnace is present, when the initial wear is not progressing, the inter-electrode distance d is detected too long as can be seen from the above equation. As a result, there is a problem that it is difficult to measure with high accuracy.
In addition to the above blast furnace bottom refractories, such a problem, in the structure such as a machine or a container having a sliding surface inside, the wear surface can not be directly observed, from the outside, The same problem can be recognized when it is desired to measure the remaining thickness due to sliding.

本発明の目的は、損耗部材の残存厚みを高精度に測定することのできる損耗部材の残存厚み測定方法を提供することにある。 An object of the present invention is to provide a remaining thickness measurement how wear member capable of measuring the residual thickness of the wear member with high accuracy.

(1) 本発明に係る損耗部材の残存厚み測定方法は、複数組み合わされて用いられる損耗部材の残存厚みを測定する損耗部材の残存厚み測定方法であって、
前記損耗部材間の境界部分の互いに対向する面に、前記損耗部材の厚み減少方向に沿って延びる電極をそれぞれ形成し、形成された電極間に絶縁体材料を充填してコンデンサを形成する手順と、
前記コンデンサの静電容量の変化を検出し、検出された静電容量の変化に基づいて、前記損耗部材の残存厚みを算出する手順とを備えていることを特徴とする。
(1) The method for measuring the remaining thickness of a wearable member according to the present invention is a method for measuring the remaining thickness of a wearable member for measuring the remaining thickness of a wearable member used in combination .
A step of forming electrodes extending along the thickness decreasing direction of the wear member on the mutually opposing surfaces of the boundary portion between the wear members, and forming a capacitor by filling an insulating material between the formed electrodes; ,
And a procedure for detecting a change in capacitance of the capacitor and calculating a remaining thickness of the wearable member based on the detected change in capacitance.

この発明によれば、前述のように形成されたコンデンサの静電容量の変化を検出することにより、損耗による損耗部材の厚みの減少に伴って電極の延出方向損耗面側端部が損耗していくので、電極長さの減少という形で静電容量の変化を検出することができ、損耗の度合いによらず検出精度が変化することがなく、高精度に残存厚みを測定することができる。
さらに、この発明によれば、別途特殊な部材等を用いる必要がないので、境界部分に面する損耗部材のそれぞれの端面に電極を形成し、絶縁体材料を充填するだけで簡単に本発明の作用及び効果を享受することができる。
According to this invention, by detecting the change in the capacitance of the capacitor formed as described above, the end portion on the wear surface side in the extending direction of the electrode is worn as the thickness of the wear member is reduced due to wear. Therefore, it is possible to detect a change in capacitance in the form of a decrease in electrode length, and the remaining thickness can be measured with high accuracy without any change in detection accuracy regardless of the degree of wear. .
Furthermore, according to the present invention, since it is not necessary to use a special member or the like separately, an electrode is formed on each end face of the wear member facing the boundary portion and the insulator material is simply filled. You can enjoy the actions and effects.

ここで、検出された静電容量の変化から残存厚みを算出する方法としては、例えば、損耗によって減少する電極の長さに応じた静電容量を予め検出しておき、これに基づいて検量線を作成することにより求めることができる。
また、検出される静電容量をC(F)、一対の電極間の絶縁体の誘電率をε(F/m)、損耗部材の残存厚みをL(m)、電極の幅をW(m)、対向する電極間の距離をd(m)とすると、次の式(A)に基づいて求めることもできる。
L=C・d/ε/W…(A)
Here, as a method of calculating the remaining thickness from the detected change in capacitance, for example, a capacitance corresponding to the length of the electrode that decreases due to wear is detected in advance, and a calibration curve is based on this. Can be obtained by creating
The detected capacitance is C (F), the dielectric constant of the insulator between the pair of electrodes is ε (F / m), the remaining thickness of the wear member is L (m), and the width of the electrode is W (m). ), Where the distance between the opposing electrodes is d 0 (m), it can also be obtained based on the following equation (A).
L = C · d 0 / ε / W (A)

(2) 本発明において、前記電極を形成する方法は、Mo、Cu、W、Ta、Ti、Fe、Cr、Au、Ag、又は、Ptの金属を、前記損耗部材間の境界部分の互いに対抗する面に溶射若しくは蒸着して形成する、又は、片面に前記金属の薄膜が形成された合成樹脂製のフィルムを前記損耗部材間の境界部分の互いに対抗する面に貼り付けることによることができる (2) In the present invention, the method for forming the electrode is to oppose the metals of Mo, Cu, W, Ta, Ti, Fe, Cr, Au, Ag, or Pt to each other at the boundary portion between the wear members. It can be formed by spraying or vapor-depositing on the surface to be adhered, or by attaching a synthetic resin film having the metal thin film formed on one surface to the opposing surfaces of the boundary portion between the wear members .

