JP2005010139A - Residual thickness measuring method and device for furnace refractory using elastic wave - Google Patents

Residual thickness measuring method and device for furnace refractory using elastic wave Download PDF

Info

Publication number
JP2005010139A
JP2005010139A JP2003399469A JP2003399469A JP2005010139A JP 2005010139 A JP2005010139 A JP 2005010139A JP 2003399469 A JP2003399469 A JP 2003399469A JP 2003399469 A JP2003399469 A JP 2003399469A JP 2005010139 A JP2005010139 A JP 2005010139A
Authority
JP
Japan
Prior art keywords
refractory
furnace
thickness
measuring
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003399469A
Other languages
Japanese (ja)
Inventor
Minoru Matsui
穣 松井
Yukimichi Iizuka
幸理 飯塚
Masato Ona
正人 小奈
Hideaki Tsukiji
秀明 築地
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2003399469A priority Critical patent/JP2005010139A/en
Publication of JP2005010139A publication Critical patent/JP2005010139A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Blast Furnaces (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a residual thickness measuring method and a residual thickness measuring device using an elastic wave, capable of measuring accurately the thickness of a refractory used for the furnace wall of a blast furnace or the like without opening the shell largely, and a service life prediction method of furnace and a repair method of furnace by using the residual furnace measuring method of the refractory. <P>SOLUTION: In the method of measuring the thickness of refractory by a reflection method using elastic wave relative to the furnace having the furnace wall constituted of the shell and the refractory, this residual thickness measuring method of the furnace refractory is used as follows: dispatch and reception of the elastic wave are performed at two different refractory body surface positions; the elastic wave is dispatched to the inside of the refractory body; while preventing a noise generated by propagating the elastic wave on the refractory body surface and receiving it, a reflected wave from the furnace inside surface of the refractory of the elastic wave is received; and thereby the thickness of the refractory is measured. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炉耐火物の厚さの測定方法に関し、特に高炉あるいは他の炉に使用される耐火レンガ等の耐火物の残厚を操業中に測定する方法および装置に関するものである。   The present invention relates to a method for measuring the thickness of a furnace refractory, and more particularly to a method and apparatus for measuring the remaining thickness of a refractory such as a refractory used in a blast furnace or other furnace during operation.

高炉などの工業用炉の炉壁は、一般的に外側から鉄皮、不定形耐火物であるスタンプ材、主要な耐火物である耐火レンガの順に構成された多層構造である。一番内側にある耐火レンガは炉心側から損耗していくため、耐火物の厚みを測定することは炉の保守管理上、きわめて重要である。特に高炉の炉底部は、休風時であっても常に溶銑にさらされているため損耗が激しく、しかも高炉が操業される数十年間、直接的な修復ができない部位である。操業中に耐火物の残厚を精度良く測定することで、高炉の操業を最適化して高炉の寿命を延命することや、高炉の寿命や改修時期を適切に予測することが可能となる。   A furnace wall of an industrial furnace such as a blast furnace generally has a multilayer structure in the order of an iron skin, a stamp material that is an irregular refractory, and a refractory brick that is a main refractory from the outside. Since the innermost refractory bricks are worn away from the core side, measuring the thickness of the refractory is extremely important for maintaining the furnace. The bottom of the blast furnace, in particular, is a part that cannot be directly repaired for several decades when the blast furnace is operated because it is constantly exposed to the hot metal even when there is no wind. By accurately measuring the remaining thickness of the refractory during operation, it is possible to optimize the operation of the blast furnace to prolong the life of the blast furnace and to appropriately predict the life of the blast furnace and the time for repair.

上記のような耐火物の厚さを測定する方法として最も普及している方法は、耐火物に温度計を設置して、炉心側から鉄皮側へ伝わる熱流束を測定する方法である。この方法では、炉壁の周囲の100箇所以上に温度計を設置して熱流束を測定し、その結果をもとに熱伝導方程式を解くことで耐火物の厚みを推定する。   The most widespread method for measuring the thickness of the refractory as described above is a method in which a thermometer is installed in the refractory and the heat flux transmitted from the core side to the core side is measured. In this method, thermometers are installed at more than 100 locations around the furnace wall, the heat flux is measured, and the thickness of the refractory is estimated by solving the heat conduction equation based on the result.

しかしながら、熱流速を測定して熱伝導方程式を解く方法では、熱伝導方程式を解く際に、耐火レンガ、スタンプ材などの熱伝導率を用いる必要がある。実際の操業では、炉心側から凝固層、脆化層が耐火レンガの裏側に生じており、これらが付着した場合の耐火レンガの熱伝導率が不明であるため、正確な厚みを推定することができないという問題がある。   However, in the method of solving the heat conduction equation by measuring the heat flow rate, it is necessary to use the thermal conductivity of refractory bricks, stamp materials, etc. when solving the heat conduction equation. In actual operation, a solidified layer and an embrittled layer are formed on the back side of the refractory brick from the core side, and the thermal conductivity of the refractory brick when these are attached is unknown, so an accurate thickness can be estimated. There is a problem that you can not.

上記以外の方法として、弾性波(超音波)を用いて耐火物の厚みを測定する下記(a)〜(d)の方法が知られている。   As methods other than the above, the following methods (a) to (d) are known in which the thickness of a refractory is measured using elastic waves (ultrasonic waves).

(a)非破壊的な計測方法である衝撃弾性波法。鉄皮をハンマーあるいは打撃装置により加振して弾性波を発生させて、鉄皮・スタンプ材・耐火レンガを伝搬する弾性波の往復時間を測定することで耐火物の厚みを測定する方法である。(例えば、特許文献1参照。)
(b)衝撃弾性波共振法。低い周波数をつかい、共振周波数を求めることで厚さ測定を行う方法である。鉄皮、スタンプ材の、厚さと音速値とをあらかじめ調べておくことで弾性波の炉壁内部における共振周波数から耐火レンガの厚さを計算することができる(例えば、特許文献2参照。)。
(A) Shock elastic wave method which is a non-destructive measurement method. This is a method for measuring the thickness of a refractory by measuring the reciprocation time of an elastic wave that propagates through the iron skin, stamp material, and refractory bricks by vibrating the iron skin with a hammer or hammering device to generate elastic waves. . (For example, see Patent Document 1.)
(B) Shock elastic wave resonance method. This is a method of measuring thickness by using a low frequency and obtaining a resonance frequency. The thickness of the refractory brick can be calculated from the resonance frequency of the elastic wave inside the furnace wall by examining the thickness and sound velocity value of the iron skin and stamp material in advance (see, for example, Patent Document 2).

(c)鉄皮を開口し超音波で探傷する方法(一探触子法)。この方法では、まず、鉄皮とスタンプ材(またはスタンプ材の一部)を開口し、開口孔に充填材を充填させる。次に、充填材が完全に硬化した状態で、充填材の上から一探触子法で耐火レンガの厚み計測をおこなう。開口を行うことにより、鉄皮とスタンプ材によるノイズを低減させることができる(例えば、特許文献3参照。)。   (C) A method in which the iron skin is opened and flaw detection is performed with ultrasonic waves (one probe method). In this method, first, the iron skin and the stamp material (or a part of the stamp material) are opened, and the opening hole is filled with the filler. Next, with the filler fully cured, the thickness of the refractory brick is measured from above the filler by a single probe method. By performing the opening, noise due to the iron skin and the stamp material can be reduced (see, for example, Patent Document 3).

(d)鉄皮を開口し超音波で探傷する方法(二探触子法)。送信と受信を別々の探触子を用いる二探触子法により測定を行うことで、(c)の一探触子法で生じる送信波の直接的な探触子への漏れこみを防ぐことができる(例えば、特許文献4参照。)。開口部は1ヶ所である。
特開昭62−297710号公報 特開平8−219751号公報 特開平8−110217号公報 特開平9−61144号公報
(D) A method in which the iron skin is opened and flaw detection is performed with ultrasonic waves (two-probe method). (2) Transmitter and receiver are measured by the two-probe method using separate probes, and (c) prevent leakage of transmitted waves directly into the probe caused by the single-probe method. (For example, refer to Patent Document 4). There is one opening.
Japanese Patent Laid-Open No. 62-297710 JP-A-8-219751 JP-A-8-110217 Japanese Patent Laid-Open No. 9-61144

しかし、上記の(a)〜(d)の技術には、以下に述べる問題がある。   However, the techniques (a) to (d) described above have the following problems.

(a)非破壊的な計測方法である衝撃弾性波法は、スタンプ材と鉄皮による多重反射により信号とノイズとの比(S/N)が低く計測が困難である。   (A) The impact elastic wave method, which is a non-destructive measurement method, is difficult to measure because the signal-to-noise ratio (S / N) is low due to multiple reflections by the stamp material and the iron skin.

(b)衝撃弾性波共振法は、スタンプ材を鉄皮と耐火レンガとの間に圧入する際の圧入具合が、同じ高炉の炉壁であっても場所によって微妙に異なることと、操業年数が経つにつれスタンプ材の状態が変化するため、スタンプ材の正確な音速値を知ることは非常に困難である。したがって、衝撃弾性波法による厚さ測定の精度は低い。   (B) In the shock elastic wave resonance method, the press-fit condition when the stamp material is press-fitted between the iron shell and the refractory brick is slightly different depending on the location even in the furnace wall of the same blast furnace. Since the state of the stamp material changes with time, it is very difficult to know the accurate sound velocity value of the stamp material. Therefore, the accuracy of thickness measurement by the shock elastic wave method is low.

(c)鉄皮を開口し超音波で探傷する方法(一探触子法)は、一探触子法では、送信と受信を同一の探触子を用いるため、送信波が直接探触子に漏れこみ強いノイズとなり、不感帯が発生するという問題がある。図14に一探触子法で生じる不感帯の例を示す。不感帯Yがあると、耐火レンガの厚さが薄い場合、耐火レンガの裏面からの反射波Zが不感帯Yに埋もれてしまい計測が不可能となる。図14の場合は、耐火レンガが薄くなり反射波を受信するのにかかる時間が300μsec以下になると、計測が困難になることが分かる。   (C) In the method of opening an iron skin and flaw-detecting with ultrasonic waves (one probe method), in the one probe method, the same probe is used for transmission and reception. However, there is a problem that a dead zone occurs due to the strong noise that leaks. FIG. 14 shows an example of a dead zone generated by the single probe method. When there is a dead zone Y, when the thickness of the refractory brick is thin, the reflected wave Z from the back side of the refractory brick is buried in the dead zone Y, making measurement impossible. In the case of FIG. 14, it can be seen that measurement becomes difficult when the fire brick becomes thin and the time taken to receive the reflected wave is 300 μsec or less.

また、耐火レンガは超音波が強く散乱するため、散乱波によるノイズによりS/Nが高い状態で計測できないという問題がある。更に、充填材は断熱効果がある材質を用いているため、開口部分の冷却能力が低くなり耐火物に負担がかかる。   In addition, since the refractory brick strongly scatters ultrasonic waves, there is a problem that measurement cannot be performed with a high S / N due to noise caused by scattered waves. Furthermore, since the filler is made of a material having a heat insulating effect, the cooling capacity of the opening portion is lowered and a load is imposed on the refractory.