ここで、損耗部材の端面に電極を形成する方法としては、銅、白金、タングステン、モリブデン、鉄、バナジウム、チタニウム等の金属材料を、溶射、蒸着等により損耗部材の端面に薄膜として形成したり、これらの金属材料をフィルム上に薄膜形成しておき、これを損耗部材の端面に貼り付ける等の方法を採用することができる。
また、充填する絶縁体材料としては、損耗部材が複数組み合わされて構成されるので、モルタル等の損耗部材間の接合を行う材料を採用するのが好ましい。
Here, as a method of forming the electrode on the end face of the wear member, a metal material such as copper, platinum, tungsten, molybdenum, iron, vanadium, titanium, etc. is formed as a thin film on the end face of the wear member by thermal spraying, vapor deposition or the like. These metal materials can be formed into a thin film on a film, and a method of sticking this to the end face of the wearable member can be employed.
Moreover, as the insulator material to be filled, since a plurality of wear members are combined, it is preferable to employ a material that joins the wear members such as mortar.

(3) 本発明において、前記複数組み合わされて用いられる損耗部材が、高炉の炉底側壁煉瓦であり、前記損耗部材間の境界部分が、前記炉底側壁煉瓦の目地であることとすることができる。 (3) In the present invention, the wear member used in combination may be a bottom wall brick of a blast furnace, and a boundary portion between the wear members may be a joint of the bottom wall brick. it can.

このような本発明によれば、損耗部材の損耗による残存厚みの程度によらず、残存厚みを高精度に測定することができる、という効果がある。   According to the present invention as described above, there is an effect that the remaining thickness can be measured with high accuracy regardless of the degree of the remaining thickness due to the wear of the wear member.

以下、本発明の実施の形態を図面に基づいて説明する。
〔高炉構造〕
図1には、本発明の実施の形態に係る高炉10が示されている。この高炉10は、鉄皮11と、鉄皮11の内部に内張りされた炉底煉瓦12及び炉底側壁煉瓦13と、炉底煉瓦12を保持する底盤14と、羽口15、16とを備えている。
炉底煉瓦12は、底盤14上に複数段積重ねられており、この炉底煉瓦12の外側並びに上方に鉄皮11の内壁に接触した状態で炉底側壁煉瓦13が複数段積重ねられ、炉底煉瓦12と炉底側壁煉瓦13とが一体となっている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[Blast furnace structure]
FIG. 1 shows a blast furnace 10 according to an embodiment of the present invention. The blast furnace 10 includes an iron skin 11, a furnace bottom brick 12 and a furnace bottom side wall brick 13 lined inside the iron skin 11, a bottom plate 14 for holding the furnace bottom brick 12, and tuyere 15 and 16. ing.
The furnace bottom brick 12 is stacked in a plurality of stages on the bottom board 14, and the furnace bottom side wall brick 13 is stacked in a plurality of stages in contact with the inner wall of the iron shell 11 outside and above the furnace bottom brick 12. The brick 12 and the bottom wall brick 13 are integrated.

具体的には、図2に示されるように、炉底側壁煉瓦13は、炉底煉瓦12を囲むように平面視で略円形状に配置されて上下方向に積み重ねられて炉底側壁を構成している。炉底煉瓦12及び炉底側壁煉瓦13は、無煙炭、土壌黒煙、人造黒煙など耐溶損性に優れる材質が採用され、例えば、タール、ピッチ、樹脂の1種以上をバインダーとして混練し、プレス板間に充填し加圧プレスにて成形することができる。
また、底盤14には、図示を略したが、冷却管が設けられており、調整弁により冷却管に供給する冷却水量を調整することが可能な構成となっている。
羽口15は、図1に示されるように、高炉10内に酸素や微粉炭等を吹込むことができ、吹込み量比率の増減ができ、羽口前16における燃焼温度を増減することができる。
Specifically, as shown in FIG. 2, the bottom wall brick 13 is arranged in a substantially circular shape in plan view so as to surround the bottom brick 12 and is stacked in the vertical direction to form the bottom wall. ing. The furnace bottom brick 12 and the furnace bottom side wall brick 13 are made of a material having excellent resistance to melting, such as anthracite, soil black smoke, and artificial black smoke. For example, one or more types of tar, pitch, and resin are kneaded and pressed. It can be filled between plates and molded with a pressure press.
Although not shown, the bottom plate 14 is provided with a cooling pipe so that the amount of cooling water supplied to the cooling pipe can be adjusted by an adjustment valve.
As shown in FIG. 1, the tuyere 15 can blow oxygen, pulverized coal, or the like into the blast furnace 10, can increase or decrease the blowing amount ratio, and can increase or decrease the combustion temperature at the front 16 of the tuyere. it can.

このような構造の高炉10が正常な場合は、炉底側壁煉瓦13に異常な損耗がなく、操業も安定した状態を維持できる。
しかし、底盤14の不適切な冷却、炉内状況の異常等によって、炉底煉瓦12の表面にメタルとスラグを有する凝固層(粘稠層とも言う)が異常形成されることがある。この形成される凝固層の量によっては、高炉10の底部に溶銑の炉底側壁煉瓦13に沿う環状の流れが発生して、炉底側壁煉瓦13が損耗する。
When the blast furnace 10 having such a structure is normal, the furnace bottom side wall brick 13 is free from abnormal wear and can maintain a stable operation.
However, a solidified layer (also referred to as a viscous layer) having metal and slag may be abnormally formed on the surface of the bottom brick 12 due to improper cooling of the bottom plate 14 or abnormal conditions in the furnace. Depending on the amount of the solidified layer formed, an annular flow along the bottom wall brick 13 of the hot metal is generated at the bottom of the blast furnace 10 and the bottom wall brick 13 is worn out.

また、異常形成した凝固層により、高炉10の底部の熱が炉底煉瓦12に伝わることが抑制されるので、この場合、炉底煉瓦12の温度が低下する。これにより、炉底煉瓦12が収縮するので、炉底煉瓦12と一体となった炉底側壁煉瓦13が高炉10の中心部へ移動し、鉄皮11と炉底側壁煉瓦13との間に、例えば、0.2〜1mm程度の隙間が形成される。このため、鉄皮11の外側から冷却しても、炉底側壁煉瓦13を冷却することはできず、炉底側壁煉瓦13が損耗する。
以上のような現象により、炉底側壁煉瓦13は、高炉10の内面側から損耗するため、この損耗の程度、すなわち炉底側壁煉瓦13の残存厚みを外側から高精度に測定することは、高炉10の寿命を検討する上で非常に重要となる。
Moreover, since the abnormally formed solidified layer suppresses the heat at the bottom of the blast furnace 10 from being transmitted to the furnace bottom brick 12, in this case, the temperature of the furnace bottom brick 12 decreases. Thereby, since the furnace bottom brick 12 contracts, the furnace bottom side wall brick 13 integrated with the furnace bottom brick 12 moves to the center of the blast furnace 10, and between the iron skin 11 and the furnace bottom side wall brick 13, For example, a gap of about 0.2 to 1 mm is formed. For this reason, even if it cools from the outer side of the iron skin 11, the furnace bottom side wall brick 13 cannot be cooled, but the furnace bottom side wall brick 13 is worn out.
Due to the above phenomenon, the furnace bottom side wall brick 13 is worn out from the inner surface side of the blast furnace 10, and therefore, the degree of wear, that is, the measurement of the remaining thickness of the furnace bottom side wall brick 13 from the outside with high accuracy is performed. This is very important in considering the lifetime of 10.

〔第1参考形態〕
このような高炉10の炉底側壁煉瓦13の損耗による残存厚みを測定するために、第1参考形態に係る測定方法では、図3に示されるように、炉底側壁煉瓦13に内外を貫通する、すなわち、炉底側壁煉瓦13の厚みが減少する方向に沿って延びる孔131を穿設し、この孔131にプローブ20を挿入し、このプローブ20の静電容量の変化を検出することにより、炉底側壁煉瓦13の残存厚みを測定する。
プローブ20の取付位置は、炉底側壁煉瓦13の任意の位置に設定することができ、例えば、複数の炉底側壁煉瓦13を組み合わせて構成される壁体において、上下方向に複数箇所、さらに平面視円形状の壁体を均等に分割する複数の箇所に設定することが可能である。
また、プローブ20は帯状であり、孔131は断面円形状に穿設されるのが通常であるから、孔131の隙間部分には、封止用のモルタル132が充填される。
[First Reference Form]
In order to measure the remaining thickness due to wear of the bottom wall brick 13 of the blast furnace 10, the measurement method according to the first reference embodiment penetrates the inside and outside of the bottom wall brick 13 as shown in FIG. 3. That is, by drilling a hole 131 extending along the direction in which the thickness of the bottom wall brick 13 decreases, inserting the probe 20 into the hole 131, and detecting a change in the capacitance of the probe 20, The remaining thickness of the bottom wall brick 13 is measured.
The mounting position of the probe 20 can be set at an arbitrary position of the furnace bottom side wall brick 13. For example, in a wall body configured by combining a plurality of furnace bottom side wall bricks 13, a plurality of locations in the vertical direction and further a plane It is possible to set a plurality of locations that equally divide the circular wall body.
Further, since the probe 20 has a band shape and the hole 131 is usually drilled in a circular cross section, a gap portion of the hole 131 is filled with a sealing mortar 132.

プローブ20は、帯状の絶縁体21と、この絶縁体21の表裏面に形成される導体からなる電極22とを備えて構成され、図中右側となる炉底側壁煉瓦13の外周面には、電極22から引き出された端子23が露出している。
絶縁体21としては、アルミナ等のセラミックやポリイミドテープ等の合成樹脂材料を用いることができる。
導体からなる電極22は、図4に示されるように、絶縁体21の幅寸法Wよりも若干小さな幅寸法Wとされ、絶縁体21の延出方向に沿って複数配列された電極セル221と、各電極セル221間の電気的導通を確保する連結部222とを備えて構成されている。電極22を構成する導体としては、Mo、Cu、W、Ta、Cr、Au、Ag、Pt等の金属フィルムを用いることができる。
The probe 20 includes a strip-shaped insulator 21 and an electrode 22 made of a conductor formed on the front and back surfaces of the insulator 21, and on the outer peripheral surface of the furnace bottom side wall brick 13 on the right side in the figure, The terminal 23 drawn out from the electrode 22 is exposed.
As the insulator 21, a ceramic such as alumina or a synthetic resin material such as polyimide tape can be used.
As shown in FIG. 4, the electrode 22 made of a conductor has a width dimension W slightly smaller than the width dimension W 0 of the insulator 21, and a plurality of electrode cells 221 arranged along the extending direction of the insulator 21. And a connecting portion 222 for ensuring electrical continuity between the electrode cells 221. As a conductor constituting the electrode 22, a metal film such as Mo, Cu, W, Ta, Cr, Au, Ag, or Pt can be used.