(d)鉄皮を開口し超音波で探傷する方法(二探触子法)は、二探触子法の場合、図15に示すように、表面波による直接波が影響してノイズとなり、一探触子法に比べると小範囲ではあるが、やはり不感帯Yが発生する。   (D) In the case of the two-probe method, the method of opening the iron skin and flaw-detecting with ultrasonic waves, as shown in FIG. Although it is a small range compared with the one probe method, the dead zone Y is also generated.

表面波による影響を抑えるために、受信探触子に移動ステージとリニアガイドをとりつけて、受信探触子の計測位置を少しずつ移動させながら複数の信号を計測し加算平均をおくことで、S/Nを改善することができるが、開口した孔の中で探触子を移動させながら計測するために、孔が十分な大きさを有するように、大きく開口する必要があり、炉壁の強度の点で好ましくない。また、開口部が大きいと耐火物の冷却も不十分であり耐火物に負担がかかる。   In order to suppress the influence of surface waves, a moving stage and a linear guide are attached to the receiving probe, and a plurality of signals are measured while moving the measuring position of the receiving probe little by little. / N can be improved, but in order to measure while moving the probe in the opened hole, it is necessary to open the hole so that the hole has a sufficient size. This is not preferable. In addition, if the opening is large, the refractory is not sufficiently cooled, which places a burden on the refractory.

以上のように、従来の技術では、鉄皮を開口しないとS/Nが十分に高くなるように計測することは困難である。しかし、鉄皮を開口した場合も、一探触子法で計測を試みた場合、散乱波と不感帯により、S/Nが低下して、高精度の測定は困難である。また、二探触子法で計測した場合は、表面波によって生じる不感帯によってS/Nが低下し、やはり高精度の測定は困難であるだけでなく、開口する孔が大きくなるので炉壁の強度の低下や耐火物の冷却能力が低下する。   As described above, in the conventional technique, it is difficult to measure so that the S / N is sufficiently high unless the iron skin is opened. However, even when the iron skin is opened, when measurement is attempted by the single probe method, the S / N is lowered due to the scattered wave and the dead zone, and high-precision measurement is difficult. In addition, when the two-probe method is used, the S / N is reduced due to the dead zone caused by the surface wave, so that not only high-precision measurement is difficult, but also the strength of the furnace wall increases because the opening hole becomes large. And the cooling capacity of the refractory decreases.

したがって本発明の目的は、このような従来技術の課題を解決し、高炉等の炉壁に使用されている耐火物の厚さを、鉄皮を大きく開口することなく、精度良く測定することを可能とする、弾性波を用いた耐火物の残厚測定方法および残厚測定装置を提供することにある。また本発明の他の目的は、耐火物の残厚測定方法を用いて炉の寿命予測方法および炉の改修方法を提供することにある。   Accordingly, an object of the present invention is to solve such problems of the prior art and accurately measure the thickness of a refractory used on a furnace wall of a blast furnace or the like without greatly opening the iron skin. An object of the present invention is to provide a refractory remaining thickness measuring method and a remaining thickness measuring apparatus using elastic waves. Another object of the present invention is to provide a method for predicting the life of a furnace and a method for repairing the furnace using a method for measuring the remaining thickness of a refractory.

このような課題を解決するための本発明の特徴は以下の通りである。
(1)、鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、弾性波の発信と受信とを異なる2つの耐火物表面位置において行い、前記耐火物内部へ弾性波を発信し、前記弾性波が前記耐火物表面を伝わって受信されることにより発生するノイズを防止しつつ、前記弾性波の前記耐火物の炉内側表面からの反射波を受信することで、前記耐火物の厚さを測定することを特徴とする炉耐火物の残厚測定方法。
(2)、鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、前記鉄皮に形成された少なくとも2つ以上の開口部のうちの一つの開口部から前記耐火物内部へ弾性波を発信して得られる前記耐火物の炉内側表面からの反射波を、少なくとも他の一つの開口部において受信することで、前記耐火物の厚さを測定することを特徴とする炉耐火物の残厚測定方法。
(3)、鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、前記鉄皮に2つの開口部を形成して、該開口部を通じて前記耐火物表面を露出させ、一方の開口部から前記耐火物内部へ弾性波を発信して得られる前記耐火物の炉内側表面からの反射波を、他方の開口部において受信することで、前記耐火物の厚さを測定することを特徴とする炉耐火物の残厚測定方法。
(4)、予測される耐火物の残厚に応じて、2つの開口部の設置間隔を設定することを特徴とする(3)に記載の炉耐火物の残厚測定方法。
(5)、2つの開口部の設置間隔を、弾性波の実効指向角θの正接値と、予測される耐火物の残厚Lとの積の2倍である、2Ltanθ以下とすることを特徴とする、(3)または(4)に記載の炉耐火物の残厚測定方法。
(6)、鉄皮に形成された同じ開口部を用いて耐火物の厚さを繰り返し測定することを特徴とする(2)ないし(5)のいずれかに記載の炉耐火物の残厚測定方法。
(7)、鉄皮の開口部部分に着脱自在のキャップを設置することにより開閉可能として、残厚測定時には前記キャップを取り外し、残厚測定後は前記キャップにより開口部を閉塞することすることを特徴とする(2)ないし(6)のいずれかに記載の炉耐火物の残厚測定方法。
(8)、弾性波の送信および受信を探触子を用いて行い、弾性波が伝搬しにくい連結部材で前記探触子間距離を調整可能に連結することを特徴とする(1)ないし(7)のいずれかに記載の炉耐火物の残厚測定方法。
(9)、弾性波の送信および受信を探触子を用いて行い、該探触子を耐火物の表面に接触させる際に、前記探触子の前記耐火物との接触面に断熱材を設置することを特徴とする(1)ないし(8)のいずれかに記載の炉耐火物の残厚測定方法。
(10)、鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定するための装置であって、互いの間隔が調整可能な1対の探触子保持アームA1、A2と、これらA1、A2の先端に各々保持される送信用探触子及び受信用探触子とを備えたことを特徴とする炉耐火物の残厚測定装置。
(11)、(1)ないし(9)のいずれかに記載の炉耐火物の残厚測定方法を用いて、炉壁の耐火物の厚さを所定の期間測定し、測定された前記耐火物の厚さから、前記耐火物の寿命を推定することで、炉の寿命を予測することを特徴とする、炉の寿命予測方法。
The features of the present invention for solving such problems are as follows.
(1) In a furnace having a furnace wall composed of an iron skin and a refractory, the thickness of the refractory is measured by a reflection method using an elastic wave, and transmission and reception of an elastic wave Is performed at two different refractory surface positions, and an elastic wave is transmitted to the inside of the refractory, and noise generated when the elastic wave is received through the refractory surface is prevented, while the elastic wave A method for measuring a remaining thickness of a furnace refractory, comprising: measuring a thickness of the refractory by receiving a reflected wave from a furnace inner surface of the refractory.
(2) In a furnace having a furnace wall composed of an iron skin and a refractory, the thickness of the refractory is measured by a reflection method using an elastic wave, and formed on the iron skin A reflected wave from the furnace inner surface of the refractory obtained by transmitting an elastic wave from one of the at least two openings into the refractory is received at at least one other opening. Then, the thickness of the said refractory is measured, The residual thickness measuring method of the furnace refractory characterized by the above-mentioned.
(3) In a furnace having a furnace wall composed of an iron skin and a refractory, the thickness of the refractory is measured by a reflection method using an elastic wave, and two openings are formed in the iron skin. Forming a portion, exposing the surface of the refractory through the opening, and transmitting the elastic wave from one opening to the inside of the refractory, the reflected wave from the furnace inner surface of the refractory, the other The thickness of the said refractory is measured by receiving in the opening part of the furnace, The remaining thickness measurement method of the furnace refractory characterized by the above-mentioned.
(4) The method for measuring the remaining thickness of a furnace refractory according to (3), wherein an installation interval between the two openings is set according to a predicted remaining thickness of the refractory.
(5) The installation interval between the two openings is 2Ltanθ or less, which is twice the product of the tangent value of the effective directivity angle θ of the elastic wave and the predicted remaining thickness L of the refractory. The method for measuring the remaining thickness of the furnace refractory according to (3) or (4).
(6) The thickness measurement of the furnace refractory according to any one of (2) to (5), wherein the thickness of the refractory is repeatedly measured using the same opening formed in the iron skin. Method.
(7) It is possible to open and close by installing a removable cap on the opening part of the iron skin, removing the cap when measuring the remaining thickness, and closing the opening with the cap after measuring the remaining thickness. The method for measuring a remaining thickness of a furnace refractory according to any one of (2) to (6), which is characterized in that
(8) The transmission and reception of elastic waves are performed using a probe, and the distance between the probes is adjusted so as to be adjustable with a connecting member that does not easily propagate the elastic waves. 7) The method for measuring the remaining thickness of the furnace refractory according to any one of the above.
(9) When performing transmission and reception of elastic waves using a probe and bringing the probe into contact with the surface of the refractory, a heat insulating material is provided on the contact surface of the probe with the refractory. The method for measuring a remaining thickness of a furnace refractory according to any one of (1) to (8), wherein the method is provided.
(10) An apparatus for measuring the thickness of the refractory by a reflection method using an elastic wave in a furnace having a furnace wall composed of an iron skin and a refractory, and adjusting the distance between them A furnace refractory comprising a pair of possible probe holding arms A1 and A2, and a transmitting probe and a receiving probe held at the tips of the A1 and A2, respectively. Remaining thickness measuring device.
(11) Using the method for measuring the remaining thickness of a furnace refractory according to any one of (1) to (9), the thickness of the refractory on the furnace wall is measured for a predetermined period, and the measured refractory is measured. A furnace life prediction method, wherein the life of the furnace is predicted by estimating the life of the refractory from the thickness of the furnace.

本発明によれば、鉄皮を有する炉で使用される耐火物の残厚を、操業中に高精度で測定できる。また測定の度に煩雑な作業を行う必要がなく、耐火物に負担をかけずに、繰り返し残厚の測定が可能となる。また炉の寿命を、高精度に予測し、適切な時期に改修できる。   ADVANTAGE OF THE INVENTION According to this invention, the remaining thickness of the refractory material used with the furnace which has an iron skin can be measured with high precision during operation. Moreover, it is not necessary to perform complicated work for each measurement, and the remaining thickness can be repeatedly measured without placing a burden on the refractory. In addition, the life of the furnace can be predicted with high accuracy and repaired at an appropriate time.

本発明は、鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、弾性波の発信と受信とを異なる2つの耐火物表面位置において行い、前記耐火物内部へ弾性波を発信し、前記弾性波が前記耐火物表面を伝わって受信されることにより発生するノイズを防止しつつ、前記弾性波の前記耐火物の炉内側表面からの反射波を受信することで、前記耐火物の厚さを測定することを特徴とする。耐火物内部へ弾性波を発信し、前記弾性波が前記耐火物表面を伝わって受信されることにより発生するノイズを防止しつつ、前記弾性波の前記耐火物の炉内側表面からの反射波を受信するためには、例えば、鉄皮に形成された少なくとも2つ以上の開口部のうちの一つの開口部から前記耐火物内部へ弾性波を発信して得られる前記耐火物の炉内側表面からの反射波を、少なくとも他の一つの開口部において受信する方法を用いることができる。より具体的には、鉄皮の一部を除去して耐火物の表面に到達する第一の開口部と第二の開口部とを、異なる二つの開口部として形成し、この開口部を通じて耐火物の表面を露出させ、前記第一の開口部から前記耐火物内部へ直接弾性波を送信して得られる前記耐火物の炉内側表面からの反射波を、前記第二の開口部において受信することで、前記耐火物の厚さを測定することを特徴とする炉耐火物の残厚測定方法を用いる。鉄皮と耐火物とにより構成された炉壁を有する炉としては、例えば、高炉、ガス化溶融炉、RH炉等の工業用炉がある。   The present invention is a method of measuring the thickness of the refractory by a reflection method using an elastic wave in a furnace having a furnace wall composed of an iron shell and a refractory. Is performed at two different refractory surface positions, and an elastic wave is transmitted to the inside of the refractory, and noise generated when the elastic wave is received through the refractory surface is prevented, while the elastic wave The thickness of the refractory is measured by receiving a reflected wave from the furnace inner surface of the refractory. While transmitting an elastic wave to the inside of the refractory and preventing noise generated when the elastic wave is transmitted through the surface of the refractory, a reflected wave of the elastic wave from the furnace inner surface is generated. In order to receive, for example, from the furnace inner surface of the refractory obtained by transmitting an elastic wave from one of the at least two openings formed in the iron shell into the refractory. A method of receiving the reflected wave of at least one other opening can be used. More specifically, the first opening and the second opening that reach a surface of the refractory by removing a part of the iron skin are formed as two different openings, and the refractory is formed through these openings. A reflected wave from the furnace inner surface of the refractory obtained by exposing the surface of the object and transmitting an elastic wave directly from the first opening to the inside of the refractory is received at the second opening. Thus, a method for measuring the remaining thickness of the furnace refractory is used, wherein the thickness of the refractory is measured. Examples of the furnace having a furnace wall composed of an iron shell and a refractory include industrial furnaces such as a blast furnace, a gasification melting furnace, and an RH furnace.

本発明を、高炉を用いて詳しく説明する。   The present invention will be described in detail using a blast furnace.

高炉の炉壁は、外側から鉄皮、スタンプ材、耐火レンガの順に構成された多層構造である。本発明で残厚を測定する耐火物は、溶銑に常にさらされて損耗する耐火レンガの部分である。スタンプ材は、鉄皮と耐火レンガとの間に圧入する不定形耐火物であるが、損耗に至ることはないので、測定が必要な耐火物は耐火レンガ部分である。   The furnace wall of the blast furnace has a multilayer structure composed of an iron skin, a stamp material, and a refractory brick in this order from the outside. The refractory for measuring the remaining thickness in the present invention is a portion of the refractory brick that is always exposed to the hot metal and wears out. The stamp material is an irregular refractory material that is press-fitted between the iron skin and the refractory brick. However, since the stamp material does not cause wear, the refractory material that needs to be measured is the refractory brick portion.

図1に、本発明の一実施形態の概略図を示す。本発明では高炉の表面の鉄皮1を一部除去して、除去した鉄皮の下のスタンプ材2を除去して耐火物の炉外側の表面に到達する開口部3を2箇所形成する。そして、送信用探触子4を第一の開口部3aに設置して、第一の開口部3aの耐火レンガ(耐火物)5の表面から耐火レンガ5内部へ直接に弾性波6を送信して、耐火レンガ5の裏側(高炉の炉内側の表面)からの反射波を、送信に用いた第一の開口部3aとは異なる第二の開口部3bに設置した受信用探触子7で受信する。受信した信号を解析して、耐火レンガの厚さ(残厚)を測定する。   FIG. 1 shows a schematic diagram of an embodiment of the present invention. In the present invention, a part of the iron skin 1 on the surface of the blast furnace is removed, the stamp material 2 under the removed iron skin is removed, and two openings 3 reaching the outer surface of the refractory are formed. And the probe 4 for transmission is installed in the 1st opening part 3a, and the elastic wave 6 is transmitted directly from the surface of the refractory brick (refractory material) 5 of the 1st opening part 3a to the inside of the refractory brick 5. The receiving probe 7 installed in the second opening 3b different from the first opening 3a used for transmission is used to transmit the reflected wave from the back side of the refractory brick 5 (the inner surface of the blast furnace). Receive. The received signal is analyzed to measure the thickness of the refractory brick (remaining thickness).

鉄皮と鉄皮の下のスタンプ材とを除去して開口部を形成することで、弾性波の送受信の際に、鉄皮とスタンプ層の影響を除くことができる。かつ探触子を2つ設置する二探触子法を用いることで、直接探触子に送信波が漏れこむことによって発生する不感帯を取り除いてS/Nを改善することができる。また、開口部を2箇所、別々に形成することで、弾性波の送信のための開口部と受信のための開口部とを空間的に分離して、その二つの開口部の間にある鉄皮とスタンプ層にダンパーとしての効果を持たせることにより、探触子間で直接に伝搬する表面波による計測への影響を抑えることができる。また、二探触子法なので散乱波による影響を防ぐことができる。   By removing the iron skin and the stamp material under the iron skin to form the opening, it is possible to eliminate the influence of the iron skin and the stamp layer when the elastic wave is transmitted and received. In addition, by using the two-probe method in which two probes are installed, it is possible to improve the S / N by removing the dead band that is generated when the transmission wave leaks directly into the probe. Also, by forming two openings separately, the opening for transmitting the elastic wave and the opening for receiving are spatially separated, and the iron between the two openings By giving the skin and stamp layer the effect of a damper, it is possible to suppress the influence on the measurement by the surface wave propagating directly between the probes. Moreover, since it is a two-probe method, the influence by a scattered wave can be prevented.

開口部3は、例えばボーリングで鉄皮とスタンプ材とを除去して、一つの底面を耐火レンガとし、側面をスタンプ材と鉄皮とした円筒形状の穴部として形成することができる。開口作業が容易であるので、開口部は円筒形状の穴部であることが望ましい。開口部の、耐火物上および鉄皮上での面積は、高炉の操業に影響を与えないためには小さい方が好ましいが、一方でノイズレベルが上昇するという問題がある。探触子として直径20mmのものを用いる場合は、開口部の直径を約20mmとすることも可能である。一方で、以下に述べるように送信用探触子と受信用探触子との好ましい設置間隔が測定する耐火物の残厚により変化するため、ある程度の余裕を持って開口部を形成することが望ましい。いずれにしろ、開口部を、従来の残厚測定に用いる場合に比べて小さい、耐火物上および鉄皮上で直径60mm以下の円として形成する程度で、高精度の測定が可能である。   The opening 3 can be formed, for example, as a cylindrical hole having a bottom surface made of refractory brick and a side surface made of a stamp material and an iron skin by removing the iron skin and the stamp material by boring. Since the opening operation is easy, the opening is preferably a cylindrical hole. The area of the opening on the refractory and the iron shell is preferably small so as not to affect the operation of the blast furnace, but there is a problem that the noise level increases. When a probe having a diameter of 20 mm is used, the diameter of the opening can be about 20 mm. On the other hand, as described below, since the preferred installation interval between the transmitting probe and the receiving probe changes depending on the remaining thickness of the refractory to be measured, the opening can be formed with a certain margin. desirable. In any case, highly accurate measurement is possible by forming the opening as a circle having a diameter of 60 mm or less on the refractory and the iron skin, which is smaller than the case where the opening is used for the conventional remaining thickness measurement.

二つの開口部の間隔、および2つの探触子の設置間隔は、予測される残厚に応じて、設定することが好ましい。図2に開口部間隔を変化させた場合に受信用探触子が受信するノイズ(N)と信号(S)の強度変化の概略図を示す。開口部の間隔が短すぎると、探触子間を直接に伝搬する表面波を抑制するための鉄皮とスタンプ材によるダンパーとしての効果を充分に得ることができないため、ノイズ(N)は図2に示すように開口部の間隔が短いとその強度が強くなり、間隔が広がるにつれ弱くなる。したがって、開口部の間隔は、ある一定値以上を有することが好ましい。一方で、弾性波の信号強度(S)については、計測する耐火物の残厚が薄い場合と厚い場合とで信号強度の変化の様子が異なる。残厚が薄い場合、開口部の間隔を広げていくと、探触子の視野の重なりが少ないため信号強度(S1)は急峻に減衰していく。しかし、残厚が厚い場合は、薄い場合よりも探触子の視野が充分に重なっていることから開口部の間隔を広げても信号(S2)の減衰は緩やかである。開口部の間隔は、信号強度(S)の減衰比が0.5〜1となるように決定することが望ましく、したがって、耐火物の残厚が薄いことが予測される場合には、比較的開口部の間隔を狭く設定する必要がある。よって、残厚を計測する際には、予測される残厚の範囲によって、最適な開口部の間隔が決定できる。   The interval between the two openings and the installation interval between the two probes are preferably set according to the predicted remaining thickness. FIG. 2 shows a schematic diagram of changes in the intensity of noise (N) and signal (S) received by the receiving probe when the opening interval is changed. If the distance between the openings is too short, it is not possible to obtain a sufficient effect as a damper by the iron skin and the stamp material for suppressing the surface wave directly propagating between the probes. As shown in FIG. 2, when the distance between the openings is short, the strength increases, and as the distance increases, the strength decreases. Therefore, it is preferable that the space | interval of an opening part has a certain fixed value or more. On the other hand, regarding the signal intensity (S) of the elastic wave, the signal intensity changes differently when the remaining thickness of the refractory to be measured is thin and thick. When the remaining thickness is small, the signal intensity (S1) is sharply attenuated as the distance between the openings is increased because the overlapping of the visual field of the probe is small. However, when the remaining thickness is thick, the field of view of the probe is sufficiently overlapped as compared with the case where the remaining thickness is thin, so that the attenuation of the signal (S2) is gentle even if the interval between the openings is widened. The spacing between the openings is preferably determined so that the attenuation ratio of the signal strength (S) is 0.5 to 1. Therefore, if the remaining thickness of the refractory is expected to be thin, It is necessary to set a narrow interval between the openings. Therefore, when measuring the remaining thickness, the optimum opening interval can be determined according to the predicted remaining thickness range.

開口部の間隔は、以下のようにして設定することができる。まず、探触子の径と送信周波数を用いて、(1)式、(2)式により弾性波の実効指向角θが計算される。φ:探触子の直径、λ:弾性波の波長、f:弾性波の周波数、v:耐火物中の音速として、
λ=v/f・・・(1)
θ=29λ/φ ・・・(2)
実効指向角θから、減衰少なく(0.5〜1の減衰比で)弾性波信号の送受信ができる視野範囲Wを求めることができる。計測するレンガ残厚Lに対して実効指向角θから弾性波の反射面範囲に対する探触子の視野範囲Wが、(3)式により求まる(図3参照)。
The interval between the openings can be set as follows. First, using the probe diameter and the transmission frequency, the effective directivity angle θ of the elastic wave is calculated by the equations (1) and (2). φ: diameter of probe, λ: wavelength of elastic wave, f: frequency of elastic wave, v: speed of sound in refractory,
λ = v / f (1)
θ = 29λ / φ (2)
From the effective directivity angle θ, it is possible to obtain a visual field range W in which an elastic wave signal can be transmitted and received with little attenuation (with an attenuation ratio of 0.5 to 1). The field-of-view range W of the probe with respect to the reflective surface range of the elastic wave from the effective directivity angle θ with respect to the remaining brick thickness L to be measured is obtained by equation (3) (see FIG. 3).