このようなプローブ20を高炉10の側壁等の高温で使用する場合、前述した絶縁体21の材料、電極22の材料のうち、絶縁体21としてアルミナ箔、導体からなる電極22としてMoフィルムを採用するのが、耐熱性が良好なので好ましい。
一方、高炉10の側壁と比較して低温で使用する場合、プローブ20の絶縁体21としてはポリイミドテープ、導体からなる電極22としてCuフィルムを採用するのが安価でコスト的にも好ましい。
なお、絶縁体21の厚さ寸法としては、例えば400μmのものを採用し、電極22の厚さ寸法は、例えば10μmとすることができる。
また、プローブ20は、絶縁体21に対して導体金属を接着、蒸着、溶射等の手法によって形成することができるが、最も好ましいのは溶射である。
When such a probe 20 is used at a high temperature such as the side wall of the blast furnace 10, among the materials of the insulator 21 and the electrode 22 described above, an alumina foil is used as the insulator 21 and a Mo film is used as the electrode 22 made of a conductor. It is preferable to have good heat resistance.
On the other hand, when used at a low temperature as compared with the side wall of the blast furnace 10, it is preferable to adopt a polyimide tape as the insulator 21 of the probe 20 and a Cu film as the electrode 22 made of a conductor because of low cost and cost.
In addition, as a thickness dimension of the insulator 21, a thing of 400 micrometers is employ | adopted, for example, and the thickness dimension of the electrode 22 can be 10 micrometers, for example.
The probe 20 can be formed by adhering a conductive metal to the insulator 21 by a technique such as adhesion, vapor deposition, or thermal spraying. The most preferable is thermal spraying.

絶縁体21の表裏面に形成されたそれぞれの電極22は、電極セル221同士が対向するように配置され、隣接する電極セル221同士の間には、僅かな隙間が形成され、絶縁体21の幅方向略中央の連結部222によって連絡している。
電極22の端部に設けられた端子23には、図3及び図4では略したが、プローブ20の静電容量を測定するためのLCRメータ等が接続される。
プローブ20は、端子23が設けられていない側の端部から損耗等により長さ寸法Lが減少するに伴って静電容量が変化し、この変化は端子23に接続されたLCRメータによって検出することができる。
The electrodes 22 formed on the front and back surfaces of the insulator 21 are arranged so that the electrode cells 221 face each other, and a slight gap is formed between the adjacent electrode cells 221, The connection is made by the connecting portion 222 at the center in the width direction.
Although not shown in FIGS. 3 and 4, an LCR meter or the like for measuring the capacitance of the probe 20 is connected to the terminal 23 provided at the end of the electrode 22.
The capacitance of the probe 20 changes as the length L decreases from the end on the side where the terminal 23 is not provided due to wear or the like, and this change is detected by an LCR meter connected to the terminal 23. be able to.

次に、本参考形態による炉底側壁煉瓦13の残存厚みの測定手順を具体的に説明する。
まず、図4において、端子23側とは反対側の端部から長さ方向に電極セル221を切り取って、それぞれの長さにおける静電容量Cを予め測定しておく。この際、電極セル221間の隙間部分をはさみ等で順次切り取るのが好ましい。
具体的には、例えば、JIS R 1661に準拠したLCRメータの一種であるケミカルインピーダンスメータ(日置電機株式会社製)を用いて、電極セル221の欠損数に応じた静電容量を測定すると、図5に示されるように、切り取りによる欠損セル数と電極セル221の数に応じた静電容量Cとの関係を与える検量線G1が得られることとなる。この欠損セル数は、プローブ20の長さL方向の減少量として把握される。
Next, a procedure for measuring the residual thickness of the furnace bottom side wall brick 13 according to this preferred embodiment in detail.
First, in FIG. 4, the electrode cell 221 is cut out in the length direction from the end opposite to the terminal 23 side, and the capacitance C at each length is measured in advance. At this time, it is preferable to sequentially cut the gap between the electrode cells 221 with scissors or the like.
Specifically, for example, when a chemical impedance meter (manufactured by Hioki Electric Co., Ltd.), which is a type of LCR meter based on JIS R 1661, is used to measure the capacitance according to the number of defects of the electrode cell 221, the figure As shown in FIG. 5, a calibration curve G <b> 1 that gives the relationship between the number of missing cells by cutting and the capacitance C according to the number of electrode cells 221 is obtained. The number of missing cells is grasped as a decrease amount in the length L direction of the probe 20.