W=Ltanθ ・・・(3)
よって、二探触子法では、二つの探触子を、この実効指向角から求められる視野範囲Wが重なるように配置する必要がある。
W = Ltanθ (3)
Therefore, in the two-probe method, it is necessary to arrange the two probes so that the visual field range W obtained from this effective directivity angle overlaps.

図4に、探触子の設置間隔Dを変化させた場合の二つの探触子の視野範囲の関係を示す。図4(A)は、D=Wであり、二つの探触子の視野範囲Wが完全に重なっている状態である。したがって、D≦Wの場合が、二つの探触子の間隔として最も好ましい。開口間隔を離すことのできる限界は図4(B)のようにD=2Wとなるように探触子を配置した場合であり、D≦2Wが好ましい二つの探触子の間隔である。   FIG. 4 shows the relationship between the visual field ranges of the two probes when the probe installation interval D is changed. FIG. 4A shows a state in which D = W and the visual field ranges W of the two probes are completely overlapped. Therefore, the case of D ≦ W is most preferable as the distance between the two probes. The limit at which the opening interval can be separated is when the probe is arranged so that D = 2W as shown in FIG. 4B, and D ≦ 2W is a preferable interval between the two probes.

一方で、図4(C)のようにD>2Wとなるように探触子を配置すると視野範囲Wが重ならないので、受信できる弾性波の信号強度が非常に弱く残厚計測には不適である。   On the other hand, when the probe is arranged so that D> 2W as shown in FIG. 4C, the visual field ranges W do not overlap, so that the signal intensity of the elastic wave that can be received is very weak and is not suitable for the remaining thickness measurement. is there.

したがって、図5に示すように、計測したいレンガ残厚をL1〜L0(L1<L0)とすると、下限値であるL1に対して好ましい開口部の間隔を設定すれば、実効指向角から求められる視野範囲が必ず重なるため、L1〜L0において残厚を計測することができる。図5(A)はD=Wの場合であり、レンガ残厚がL1の場合でも十分な信号強度を得る事ができる。図5(B)は探触子の設置間隔Dを2Wまで離した場合で、これ以上探触子の設置間隔を広くすると、残厚計測には不適である。 Therefore, as shown in FIG. 5, assuming that the remaining brick thickness to be measured is L 1 to L 0 (L 1 <L 0 ), it is effective if a preferable opening interval is set with respect to L 1 which is the lower limit value. Since the visual field ranges obtained from the directivity angles always overlap, the remaining thickness can be measured at L 1 to L 0 . FIG. 5A shows a case where D = W, and a sufficient signal strength can be obtained even when the remaining brick thickness is L 1 . FIG. 5B shows a case where the probe installation interval D is set to 2 W, and if the probe installation interval is further increased, it is not suitable for the remaining thickness measurement.

実際の高炉の操業において、耐火レンガの厚さを測定する必要があると考えられる範囲は、耐火物の長さとして200〜2000mmである。よって、この範囲を計測するための開口部の間隔は、直径(φ)20mmの探触子、送信周波数100kHz、耐火物(耐火レンガ:BC−8SR)中の音速を3141m/secとして、上記の(1)式と(2)式より実効指向角はθ=45.5であり、さらに、(3)式から200mm以上の厚さを計測するときの探触子の視野範囲W=203.84mmが求まる。したがって、探触子間距離は、好ましくはD≦2W=407.68mmであり、特に好ましくはD≦W=203.84mmである。しかし、探触子間距離が100mm未満となる位置に開口部を設けると、ノイズが大きくなるため、結局、探触子間距離は好ましくは100〜410mm、特に好ましくは100〜200mmであり、開口部の間隔をこれに合わせて設定する。   In the actual operation of the blast furnace, the range in which the thickness of the refractory brick is considered necessary to be measured is 200 to 2000 mm as the length of the refractory. Therefore, the distance between the openings for measuring this range is as described above, assuming that the probe has a diameter (φ) of 20 mm, the transmission frequency is 100 kHz, and the sound velocity in the refractory (refractory brick: BC-8SR) is 3141 m / sec. From the formulas (1) and (2), the effective directivity angle is θ = 45.5, and the field of view W of the probe when measuring a thickness of 200 mm or more from the formula (3) is W = 203.84 mm. Is obtained. Therefore, the distance between the probes is preferably D ≦ 2W = 407.68 mm, and particularly preferably D ≦ W = 203.84 mm. However, if an opening is provided at a position where the distance between the probes is less than 100 mm, noise increases. Therefore, the distance between the probes is preferably 100 to 410 mm, particularly preferably 100 to 200 mm. Set the interval between parts accordingly.

また、実効指向角θは耐火物中の音速にも依存することが上記の(1)式と(2)式から明らかである。音速を測定した各種の耐火物(BC−5:日本電極製、K−2RS:TYK製、BC−8SR:日本電極製、全てカーボン質ブロック)について、同じ条件で耐火物の種類を変えた場合の、好ましい探触子間距離と、特に好ましい探触子間距離とを表1に示す。   It is clear from the above formulas (1) and (2) that the effective directivity angle θ also depends on the speed of sound in the refractory. When various types of refractory materials (BC-5: manufactured by Nihon Electrode, K-2RS: manufactured by TYK, BC-8SR: manufactured by Nihon Electrode, all carbonaceous blocks) for which the velocity of sound was measured were changed under the same conditions Table 1 shows preferable inter-probe distances and particularly preferable inter-probe distances.

Figure 2005010139
Figure 2005010139

探触子の直径(φ)を40mmとした場合は、送信周波数を100kHz、耐火物中の音速を3141m/secとすれば、上記と同様に、探触子間距離は、好ましくはD≦2W=167.92mmで、特に好ましくはD≦W=83.96mmであり、好ましい開口部の間隔は50mm〜約170mm、特に好ましくは50〜84mmとなる。さらに、音速を測定した各種の耐火物について、同じ条件で耐火物の種類を変えた場合の、好ましい探触子間距離と、特に好ましい探触子間距離とを表2に示す。   When the diameter (φ) of the probe is 40 mm, if the transmission frequency is 100 kHz and the speed of sound in the refractory is 3141 m / sec, the distance between the probes is preferably D ≦ 2W, as described above. = 167.92 mm, particularly preferably D ≦ W = 83.96 mm, and a preferable opening interval is 50 mm to about 170 mm, particularly preferably 50 to 84 mm. Further, Table 2 shows preferable inter-probe distances and particularly preferable inter-probe distances when various kinds of refractories whose sound speeds are measured are changed under the same conditions.

Figure 2005010139
Figure 2005010139

鉄皮に形成された同じ開口部を用いて耐火物の厚さを繰り返し測定することが望ましい。開口作業の手間を減らし、同一個所で炉耐火物の残厚を管理することができる。   It is desirable to repeatedly measure the thickness of the refractory using the same opening formed in the iron skin. The opening work can be reduced and the remaining thickness of the furnace refractory can be managed at the same location.

鉄皮を切断した開口部は、繰り返し耐火物の残厚測定に用いることが望ましい。開口部をキャップまたは蓋で水漏れしないように閉塞できる構造にしておくことで、厚さ測定後に再びスタンプ材を圧入して開口部を閉じることができ、しかも開口部を容易に再開口して、厚さ測定を行うことができる。開口部の形成を容易にすることで、繰り返し長期にわたって、厚さを測定することが容易になり、同一個所での残厚の傾向管理や、他の残厚測定方法の校正方法(例えば、操業中は炉壁に設置してある温度計や、衝撃弾性波共振法等の、鉄皮を開口しない方法でレンガ残厚を推定し、休風時に本発明方法で計測したデータをもとに操業中に測定する残厚の計測精度を上げる方法。)として利用することができる。また、冷却能力を損なわれることがないので、冷却能力の低下による耐火物への負担を防ぐことができる。   It is desirable that the opening obtained by cutting the iron shell is repeatedly used for measuring the remaining thickness of the refractory. With a structure that allows the opening to be closed with a cap or lid so that water does not leak, the stamp material can be pressed again after the thickness measurement to close the opening, and the opening can be easily reopened. Thickness measurement can be performed. By facilitating the formation of the opening, it becomes easy to measure the thickness repeatedly over a long period of time, managing the tendency of the remaining thickness at the same location, and calibrating other remaining thickness measuring methods (for example, operation Inside, the remaining brick thickness is estimated by a method such as a thermometer installed on the furnace wall or a shock elastic wave resonance method that does not open the iron skin, and the operation is based on the data measured by the method of the present invention when the wind is off. It can be used as a method for increasing the measurement accuracy of the remaining thickness to be measured. Moreover, since the cooling capacity is not impaired, it is possible to prevent a burden on the refractory due to a decrease in the cooling capacity.

開口部にキャップを取りつける場合の一実施形態を、図6を用いて説明する。まず、鉄皮1とスタンプ材2とをくりぬいて、直径60mmの円筒形状の開口部3を形成する。次に、鉄皮1の開口部3周辺に、内径87.3mm、外径114.3mm、長さ60mmに作成したSUS304製の短管10を取りつける。開口部3の耐火レンガ上での中心と、短管10の中心とが、鉄皮表面の法線方向に平行な同一直線状となるように短管10の位置を決めて、短管10と鉄皮1の内側と外側から溶接して固定する。開口部3を閉塞するためのキャップ11は、外径140mm、長さ60mmとして、内側にネジ切りを施し、短管10の外側にもネジ切りを施すことで、キャップ11を短管10に取り外し可能に取りつけて、開口部の閉塞を可能とする。   An embodiment in which a cap is attached to the opening will be described with reference to FIG. First, the iron skin 1 and the stamp material 2 are hollowed out to form a cylindrical opening 3 having a diameter of 60 mm. Next, a short tube 10 made of SUS304 having an inner diameter of 87.3 mm, an outer diameter of 114.3 mm, and a length of 60 mm is attached around the opening 3 of the iron skin 1. The position of the short pipe 10 is determined so that the center of the opening 3 on the refractory brick and the center of the short pipe 10 are in the same straight line parallel to the normal direction of the iron skin surface. It is fixed by welding from the inside and outside of the iron skin 1. The cap 11 for closing the opening 3 has an outer diameter of 140 mm and a length of 60 mm. The cap 11 is removed from the short tube 10 by threading the inner side and threading the outer side of the short tube 10. Mounting is possible, and the opening can be closed.

送信用探触子と受信用探触子の、二つの探触子を弾性波が伝搬しにくい材質の固定部材を用いて接続し、一体化して耐火物の残厚測定に用いることが好ましい。また、探触子間の距離は任意に調整可能とすることが望ましい。   It is preferable to connect the two probes, ie, the transmission probe and the reception probe, using a fixing member made of a material that does not easily propagate an elastic wave, and integrate them for use in measuring the remaining thickness of the refractory. It is desirable that the distance between the probes can be arbitrarily adjusted.

図7に、二つの探触子をアームで固定して測定する場合の一実施形態を示す。二つの探触子4、7がアーム15により一体化されたことにより、探触子4、7を耐火物5の表面に接触させる作業が容易となる。アーム15に、弾性波が伝搬しにくい材料を用いることで、固定部材を介して弾性波(送信波)が伝搬してノイズが発生し、S/Nが悪くなることを防ぐことができる。弾性波が伝搬しにくい材料としては、例えば木材が特に好適である。固定ネジ16等を用いて、アームの長さを調整可能とすることで、探触子間の距離を任意に設定することが可能である。   FIG. 7 shows an embodiment in which two probes are fixed with an arm for measurement. Since the two probes 4 and 7 are integrated by the arm 15, the operation of bringing the probes 4 and 7 into contact with the surface of the refractory 5 is facilitated. By using a material that does not easily propagate the elastic wave for the arm 15, it is possible to prevent the acoustic wave (transmission wave) from propagating through the fixing member to generate noise and deteriorate the S / N. For example, wood is particularly suitable as a material that does not easily propagate elastic waves. By making it possible to adjust the length of the arm using the fixing screw 16 or the like, the distance between the probes can be arbitrarily set.

探触子の耐火物との接触面に断熱材を設置することが好ましい。   It is preferable to install a heat insulating material on the contact surface of the probe with the refractory.

耐火物の表面は、通常は80℃程度であるが、耐火物損耗して薄くなると、表面温度も上昇する。探触子の耐熱温度は100℃程度であるため、探触子の耐火物との接触面側に断熱材をとりつけることで、耐火物の温度が高温となった場合にもその影響を受けることなく残厚を測定することができる。   The surface of the refractory is usually about 80 ° C., but when the refractory becomes worn and thin, the surface temperature also increases. Since the heat-resistant temperature of the probe is about 100 ° C, it can be affected even when the temperature of the refractory becomes high by attaching a heat insulating material to the contact surface side of the probe with the refractory. The remaining thickness can be measured without any problem.

図8に探触子の耐火物との接触面に耐熱板を取りつける場合の一例を示す。断熱板17は、例えば探触子先端部分と同じ直径48mmの円形で、厚さ10mmのアクリル系樹脂、ポリイミド系樹脂製の板等を用いる。また、図9に耐火物の表面の温度と、アクリル系樹脂、ポリイミド系樹脂製の厚さ20mmの板を断熱材として用いた場合の探触子表面の温度との比較を示すことにより、断熱板の効果を示す。図9によれば、耐火物の探触子との接触面の温度が300℃前後であっても、断熱材を用いた場合の探触子の表面は50℃程度にしか上昇しないことが分かる。   FIG. 8 shows an example in which a heat-resistant plate is attached to the contact surface of the probe with the refractory. The heat insulating plate 17 is, for example, a circular plate having a diameter of 48 mm, which is the same as the tip portion of the probe, and a plate made of acrylic resin or polyimide resin having a thickness of 10 mm. In addition, FIG. 9 shows a comparison between the temperature of the surface of the refractory and the temperature of the surface of the probe when a 20 mm thick plate made of acrylic resin or polyimide resin is used as a heat insulating material. The effect of the board is shown. According to FIG. 9, even when the temperature of the contact surface with the refractory probe is around 300 ° C., the surface of the probe when using a heat insulating material rises only to about 50 ° C. .

次に、高炉の耐火物の残厚測定の具体的なプロセスの一実施形態を図10、図11を用いて説明する。   Next, an embodiment of a specific process for measuring the remaining thickness of the refractory in the blast furnace will be described with reference to FIGS.

図10は本発明の耐火物の残厚測定方法を実施するための説明図である。計測工程は次の(イ)〜(ニ)からなる。   FIG. 10 is an explanatory diagram for carrying out the method for measuring the remaining thickness of a refractory according to the present invention. The measurement process consists of the following (a) to (d).

(イ)、開口部を形成する前に、経験的、または本発明以外の簡易な方法等を用いてあらかじめ測定する耐火物の残厚をある程度予測しておき、予測される残厚から二つの開口部の間隔を決定する。次いで、鉄皮1とスタンプ材2を開口し、耐火物5の表面に探触子4、7を接触できる状態にする。鉄皮1、スタンプ材2、耐火物5の表面はやや傾斜しているので、探触子を接触させやすいように傾斜に対して法線方向に孔を開口して開口部3を形成し、耐火物表面を露出させる。開口角度を耐火物の表面に対して法線方向とすることで、計測作業が容易となる。さらに、開口部3にキャップを取りつけられるように短管10等を溶接する工事を行い、閉塞できる構造とすることが望ましい。   (A) Before forming the opening, the remaining thickness of the refractory to be measured beforehand is estimated to some extent empirically or using a simple method other than the present invention. Determine the spacing of the openings. Next, the iron skin 1 and the stamp material 2 are opened, and the probes 4 and 7 are brought into contact with the surface of the refractory 5. Since the surface of the iron skin 1, the stamp material 2, and the refractory 5 is slightly inclined, a hole is formed in the normal direction to the inclination so that the probe is easily brought into contact with each other, and the opening 3 is formed. Expose the refractory surface. By making the opening angle in the normal direction with respect to the surface of the refractory, the measurement work is facilitated. Furthermore, it is desirable to perform a construction for welding the short pipe 10 or the like so that a cap can be attached to the opening 3 so that the structure can be closed.

(ロ)、弾性波が伝搬しにくい素材で作られた治具にて固定した2つの探触子4、7の間隔を開口部の間隔にあわせて調節する。探触子の耐火物との接触面に、樹脂でつくられた厚さ10mmの断熱板を取り付ける。   (B) The interval between the two probes 4 and 7 fixed by a jig made of a material that hardly propagates the elastic wave is adjusted according to the interval between the openings. A 10 mm thick insulating plate made of resin is attached to the contact surface of the probe with the refractory.

(ハ)、パルサー20にて送信波形を作成して送信探触子4にて送信波を耐火物5内部へ送信する。波形はバースト波やチャープ波など任意の波形でよい。耐火物5の裏側からの反射波を受信探触子7にて計測する。受信探触子7で受信された反射波はアンプ21とバンドパスフィルター22を経てA/D変換機(デジタルオシロ)23にてA/D変換され表示される。デジタルオシロ23で離散値変化された波形情報をGPIBインタフェースを介して計算機(パーソナルコンピューター)24に取り込み、解析をして残厚を算出する。受信探触子7で計測される耐火物の裏側(炉内側表面)からの反射波の波形例を図11に示す。耐火物の裏面からの反射波の受信信号Zを十分良好なS/Nで受信できている。反射波の受信信号Zから伝搬時間tを読み取り、耐火物中の音速値は既知であるので、耐火物の厚さを算出することができる。さらに、二探触子法での弾性波の伝搬経路を考慮した補正を施して、より正確な残厚値を算出する。各種の耐火物中の音速値を、データベース化しておくことが好ましい。   (C) A transmission waveform is created by the pulser 20 and the transmission wave is transmitted to the inside of the refractory 5 by the transmission probe 4. The waveform may be an arbitrary waveform such as a burst wave or a chirp wave. The reflected wave from the back side of the refractory 5 is measured by the receiving probe 7. The reflected wave received by the receiving probe 7 is A / D converted by an A / D converter (digital oscilloscope) 23 through an amplifier 21 and a band pass filter 22 and displayed. Waveform information changed in discrete values by the digital oscilloscope 23 is taken into a computer (personal computer) 24 via a GPIB interface and analyzed to calculate the remaining thickness. FIG. 11 shows a waveform example of a reflected wave from the back side (furnace inner surface) of the refractory measured by the receiving probe 7. The reception signal Z of the reflected wave from the back surface of the refractory can be received with a sufficiently good S / N. Since the propagation time t is read from the received signal Z of the reflected wave and the sound velocity value in the refractory is known, the thickness of the refractory can be calculated. Further, a more accurate remaining thickness value is calculated by performing correction in consideration of the propagation path of the elastic wave in the two-probe method. It is preferable to create a database of sound velocity values in various refractories.

(ニ)、耐火物の厚さ測定が終了後、開口部3を閉塞する。探触子を耐火物表面からとりはずした後、開口部3にスタンプ材を再び圧入する。スタンプ材の圧入後に、開口部の短管10部分にキャップをとりつけ、開口部3内へ水漏れがしないように閉塞処理をおこなう。キャップが取りつけられるような処理を行わない場合は、開口部にスタンプ材を圧入して鉄板等を溶接して閉塞するが、再度測定を行う際の手間が大きく、頻繁に残厚測定を行うことが困難となる。   (D) After the thickness measurement of the refractory is completed, the opening 3 is closed. After removing the probe from the surface of the refractory, the stamp material is again pressed into the opening 3. After press-fitting the stamp material, a cap is attached to the portion of the short tube 10 in the opening, and a blocking process is performed so that water does not leak into the opening 3. If you do not perform a process to attach the cap, press the stamp material into the opening and close it by welding the iron plate, etc., but it takes a lot of time to measure again and frequently measure the remaining thickness. It becomes difficult.

再び、同位置で耐火物の残厚の測定を行う場合、キャップを取り外し、開口部に圧入したスタンプ材を取り除いて耐火物(耐火レンガ)表面を露出させた後、上記(ロ)〜(ニ)の工程を再度実行する。開口部が形成されていれば、1回の測定を30分程度の短時間で完了させることができる。耐火物の残厚が薄くなることで、既に開口した開口部が使用できなくなった場合には、新たな開口部を形成する必要がある。そのような場合に対応した、高炉の炉底の耐火物の残厚測定作業の一実施形態のフローチャートを図12に示す。開口部の形成作業を最小限に抑えるために、探触子のサイズ(耐火物接触部分の面積)を変更するだけで残厚測定可能な場合は、探触子のサイズをより小さいものに変更して測定することが好ましい。探触子は耐火物に接触する送信(受信)部分の面積が大きいものほどS/Nが高くなるので好ましいが、開口部の形成作業は、高炉の操業上も、コストを抑えるという点でも、少ないほど好ましく、探触子のサイズ変更だけで対応できる場合は変更することが好ましい。   When measuring the remaining thickness of the refractory again at the same position, remove the cap, remove the stamp material pressed into the opening to expose the surface of the refractory (refractory brick), then (b) to (d) Step 2) is executed again. If the opening is formed, one measurement can be completed in a short time of about 30 minutes. If the already opened opening cannot be used because the remaining thickness of the refractory is reduced, it is necessary to form a new opening. FIG. 12 shows a flowchart of one embodiment of the work for measuring the remaining thickness of the refractory at the bottom of the blast furnace corresponding to such a case. If the remaining thickness can be measured simply by changing the probe size (area of the refractory contact area) to minimize the opening formation work, change the probe size to a smaller one. It is preferable to measure it. The probe is preferable because the S / N is higher as the area of the transmission (reception) part that comes in contact with the refractory is higher, but the formation of the opening is also in terms of reducing the cost in terms of blast furnace operation. The smaller the number, the better. It is preferable to change the probe size if it can be dealt with only by changing the size of the probe.