次に、炉底側壁煉瓦13の外周から内部に向かって孔131を穿設し、この孔131内に、検量線G1と同様の仕様のプローブ20を挿入し、孔131の隙間部分にモルタル132を充填して硬化させ、高炉10の内外の連通を遮断する。
炉底側壁煉瓦13の複数箇所にこのようにプローブ20を装着し、高炉10を操業させると、前述した現象により、図6に示されるように、炉底側壁煉瓦13の溶銑との接触面が徐々に損耗していく。この際、プローブ20の内側端部は一瞬溶銑と接触し、一対の電極22間は溶銑を介して短絡する。しかし、この後、プローブ20は、溶銑の熱によって収縮するため、端部が炉底側壁煉瓦13の接触面よりも内側に凹んだ状態となり、一対の電極22間の電気的導通は遮断され、適切なコンデンサとして機能する。
Next, a hole 131 is formed from the outer periphery to the inside of the furnace bottom side wall brick 13, and the probe 20 having the same specifications as the calibration curve G 1 is inserted into the hole 131, and the mortar 132 is inserted into the gap portion of the hole 131. Is filled and cured to block communication between the inside and outside of the blast furnace 10.
When the probes 20 are mounted in a plurality of locations on the bottom wall brick 13 and the blast furnace 10 is operated in this manner, the contact surface of the bottom wall brick 13 with the hot metal is caused by the phenomenon described above, as shown in FIG. Gradually wear out. At this time, the inner end of the probe 20 is in contact with the hot metal for a moment, and the pair of electrodes 22 are short-circuited via the hot metal. However, since the probe 20 is contracted by the heat of the hot metal thereafter, the end portion is recessed inward from the contact surface of the furnace bottom side wall brick 13, and electrical conduction between the pair of electrodes 22 is interrupted. Acts as a suitable capacitor.

このような炉底側壁煉瓦13が損耗した状態において、前述したケミカルインピーダンスメータを端子23に接続し、プローブ20によって形成されるコンデンサの静電容量を測定し、図5に示される検量線G1に基づいて、欠損した電極セル221の数から炉底側壁煉瓦13の残存厚みL(図6参照)を、前述した式(A)を用いて算出することができることとなる。
なお、本参考形態においては、炉底側壁煉瓦13に孔131を穿設して、孔131にプローブ20を挿入していたが、これに限らず、例えば、炉底側壁煉瓦13の加圧プレス成形に際して、プローブ20を炉底側壁煉瓦13の内部に埋設した状態で加圧プレス成形を行い、プローブ20が埋設された炉底側壁煉瓦13を、高炉10の建設時に所定位置に組み込んでもよい。また、高炉10の建設時に、炉底側壁煉瓦13同士の境界部分、すなわち目地の部分にプローブ20を配設し、目地モルタル中にプローブ20を埋設してもよい。
In such a state that the bottom wall brick 13 of the furnace bottom is worn, the above-described chemical impedance meter is connected to the terminal 23, the capacitance of the capacitor formed by the probe 20 is measured, and the calibration curve G1 shown in FIG. Based on the number of missing electrode cells 221, the remaining thickness L of the furnace bottom side wall brick 13 (see FIG. 6) can be calculated using the above-described equation (A).
In the present reference embodiment, the bored holes 131 in the furnace bottom side wall bricks 13, had inserted a probe 20 into the hole 131 is not limited thereto, for example, pressure pressing of the furnace bottom side wall bricks 13 At the time of molding, pressure press molding may be performed with the probe 20 embedded in the furnace bottom side wall brick 13, and the furnace bottom side wall brick 13 embedded with the probe 20 may be incorporated at a predetermined position when the blast furnace 10 is constructed. Moreover, at the time of construction of the blast furnace 10, the probe 20 may be arrange | positioned in the boundary part between furnace bottom side wall bricks 13, ie, the joint part, and the probe 20 may be embed | buried in joint mortar.

〔第実施形態〕
次に、本発明の第実施形態について説明する。なお、以下の説明では、第1参考形態において既に説明した部材については同一符号を付してその説明を省略する。
前述した第1参考形態では、予め形成されたプローブ20を炉底側壁煉瓦13に穿設された孔131に挿入し、このプローブ20によって形成されるコンデンサの静電容量を測定することにより、炉底側壁煉瓦13の残存厚みの測定を行っていた。
これに対して、第実施形態に係る測定方法では、図7に示されるように、高炉の建設時に、隣接する炉底側壁煉瓦13の互いに対向する面のそれぞれに電極31を形成し、一対の電極31間を目地モルタル32で充填することにより、コンデンサ30を形成している点が相違する。
First Embodiment
Next, a first embodiment of the present invention will be described. In the following description, members already described in the first reference embodiment are assigned the same reference numerals and description thereof is omitted.
In the first reference embodiment described above, the pre-formed probe 20 is inserted into the hole 131 formed in the furnace bottom side wall brick 13 and the capacitance of the capacitor formed by the probe 20 is measured. The residual thickness of the bottom side wall brick 13 was measured.
On the other hand, in the measurement method according to the first embodiment, as shown in FIG. 7, during construction of the blast furnace, the electrodes 31 are formed on the mutually opposing surfaces of the adjacent furnace bottom side wall bricks 13. The capacitor 30 is formed by filling the gap between the electrodes 31 with the joint mortar 32.

本実施形態では、高炉建設時、適宜の位置の炉底側壁煉瓦13に電極31を形成するが、具体的には、以下の手順でコンデンサ30が形成される。
電極31は、図8に示されるように、炉底側壁煉瓦13の目地部に相当する端面に形成され、電極31を形成する方法としては、例えば、Mo、Cu、W、Ta、Cr、Au、Ag、Pt等の金属を炉底側壁煉瓦13の端面に溶射したり、蒸着したり、片面に金属薄膜が形成された合成樹脂製のフィルム等を炉底側壁煉瓦13の端面に貼り付けたりする方法を採用することができる。なお、電極31は、炉底側壁煉瓦13の端面全部に形成する必要はなく、それぞれの電極31が互いに対向配置されるような一部の位置に帯状に形成すればよい。
In the present embodiment, the electrode 31 is formed on the bottom wall brick 13 at an appropriate position during blast furnace construction. Specifically, the capacitor 30 is formed by the following procedure.
As shown in FIG. 8, the electrode 31 is formed on an end face corresponding to the joint portion of the bottom wall brick 13, and as a method of forming the electrode 31, for example, Mo, Cu, W, Ta, Cr, Au A metal such as Ag, Pt or the like is sprayed on the end face of the furnace bottom side wall brick 13, vapor deposited, or a synthetic resin film having a metal thin film formed on one side is attached to the end face of the furnace bottom side wall brick 13. The method to do can be adopted. The electrodes 31 do not have to be formed on the entire end surface of the furnace bottom side wall brick 13 and may be formed in a strip shape at some positions where the respective electrodes 31 are arranged to face each other.

電極31の形成が終了したら、炉底側壁煉瓦13の外周側端部に端子線33を設け、電極31との電気的導通を確保した状態で高炉外部に端子線33を引き出しておく。
電極31の形成及び端子線33の取付が終了したら、図9に示されるように、目地モルタル32を一方の炉底側壁煉瓦13の電極31を覆うように塗り込み、双方の電極31が対向するように、他方の炉底側壁煉瓦13を接合する。
炉底側壁煉瓦13の損耗による残存厚みを測定する際には、LCRメータを端子33に接続して、静電容量C(F)を検出し、予め測定しておいた目地幅d(m)、電極幅W(m)、及び目地モルタル32の誘電率ε(F/m)に基づいて、残存厚みL=C・d/ε/Wを算出する。
When the formation of the electrode 31 is completed, a terminal wire 33 is provided at the outer peripheral side end of the furnace bottom side wall brick 13, and the terminal wire 33 is drawn outside the blast furnace in a state in which electrical continuity with the electrode 31 is ensured.
When the formation of the electrode 31 and the attachment of the terminal wire 33 are completed, as shown in FIG. 9, the joint mortar 32 is applied so as to cover the electrode 31 of one furnace bottom side wall brick 13, and both the electrodes 31 face each other. Thus, the other furnace bottom side wall brick 13 is joined.
When measuring the remaining thickness due to wear of the bottom wall brick 13, an LCR meter is connected to the terminal 33 to detect the capacitance C (F), and the joint width d 0 (m ), The electrode width W (m), and the dielectric constant ε (F / m) of the joint mortar 32, the remaining thickness L = C · d 0 / ε / W is calculated.

〔第実施形態〕
次に、本発明の第実施形態について説明する。
前述した第1参考形態に係るプローブ20は、電極22が幅広の電極セル221と幅狭の連結部222が連続するように構成されていた。
これに対して第実施形態に係るプローブ40は、図10に示されるように、絶縁体21の表裏面に帯状に電極22が形成されている点が相違する。
本実施形態におけるプローブでは、一方の電極22の幅方向寸法W1が他方の電極22の幅方向寸法W2よりも小さくなっている。これは、製造時の導通を防止するためである。
尚、本実施形態におけるプローブ40の材質、形成方法、及び使用方法は第1参考形態と同様なので説明を省略する。
[ Second Embodiment]
Next, a second embodiment of the present invention will be described.
The probe 20 according to the first reference embodiment described above is configured such that the electrode cell 221 having the wide electrode 22 and the connecting portion 222 having the narrow width are continuous.
On the other hand, the probe 40 according to the second embodiment is different in that the electrodes 22 are formed in a band shape on the front and back surfaces of the insulator 21 as shown in FIG.
In the probe in this embodiment, the width direction dimension W1 of one electrode 22 is smaller than the width direction dimension W2 of the other electrode 22. This is to prevent conduction during manufacture.
In addition, since the material of the probe 40 in this embodiment, a formation method, and a usage method are the same as that of a 1st reference form, description is abbreviate | omitted.

の他、本発明の実施の際の具体的な構造及び形状等は、本発明の目的を達成できる範囲で他の構造等としてもよい。 As a further specific construction, shape and the like of the practice of the present invention, objects may be other structures such as in the range of the present invention can be achieved.