次に、本発明の耐火物の残厚測定装置について説明する。   Next, the apparatus for measuring the remaining thickness of a refractory according to the present invention will be described.

上記の方法を行うために、本発明では、鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定するための装置であって、互いの間隔が調整可能な1対の探触子保持アームA1、A2と、これらA1、A2の先端に各々保持される送信用探触子及び受信用探触子とを備えたことを特徴とする耐火物の残厚測定装置を用いることが好ましい。このような装置として、例えば、図7に記載のものを用いることができる。本発明の耐火物の残厚測定装置を用いれば、2つの探触子を均一かつ十分な力で耐火物に接触させることが可能となり、作業者が一人の場合にも安定した測定を行うことができる。   In order to perform the above method, in the present invention, in a furnace having a furnace wall composed of an iron shell and a refractory, an apparatus for measuring the thickness of the refractory by a reflection method using an elastic wave. A pair of probe holding arms A1 and A2 whose distances can be adjusted from each other, and a transmitting probe and a receiving probe respectively held at the tips of these A1 and A2 It is preferable to use a refractory residual thickness measuring device characterized by the following. As such an apparatus, for example, the apparatus shown in FIG. 7 can be used. By using the refractory residual thickness measuring device of the present invention, it becomes possible to bring two probes into contact with the refractory with uniform and sufficient force, and perform stable measurement even when there is only one worker. Can do.

また、耐火物が高温になる場合があるので、送信用探触子と、受信用探触子との、耐火物との接触面に、断熱板が取りつけられていることが好ましい。   In addition, since the refractory may become hot, it is preferable that a heat insulating plate is attached to the contact surface of the transmission probe and the reception probe with the refractory.

次に、3箇所以上に開口して耐火物の残厚を測定する場合について説明する。   Next, the case where it opens to three or more places and the remaining thickness of a refractory is measured is demonstrated.

鉄皮に2つの開口部を形成して、二探触子法を用いて測定を行うと、図16に示すような複数の反射波が受信される場合があり、残厚の測定が困難となる場合がある。このような場合は、耐火物中にクラックが存在することが考えられる。クラックが存在する場合の弾性波の反射経路を図17に示す。図17に示すように、クラック25部分からの反射波は、耐火物の残厚に相当する耐火物5の炉内側表面からの反射波よりも先に探触子7に受信されるが、反射波は目地部分等からも発生する場合があり、複数の反射波のうちから、耐火物の残厚に相当する反射波を区別することは困難である。上記のような場合には、鉄皮の開口部を3箇所以上とすることで、以下に示す方法で耐火物の残厚を測定することが可能となる。   When two openings are formed in the iron skin and measurement is performed using the two-probe method, a plurality of reflected waves as shown in FIG. 16 may be received, which makes it difficult to measure the remaining thickness. There is a case. In such a case, it is considered that cracks exist in the refractory. FIG. 17 shows a reflection path of the elastic wave when a crack exists. As shown in FIG. 17, the reflected wave from the crack 25 portion is received by the probe 7 before the reflected wave from the furnace inner surface of the refractory 5 corresponding to the remaining thickness of the refractory. A wave may be generated from a joint portion or the like, and it is difficult to distinguish a reflected wave corresponding to the remaining thickness of the refractory from a plurality of reflected waves. In such a case, it is possible to measure the remaining thickness of the refractory by the following method by providing three or more openings in the iron skin.

図18、19に3箇所以上に開口して、残厚を測定する場合の概略図を示す。開口部は同一直線上に開口しないことが望ましい。開口部を2つづつ選択して、各開口部間の残厚を探触子26を用いて測定する。図18、19の右側に、それぞれの開口部間で測定した際の受信波の例を示す。耐火物内にクラックが存在しない場合は、図18に示すような波形が受信用探触子で計測され、耐火物内にクラック25が存在する場合には、図19に示すような波形が受信用探触子で計測される。クラックが存在する場合には2つのピークが発生する場合があるため、クラックの存在を識別可能であり、クラックの存在しない部分の反射波が受信されるまでの時間を参照することで、複数の反射波のうち残厚に相当する反射波を識別でき、残厚を正確に測定できる。   18 and 19 are schematic views in the case where the remaining thickness is measured with three or more openings. It is desirable that the openings do not open on the same straight line. Two openings are selected and the remaining thickness between the openings is measured using the probe 26. The example of the received wave at the time of measuring between each opening part is shown on the right side of FIG. When there is no crack in the refractory, a waveform as shown in FIG. 18 is measured by the receiving probe, and when a crack 25 is present in the refractory, a waveform as shown in FIG. 19 is received. Measured with a probe. Since two peaks may occur when a crack exists, it is possible to identify the presence of the crack, and by referring to the time until the reflected wave of the portion where the crack does not exist is received, The reflected wave corresponding to the remaining thickness among the reflected waves can be identified, and the remaining thickness can be measured accurately.

また、耐火物の炉内側表面が平坦であれば、すなわち耐火物の残厚が測定点付近でほぼ均一であれば、反射波は各受信用探触子でほぼ同時に受信されるが、残厚に不均一が発生すると、反射波の受信に各測定地点で時間差が生じ、これを用いれば耐火物の炉内側表面の形状を計測することも可能である。耐火物の炉内側表面の形状を測定するためには開口部が多いほど好ましいが、鉄皮に多数の開口部を設けることは炉の操業上望ましくないため、開口部の数は必要最小限とする。   If the furnace inner surface of the refractory is flat, that is, if the remaining thickness of the refractory is almost uniform near the measurement point, the reflected wave is received almost simultaneously by each receiving probe. If non-uniformity occurs, a time difference occurs at each measurement point in receiving the reflected wave, and if this is used, the shape of the refractory inside surface of the furnace can be measured. In order to measure the shape of the furnace inner surface of the refractory, it is preferable that the number of openings is large. However, since it is not desirable for the operation of the furnace to provide a large number of openings in the iron skin, the number of openings is the minimum necessary. To do.

3箇所以上に開口して、残厚を測定する場合は、既存の全ての開口部間で残厚測定を試みた後、新たな開口部を形成し、新たに形成した開口部と、既に形成した開口部との間で残厚を測定することが効率的である。すなわち、既存の開口部間で残厚を測定後に前記鉄皮に新たに開口部を形成して、新たに形成された開口部と既存の開口部との間で残厚を測定することが望ましい。   When measuring the remaining thickness with three or more openings, after attempting to measure the remaining thickness between all existing openings, a new opening is formed, and the newly formed opening is already formed. It is efficient to measure the remaining thickness between the openings. That is, it is desirable to form a new opening in the iron skin after measuring the remaining thickness between the existing openings, and measure the remaining thickness between the newly formed opening and the existing opening. .

図20は3箇所以上の開口部を設定する場合の高炉の炉底の耐火物の残厚測定作業の一実施形態のフローチャートであり、図20において、まず前述したような方法を用いて2つの開口部により耐火物の残厚を測定する。各開口部は、No.D(D=1、2、3、・・・)により識別する。最初の2つの開口部をNo.1、No.2として、以下、新たに開口した順番に開口部にNo.Dを設定するものとする。No.1、No.2の開口部を用いて測定した際に、受信した反射波が2つ以上あった場合、信号強度最大の反射波をSm1、次に強度の大きい反射波をSm2として、あらかじめ設定しておいた強度の閾値Sθと比較し、Sm2≦Sθ(Sm2>SθがNoの場合)の場合には、Sm1を反射波として、残厚を求める。一方、Sm2>Sθの場合(Sm2>SθがYesの場合)は、Sm1とSm2の一方はクラックに起因する反射波である可能性があり、Sm1とSm2のどちらが残厚に相当する反射波であるのか不明確であるため、新たな開口部(No.3:D=3)を設定する。この際に変数d=0とする。   FIG. 20 is a flowchart of an embodiment of a refractory residual thickness measurement operation at the bottom of a blast furnace when three or more openings are set. In FIG. 20, first, two methods are used using the method described above. The remaining thickness of the refractory is measured through the opening. Each opening has a No. It is identified by D (D = 1, 2, 3,...). The first two openings are designated as No. 1 and No. 1. No. 2 in the openings in the order of new openings. Let D be set. No. 1, No. 1 When there are two or more received reflected waves when measuring using the aperture of 2, the reflected wave with the maximum signal intensity is set as Sm1, and the reflected wave with the next highest intensity is set as Sm2. Compared with the intensity threshold value Sθ, if Sm2 ≦ Sθ (when Sm2> Sθ is No), the remaining thickness is obtained using Sm1 as a reflected wave. On the other hand, when Sm2> Sθ (when Sm2> Sθ is Yes), one of Sm1 and Sm2 may be a reflected wave caused by a crack, and either Sm1 or Sm2 is a reflected wave corresponding to the remaining thickness. Since it is unclear whether or not there is, a new opening (No. 3: D = 3) is set. At this time, the variable d = 0.

新たな開口部(No.3:D=3)を設定した際には、d=d+1として、まず、No.3(No.D)の開口部とNo.1(No.d)の開口部との間で、本発明方法を用いて耐火物の残厚を測定する。受信した反射波が一つの場合は、その反射波を用いて残厚を求める。しかし、新たな開口部を用いても受信した反射波が2つ以上あった場合、信号強度最大の反射波をSm1、次に強度の大きい反射波をSm2として、あらかじめ設定しておいた強度の閾値Sθと比較し、Sm2≦Sθ(Sm2>SθがNoの場合)の場合には、Sm1を反射波として、残厚を求める。一方、Sm2>Sθの場合(Sm2>SθがYesの場合)はSm1とSm2のどちらが残厚に相当する反射波であるのか不明確であるため、もう一つの既存の開口部であるNo.2の開口部とNo.3の開口部との間で耐火物の残厚を測定する。この際、Dとd+1の値を比較することにより、さらに新たな開口部を形成する必要があるかを判断する。すなわち、No.1とNo.3の開口部間で測定した場合は、D=3、d=1であるのでD>d+1であり、d=d+1として開口部No.dと開口部No.Dとの間で測定を行うが、No.2とNo.3の開口部間で測定した場合は、D=3、d=2であるため、D=d+1であり、この場合はd=0として、新たな開口部(No.D:D=4)を形成する。   When a new opening (No. 3: D = 3) is set, d = d + 1 is set. 3 (No. D) and No. 3 The remaining thickness of the refractory is measured between the openings of No. 1 (No. d) using the method of the present invention. If there is only one reflected wave, the remaining thickness is obtained using the reflected wave. However, if two or more reflected waves are received even when the new opening is used, the reflected wave with the maximum signal intensity is set as Sm1, and the reflected wave with the next highest intensity is set as Sm2. Compared with the threshold value Sθ, if Sm2 ≦ Sθ (when Sm2> Sθ is No), the remaining thickness is obtained with Sm1 as the reflected wave. On the other hand, when Sm2> Sθ (when Sm2> Sθ is Yes), it is unclear which of Sm1 and Sm2 is the reflected wave corresponding to the remaining thickness. 2 opening and No. 2 The remaining thickness of the refractory is measured between the three openings. At this time, it is determined whether or not a new opening needs to be formed by comparing the values of D and d + 1. That is, no. 1 and No. 3 is measured between the openings, D> 3 and d = 1, so that D> d + 1, and d = d + 1. d and opening No. No. D is measured. 2 and No. In the case of measuring between three openings, D = 3 and d = 2, so D = d + 1. In this case, d = 0 and a new opening (No. D: D = 4) is formed. Form.

上記の工程を受信した反射波が一つになる、あるいはSm2≦Sθ(Sm2>SθがNoの場合)となるまで繰り返して残厚を求める。以上の方法を用いることで、鉄皮の開口作業を最小限としながら、より正確に耐火物の残厚を測定することが可能となる。   The remaining thickness is obtained by repeating the above process until one reflected wave is received or until Sm2 ≦ Sθ (when Sm2> Sθ is No). By using the above method, the remaining thickness of the refractory can be measured more accurately while minimizing the opening work of the iron skin.

次に、本発明を用いて炉の寿命予測を行う方法について説明する。   Next, a method for predicting the lifetime of the furnace using the present invention will be described.

上記に記載の耐火物の残厚測定方法を用いれば、耐火物の正確な残厚が測定可能であるので、炉壁の耐火物の厚さを所定の期間測定し、測定された前記耐火物の厚さから、前記耐火物の寿命を推定することで、炉の寿命を予測することができる。   By using the refractory residual thickness measurement method described above, the accurate residual thickness of the refractory can be measured. Therefore, the thickness of the refractory on the furnace wall is measured for a predetermined period, and the measured refractory is measured. By estimating the life of the refractory from the thickness of the furnace, the life of the furnace can be predicted.

高炉の場合、上記の本発明方法を用いて高炉の炉底耐火物の正確な厚さ(残厚)を得ることで、操業中の高炉の余齢を推定することが可能となり従来以上に精度良く、かつ容易に、高炉の寿命を推定することができる。高炉の炉底部分の耐火物の厚さを本発明方法を用いて定期的に測定し、残厚の履歴データより、例えば最小二乗法を用いて寿命を推定する。耐火物の損耗の激しい部分は経験的に知られているので、特に損耗の激しい部分の耐火物の残厚を測定することが好ましい。また、高炉の炉底に複数の測定個所を設けて、残厚を測定することが望ましい。操業開始時から耐火物の厚さを測定することが望ましいが、過去数年程度の耐火物の厚さデータが蓄積できれば、高炉の寿命予測は可能である。高炉の操業中は鉄皮の表面上を冷却水が流れているため測定は困難であるので、通常は休風時に耐火物の厚さを測定する。高炉の休風は年に数回であるので、毎休風時に残厚を測定することが好ましい。図13に高炉の寿命予測を行う近似計算の例を示す。   In the case of a blast furnace, it is possible to estimate the age of the blast furnace during operation by obtaining the exact thickness (remaining thickness) of the blast furnace refractory using the above-described method of the present invention. The life of the blast furnace can be estimated well and easily. The thickness of the refractory at the bottom of the blast furnace is periodically measured using the method of the present invention, and the life is estimated from the remaining thickness history data using, for example, the least square method. Since the portion of the refractory that is heavily worn is empirically known, it is preferable to measure the remaining thickness of the refractory that is particularly worn. It is desirable to provide a plurality of measurement points on the bottom of the blast furnace and measure the remaining thickness. It is desirable to measure the thickness of the refractory from the start of operation, but if the refractory thickness data of the past few years can be accumulated, the life expectancy of the blast furnace can be predicted. During the operation of the blast furnace, since the cooling water is flowing on the surface of the iron skin, it is difficult to measure. Therefore, the thickness of the refractory is usually measured when the wind is off. Since the blast furnace wind is several times a year, it is preferable to measure the remaining thickness at each wind break. FIG. 13 shows an example of approximate calculation for predicting the life of a blast furnace.

図13において、過去12年間の耐火レンガ厚さの測定データのうち、過去3年間の測定厚さを用いて最小二乗法により近似直線を求め、この近似直線から、耐火レンガの厚さが寿命と考えられる厚さXとなる操業年数Fを計算している。高炉の現在の操業年数をPとすると、耐火物の余齢Crは、下記(4)式で求めることができる。   In FIG. 13, among the measurement data of the refractory brick thickness for the past 12 years, an approximate straight line is obtained by the least square method using the measured thickness for the past three years, and from this approximate straight line, the thickness of the refractory brick is determined as the lifetime. The number of years of operation F for the possible thickness X is calculated. If the current operating age of the blast furnace is P, the residual age Cr of the refractory can be obtained by the following equation (4).

Cr=F―P…(4)
N箇所で耐火レンガの厚さ測定を行う場合、耐火レンガの余齢がCr1、Cr2、Cr3、……CrNとN個得られるので、下記(5)式に示すように、N個の余齢のうちの最小値を高炉の余齢Brとする。
Cr = FP (4)
When measuring the thickness of the refractory bricks at N locations, the refractory age of the refractory bricks is obtained as Cr 1 , Cr 2 , Cr 3 ,... Cr N. As shown in the following formula (5), The minimum value among the individual ages is defined as the blast furnace age Br.

Br=min[Cr1、Cr2、Cr3、……CrN]…(5)
以上の方法を用いて炉の寿命を予測することができるので、予測した寿命に基づいて炉を停止して改修を行うことが望ましい。すなわち、炉の耐火物の残厚を定期的に測定し、測定された残厚に基づいて炉の寿命を予測し、予測された寿命に基づいて炉の改修時期を決定し、炉の改修を実施することにより、適切な時期に炉の改修が可能であり、操業中に耐火物が破損する事故を防止し、寿命の上限近くまで炉を操業することが可能となる。炉の耐火物の残厚の測定は、ある程度の長期にわたって適当な間隔をおいて複数回行えば良く、常に同じ時間間隔で行う必要はない。
Br = min [Cr 1 , Cr 2 , Cr 3 ,... Cr N ] (5)
Since the life of the furnace can be predicted using the above method, it is desirable to stop the furnace based on the predicted life and perform repair. That is, the remaining thickness of the refractory in the furnace is measured periodically, the life of the furnace is predicted based on the measured remaining thickness, the time for refurbishing the furnace is determined based on the predicted life, and the refurbishment of the furnace is performed. By implementing it, it is possible to refurbish the furnace at an appropriate time, prevent accidents that damage the refractory during operation, and operate the furnace to near the upper limit of its lifetime. The measurement of the remaining thickness of the refractory in the furnace may be performed a plurality of times at appropriate intervals over a certain long period, and it is not always necessary to perform the measurement at the same time interval.

本発明の一実施形態の概略図。1 is a schematic diagram of one embodiment of the present invention. 開口部間隔を変化させた場合に受信用探触子が受信するノイズ(N)と信号(S)の強度変化の概略図。Schematic of the intensity change of the noise (N) and signal (S) which a receiving probe receives when an opening part space | interval is changed. 実効指向角θと探触子の視野範囲Wの関係を示す概略図。Schematic which shows the relationship between the effective directivity angle (theta) and the visual field range W of a probe. 探触子の設置間隔Dを変化させた場合の二つの探触子の視野範囲の関係を示す概略図。(A)D=W、(B)D=2W、(C)D>2WSchematic which shows the relationship of the visual field range of two probes at the time of changing the installation space | interval D of a probe. (A) D = W, (B) D = 2W, (C) D> 2W 探触子の設置間隔Dを変化させた場合の二つの探触子の視野範囲の関係を示す概略図。(A)D=W、(B)D=2WSchematic which shows the relationship of the visual field range of two probes at the time of changing the installation space | interval D of a probe. (A) D = W, (B) D = 2W 開口部にキャップを取りつける一実施形態の概略図。Schematic of one embodiment of attaching a cap to the opening. 二つの探触子をアームで固定して測定する一実施形態の概略図。Schematic of one Embodiment which fixes and fixes two probes with an arm. 耐熱板を取りつける一実施形態の概略図。The schematic of one Embodiment which attaches a heat-resistant board. 断熱材の効果を示すグラフ。The graph which shows the effect of a heat insulating material. 本発明を実施するための説明図。Explanatory drawing for implementing this invention. 反射波の波形例を示すグラフ。The graph which shows the example of a waveform of a reflected wave. 高炉の炉底の耐火物の残厚測定作業の一実施形態のフローチャート。The flowchart of one Embodiment of the remaining thickness measurement operation | work of the refractory of the bottom of a blast furnace. 高炉の寿命予測を行う近似計算の例を示すグラフ。The graph which shows the example of the approximate calculation which performs the lifetime prediction of a blast furnace. 一探触子法で生じる不感帯の例を示すグラフ。The graph which shows the example of the dead zone which arises with one probe method. 二探触子法で生じる不感帯の例を示すグラフ。The graph which shows the example of the dead zone which arises with the two probe method. 複数の反射波が受信される場合の一例を示す図。The figure which shows an example in case a some reflected wave is received. クラックが存在する場合の弾性波の反射経路を示す図。The figure which shows the reflective path | route of an elastic wave in case a crack exists. 3箇所以上に開口して、残厚を測定する場合の概略図(クラックなし)。Schematic (when there is no crack) when opening to three or more places and measuring the remaining thickness. 3箇所以上に開口して、残厚を測定する場合の概略図(クラックあり)。Schematic (when there is a crack) when opening to three or more places and measuring the remaining thickness. 3箇所以上の開口部を設定する場合の残厚測定作業の一実施形態のフローチャート。The flowchart of one Embodiment of the remaining thickness measurement operation | work in the case of setting three or more openings.

符号の説明Explanation of symbols

1 鉄皮
2 スタンプ材
3 開口部
3a 第一の開口部
3b 第二の開口部
4 送信用探触子
5 耐火レンガ(耐火物)
6 弾性波
7 受信用探触子
10 短管
11 キャップ
15 アーム
16 固定ネジ
17 耐熱板
20 パルサー
21 アンプ
22 バンドパスフィルター
23 A/D変換機(デジタルオシロ)
24 計算機(パーソナルコンピューター)
25 クラック
26 探触子
A1 探触子保持アーム
A2 探触子保持アーム
Cr 耐火物の余齢
F 耐火レンガの厚さが寿命となる操業年数
P 高炉の現在の操業年数
t 伝搬時間
X 耐火レンガの寿命厚さ
Y 不感帯
Z 反射波
DESCRIPTION OF SYMBOLS 1 Iron skin 2 Stamp material 3 Opening part 3a 1st opening part 3b 2nd opening part 4 Probe for transmission 5 Refractory brick (refractory material)
6 Elastic Wave 7 Receiving Probe 10 Short Tube 11 Cap 15 Arm 16 Fixing Screw 17 Heat Resistant Plate 20 Pulsar 21 Amplifier 22 Band Pass Filter 23 A / D Converter (Digital Oscilloscope)
24 Computer (personal computer)
25 Crack 26 Probe A1 Probe holding arm A2 Probe holding arm Cr Refractory age F Lifetime of firebrick P Lifetime of blast furnace t Propagation time X Fireproof brick Life Thickness Y Dead Band Z Reflected Wave

Claims (13)

鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、弾性波の発信と受信とを異なる2つの耐火物表面位置において行い、前記耐火物内部へ弾性波を発信し、前記弾性波が前記耐火物表面を伝わって受信されることにより発生するノイズを防止しつつ、前記弾性波の前記耐火物の炉内側表面からの反射波を受信することで、前記耐火物の厚さを測定することを特徴とする炉耐火物の残厚測定方法。   In a furnace having a furnace wall composed of an iron shell and a refractory, a method for measuring the thickness of the refractory by a reflection method using elastic waves, wherein the transmission and reception of elastic waves are different from each other. Performing at the position of the surface of the refractory, transmitting an elastic wave to the inside of the refractory, and preventing noise generated when the elastic wave is received through the surface of the refractory, A method for measuring a residual thickness of a furnace refractory, wherein the thickness of the refractory is measured by receiving a reflected wave from a furnace inner surface. 鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、前記鉄皮に形成された少なくとも2つ以上の開口部のうちの一つの開口部から前記耐火物内部へ弾性波を発信して得られる前記耐火物の炉内側表面からの反射波を、少なくとも他の一つの開口部において受信することで、前記耐火物の厚さを測定することを特徴とする炉耐火物の残厚測定方法。   A furnace having a furnace wall composed of an iron skin and a refractory, wherein the thickness of the refractory is measured by a reflection method using an elastic wave, wherein at least two or more formed on the iron skin By receiving a reflected wave from the furnace inner surface of the refractory obtained by transmitting an elastic wave from one of the openings to the inside of the refractory, at least in the other one of the openings, A method for measuring a remaining thickness of a furnace refractory, comprising measuring the thickness of the refractory. 鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、既存の開口部間で残厚を測定後に前記鉄皮に新たに開口部を形成して、該新たに形成された開口部と既存の開口部との間で残厚を測定することを特徴とする請求項2に記載の炉耐火物の残厚測定方法。   In a furnace having a furnace wall composed of an iron shell and a refractory, a method of measuring the thickness of the refractory by a reflection method using elastic waves, after measuring the remaining thickness between existing openings The furnace refractory according to claim 2, wherein a new opening is formed in the iron skin, and a remaining thickness is measured between the newly formed opening and an existing opening. Remaining thickness measurement method. 鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定する方法であって、前記鉄皮に2つの開口部を形成して、該開口部を通じて前記耐火物表面を露出させ、一方の開口部から前記耐火物内部へ弾性波を発信して得られる前記耐火物の炉内側表面からの反射波を、他方の開口部において受信することで、前記耐火物の厚さを測定することを特徴とする炉耐火物の残厚測定方法。   In a furnace having a furnace wall composed of an iron skin and a refractory, the thickness of the refractory is measured by a reflection method using an elastic wave, and two openings are formed in the iron skin. Then, the surface of the refractory is exposed through the opening, and the reflected wave from the furnace inner surface of the refractory obtained by transmitting an elastic wave from one opening to the inside of the refractory is reflected in the other opening. A method for measuring a remaining thickness of a furnace refractory, wherein the thickness of the refractory is measured by receiving the thickness. 予測される耐火物の残厚に応じて、2つの開口部の設置間隔を設定することを特徴とする請求項4に記載の炉耐火物の残厚測定方法。   The method for measuring the remaining thickness of a furnace refractory according to claim 4, wherein an installation interval between the two openings is set according to the predicted remaining thickness of the refractory. 2つの開口部の設置間隔を、弾性波の実効指向角θの正接値と、予測される耐火物の残厚Lとの積の2倍である、2Ltanθ以下とすることを特徴とする、請求項4または請求項5に記載の炉耐火物の残厚測定方法。   The installation interval between the two openings is 2Ltanθ or less, which is twice the product of the tangent value of the effective directivity angle θ of the elastic wave and the expected remaining thickness L of the refractory. The method for measuring a remaining thickness of the furnace refractory according to claim 4 or 5. 鉄皮に形成された同じ開口部を用いて耐火物の厚さを繰り返し測定することを特徴とする請求項2ないし請求項6のいずれかに記載の炉耐火物の残厚測定方法。   The method for measuring a remaining thickness of a furnace refractory according to any one of claims 2 to 6, wherein the thickness of the refractory is repeatedly measured using the same opening formed in the iron skin. 鉄皮の開口部部分に着脱自在のキャップを設置することにより開閉可能として、残厚測定時には前記キャップを取り外し、残厚測定後は前記キャップにより開口部を閉塞することすることを特徴とする請求項2ないし請求項7のいずれかに記載の炉耐火物の残厚測定方法。   The cap can be opened and closed by installing a removable cap at the opening of the iron skin, the cap is removed when measuring the remaining thickness, and the opening is closed with the cap after measuring the remaining thickness. Item 8. A method for measuring a remaining thickness of a furnace refractory according to any one of Items 2 to 7. 弾性波の送信および受信を探触子を用いて行い、弾性波が伝搬しにくい連結部材で前記探触子間距離を調整可能に連結することを特徴とする請求項1ないし請求項8のいずれかに記載の炉耐火物の残厚測定方法。   9. The method according to claim 1, wherein transmission and reception of elastic waves are performed using a probe, and the distance between the probes is adjusted by a connecting member that does not easily propagate the elastic waves. A method for measuring the residual thickness of the furnace refractory as described in claim 1. 弾性波の送信および受信を探触子を用いて行い、該探触子を耐火物の表面に接触させる際に、前記探触子の前記耐火物との接触面に断熱材を設置することを特徴とする請求項1ないし請求項9のいずれかに記載の炉耐火物の残厚測定方法。   Transmitting and receiving elastic waves using a probe, and when contacting the probe to the surface of the refractory, installing a heat insulating material on the contact surface of the probe with the refractory The method for measuring a remaining thickness of a furnace refractory according to any one of claims 1 to 9. 鉄皮と耐火物とにより構成された炉壁を有する炉において、前記耐火物の厚さを弾性波を用いた反射法により測定するための装置であって、互いの間隔が調整可能な1対の探触子保持アームA1、A2と、これらA1、A2の先端に各々保持される送信用探触子及び受信用探触子とを備えたことを特徴とする炉耐火物の残厚測定装置。   An apparatus for measuring a thickness of the refractory by a reflection method using an elastic wave in a furnace having a furnace wall composed of an iron shell and a refractory, wherein a pair of the distances is adjustable. The furnace refractory residual thickness measuring apparatus, comprising: a probe holding arm A1, A2 and a transmitting probe and a receiving probe respectively held at the tips of the A1, A2. . 請求項1ないし請求項10のいずれかに記載の炉耐火物の残厚測定方法を用いて、炉壁の耐火物の厚さを所定の期間測定し、測定された前記耐火物の厚さから、前記耐火物の寿命を推定することで、炉の寿命を予測することを特徴とする、炉の寿命予測方法。   Using the method for measuring a remaining thickness of a furnace refractory according to any one of claims 1 to 10, the thickness of the refractory on the furnace wall is measured for a predetermined period, and the measured thickness of the refractory is used. A method for predicting the lifetime of a furnace, wherein the lifetime of the furnace is predicted by estimating the lifetime of the refractory. 請求項12に記載の炉の寿命予測方法を用いて予測した炉の寿命に基づいて、炉の改修時期を決定して、炉の改修を行うことを特徴とする炉の改修方法。   A furnace refurbishment method, comprising: refurbishing the furnace by determining a refurbishment period of the furnace based on the life of the furnace predicted by using the furnace life prediction method according to claim 12.
JP2003399469A 2003-05-29 2003-11-28 Residual thickness measuring method and device for furnace refractory using elastic wave Pending JP2005010139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399469A JP2005010139A (en) 2003-05-29 2003-11-28 Residual thickness measuring method and device for furnace refractory using elastic wave

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003153093 2003-05-29
JP2003399469A JP2005010139A (en) 2003-05-29 2003-11-28 Residual thickness measuring method and device for furnace refractory using elastic wave

Publications (1)

Publication Number Publication Date
JP2005010139A true JP2005010139A (en) 2005-01-13

Family

ID=34106787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399469A Pending JP2005010139A (en) 2003-05-29 2003-11-28 Residual thickness measuring method and device for furnace refractory using elastic wave

Country Status (1)

Country Link
JP (1) JP2005010139A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121203A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Bottom of blast furnace management method
JP2007205717A (en) * 2006-01-30 2007-08-16 Nippon Steel Corp Method and probe for measuring remaining thickness of worn member
KR101714928B1 (en) * 2015-12-22 2017-03-10 주식회사 포스코 Apparatus and method for measuring thickness of refractory in blast furnace hearth

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121203A (en) * 2005-10-31 2007-05-17 Nippon Steel Corp Bottom of blast furnace management method
JP2007205717A (en) * 2006-01-30 2007-08-16 Nippon Steel Corp Method and probe for measuring remaining thickness of worn member
JP4568233B2 (en) * 2006-01-30 2010-10-27 新日本製鐵株式会社 Method for measuring remaining thickness of wearable members
KR101714928B1 (en) * 2015-12-22 2017-03-10 주식회사 포스코 Apparatus and method for measuring thickness of refractory in blast furnace hearth

Similar Documents

Publication Publication Date Title
US9212956B2 (en) Ultrasonic temperature measurement device
US7665362B2 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
EP2029966B1 (en) Acoustic method and system of measuring material loss from a solid structure
US9625273B2 (en) Thickness measurement apparatus and method thereof
US4510793A (en) Method of monitoring the wear of a refractory lining of a metallurgical furnace wall
EP2198229B1 (en) Method for the acoustic monitoring of tapblocks and similar elements
EP1271097A2 (en) Method for inspecting clad pipe
EP1893972B1 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
JP2005010139A (en) Residual thickness measuring method and device for furnace refractory using elastic wave
JP3379386B2 (en) Refractory wear evaluation method and apparatus, and refractory management method and apparatus
JP2006153557A (en) Method for measuring remaining thickness of furnace refractory using elastic wave and furnace life prediction method
US7305884B1 (en) In situ monitoring of reactive material using ultrasound
JP3070475B2 (en) Ultrasonic probe
JP2005337890A (en) Inspection method and diagnosis device of porcelain insulator
JPH0954068A (en) Diagnostic method and device for degradation of metallic material
Sadri et al. Non-destructive testing (NDT) and inspection of the blast furnace refractory lining by stress wave propagation technique
JP3252724B2 (en) Refractory thickness measurement method and apparatus
EP4086620A1 (en) Method and device for checking the wall of a pipeline for flaws
JP2009078298A (en) Method and apparatus for measuring temperature of mold copper plate for continuous casting
JP4553888B2 (en) Life casting method for continuous casting mold
JP2011058980A (en) Method and device for measuring carburized layer of tubular body
JPH07325069A (en) Method and device for detecting deterioration of high temperature member
JPH07286996A (en) Ultrasonic wave diagnosis method for undefined shape refractory body lining
JP2000337849A (en) Method and apparatus for measurement of thickness of refractories in furnace

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921