本発明は、内部の損耗状態を測定することが困難な隔壁等の残存厚みを高精度に測定するのに好適に用いることができ、とりわけ、高炉の炉底煉瓦、炉底側壁煉瓦の残存厚みを測定するのに好適である。   The present invention can be suitably used to accurately measure the remaining thickness of partition walls and the like for which it is difficult to measure the internal wear state, and in particular, the remaining thickness of the blast furnace bottom brick and the bottom wall brick. It is suitable for measuring.

本発明の実施形態に係る高炉の構造を表す模式断面図。The schematic cross section showing the structure of the blast furnace concerning the embodiment of the present invention. 本実施形態における炉底の構造を表す部分斜視図。The partial perspective view showing the structure of the furnace bottom in this embodiment. 参考形態における炉底側壁煉瓦にプローブを取り付けた状態を表す断面図。Sectional drawing showing the state which attached the probe to the furnace bottom side wall brick in this reference form. 参考形態におけるプローブの構造を表す平面図。The top view showing the structure of the probe in this reference form. 参考形態におけるプローブの電極セルの欠損数と静電容量の関係を表すグラフ。The graph showing the relationship between the defect | deletion number of the electrode cell of a probe in this reference form, and an electrostatic capacitance. 参考形態における炉底側壁煉瓦の損耗時におけるプローブの状態を表す断面図。Sectional drawing showing the state of the probe at the time of wear of the furnace bottom side wall brick in this reference form. 本発明の第実施形態に係るコンデンサの構造を表す断面図。Sectional drawing showing the structure of the capacitor | condenser which concerns on 1st Embodiment of this invention. 本実施形態におけるコンデンサ形成の手順を説明するための模式図。The schematic diagram for demonstrating the procedure of the capacitor | condenser formation in this embodiment. 本実施形態におけるコンデンサ形成の手順を説明するための模式図。The schematic diagram for demonstrating the procedure of the capacitor | condenser formation in this embodiment. 本発明の第実施形態に係るプローブの構造を表す平面図。The top view showing the structure of the probe which concerns on 2nd Embodiment of this invention. 従来技術における損耗部材の残存厚みの測定方法を説明するための模式図。The schematic diagram for demonstrating the measuring method of the remaining thickness of the wearable member in a prior art.

符号の説明Explanation of symbols

10…高炉、11…鉄皮、12…炉底煉瓦、13…炉底側壁煉瓦(損耗部材)、14…底盤、15…羽口、16…羽口前、20…プローブ(残存厚み測定用プローブ)、21…絶縁体、22…電極、23…端子、30…コンデンサ、31…電極、32…目地モルタル(絶縁体材料)、33…端子線、40…プローブ、101…金属板、131…孔、132…モルタル、221…電極セル、222…連結部 DESCRIPTION OF SYMBOLS 10 ... Blast furnace, 11 ... Iron skin, 12 ... Furnace bottom brick, 13 ... Furnace bottom side wall brick (abrasion member), 14 ... Bottom board, 15 ... Tuyere, 16 ... Before tuyere, 20 ... Probe (probe for residual thickness measurement) , 21 ... insulator, 22 ... electrode, 23 ... terminal, 30 ... capacitor, 31 ... electrode, 32 ... joint mortar (insulator material), 33 ... terminal wire, 40 ... probe, 101 ... metal plate, 131 ... hole 132 ... Mortar, 221 ... Electrode cell, 222 ... Connection part

Claims (3)

複数組み合わされて用いられる損耗部材の残存厚みを測定する損耗部材の残存厚み測定方法であって、
前記損耗部材間の境界部分の互いに対向する面に、前記損耗部材の厚み減少方向に沿って延びる電極をそれぞれ形成し、形成された電極間に絶縁体材料を充填してコンデンサを形成する手順と、
前記コンデンサの静電容量の変化を検出し、検出された静電容量の変化に基づいて、前記損耗部材の残存厚みを算出する手順とを備えていることを特徴とする損耗部材の残存厚み測定方法。
A method for measuring the remaining thickness of a worn member for measuring the remaining thickness of a worn member used in combination ,
A step of forming electrodes extending along the thickness decreasing direction of the wear member on the mutually opposing surfaces of the boundary portion between the wear members, and forming a capacitor by filling an insulating material between the formed electrodes; ,
Measuring the remaining thickness of the wearable member, comprising detecting a change in the capacitance of the capacitor and calculating the remaining thickness of the wearable member based on the detected change in the capacitance. Method.
前記電極を形成する方法は、Mo、Cu、W、Ta、Ti、Fe、Cr、Au、Ag、又は、Ptの金属を、前記損耗部材間の境界部分の互いに対抗する面に溶射若しくは蒸着して形成する、又は、片面に前記金属の薄膜が形成された合成樹脂製のフィルムを前記損耗部材間の境界部分の互いに対抗する面に貼り付けることである
ことを特徴とする請求項1記載の損耗部材の残存厚み測定方法。
The electrode is formed by spraying or vapor-depositing Mo, Cu, W, Ta, Ti, Fe, Cr, Au, Ag, or Pt metal on the opposing surfaces of the boundary portion between the wear members. forming Te, or, according to claim 1, characterized in that pasting the synthetic resin film on which a thin film is formed of metal on one side surface to oppose to each other at the boundary between the wear member Method for measuring the remaining thickness of a worn member.
前記複数組み合わされて用いられる損耗部材が、高炉の炉底側壁煉瓦であり、
前記損耗部材間の境界部分が、前記炉底側壁煉瓦の目地である
ことを特徴とする請求項1又は請求項2に記載の損耗部材の残存厚み測定方法。
The wear member used in combination of the plurality is a blast furnace bottom side wall brick,
The method for measuring the remaining thickness of a wear member according to claim 1 or 2 , wherein a boundary portion between the wear members is a joint of the bottom wall brick .
JP2006021284A 2006-01-30 2006-01-30 Method for measuring remaining thickness of wearable members Expired - Fee Related JP4568233B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006021284A JP4568233B2 (en) 2006-01-30 2006-01-30 Method for measuring remaining thickness of wearable members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006021284A JP4568233B2 (en) 2006-01-30 2006-01-30 Method for measuring remaining thickness of wearable members

Publications (2)

Publication Number Publication Date
JP2007205717A JP2007205717A (en) 2007-08-16
JP4568233B2 true JP4568233B2 (en) 2010-10-27

Family

ID=38485332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006021284A Expired - Fee Related JP4568233B2 (en) 2006-01-30 2006-01-30 Method for measuring remaining thickness of wearable members

Country Status (1)

Country Link
JP (1) JP4568233B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9244033B2 (en) * 2013-01-24 2016-01-26 GM Global Technology Operations LLC Method for online detection of liner buckling in a storage system for pressurized gas
WO2016085733A1 (en) * 2014-11-25 2016-06-02 Corning Incorporated Measurement of electrode length in a melting furnace
CN107607595B (en) * 2017-09-21 2020-05-12 京东方科技集团股份有限公司 Optical filter detection device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191885A (en) * 1983-04-14 1984-10-31 アンリツ株式会社 Method of measuring pressure of blast furnace wall
JPS6119712A (en) * 1984-07-05 1986-01-28 Kawasaki Steel Corp Detecting device of thickness of layer of charged burden
JPH11217612A (en) * 1998-01-29 1999-08-10 Nkk Corp Structure for laying brick in furnace body
JP2003203820A (en) * 2002-01-07 2003-07-18 Rohm Co Ltd Chip capacitor
JP2005010139A (en) * 2003-05-29 2005-01-13 Jfe Steel Kk Residual thickness measuring method and device for furnace refractory using elastic wave

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59191885A (en) * 1983-04-14 1984-10-31 アンリツ株式会社 Method of measuring pressure of blast furnace wall
JPS6119712A (en) * 1984-07-05 1986-01-28 Kawasaki Steel Corp Detecting device of thickness of layer of charged burden
JPH11217612A (en) * 1998-01-29 1999-08-10 Nkk Corp Structure for laying brick in furnace body
JP2003203820A (en) * 2002-01-07 2003-07-18 Rohm Co Ltd Chip capacitor
JP2005010139A (en) * 2003-05-29 2005-01-13 Jfe Steel Kk Residual thickness measuring method and device for furnace refractory using elastic wave

Also Published As

Publication number Publication date
JP2007205717A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
US8151623B2 (en) Sensor for quantifying widening reduction wear on a surface
US6838157B2 (en) Method and apparatus for instrumenting a gas turbine component having a barrier coating
TWI544568B (en) Methods and apparatus for a multi-zone pedestal heater
RU2375149C2 (en) Tank for metallic melt, usage of tank and method of interface definition
US7753584B2 (en) Thermocouples
JP4568233B2 (en) Method for measuring remaining thickness of wearable members
ES2487652T3 (en) Procedure and device for measuring electrode length
CN105742740A (en) temperature measuring structure of lithium ion battery
US20140242328A1 (en) Measuring Device
JPH11316106A (en) Method and device for continuous measurement of abrasion amount of metallurgic container wall
JP5253222B2 (en) Temperature measuring element and temperature measuring instrument
US7418882B2 (en) Measuring probe
JP2009517678A (en) Tube for temperature measurement
JP2000035364A (en) Device for continuous temperature-measurement of melted metal device
JP2023170124A (en) Device and method for measuring carbon electrode length in electric resistance melting furnace, taper union used in the measurement device, and method for connecting taper union to metallic pipe
JP2008151524A (en) Condensation sensor
JP5809512B2 (en) Brick residual thickness measuring device
JP3533944B2 (en) Structure of thermocouple protection tube with destruction detection function
JP2010025464A (en) Unit for measuring molten material surface level in vertical type furnace and measuring method therefor
CN210464708U (en) Wear-resistant cutoff thermocouple
JPS58176055A (en) Casting mold for continuous casting
CN216715019U (en) Bearing with strain sensor
JP4232406B2 (en) Melting leak detection method for melting holding furnace and melting holding furnace
KR101038333B1 (en) Stave of furnace thickness measuring device
CN207300438U (en) A kind of measuring temp of molten steel probe

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070815

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100727

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100806

R151 Written notification of patent or utility model registration

Ref document number: 4568233

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees