JP5809512B2 - Brick residual thickness measuring device - Google Patents

Brick residual thickness measuring device Download PDF

Info

Publication number
JP5809512B2
JP5809512B2 JP2011220155A JP2011220155A JP5809512B2 JP 5809512 B2 JP5809512 B2 JP 5809512B2 JP 2011220155 A JP2011220155 A JP 2011220155A JP 2011220155 A JP2011220155 A JP 2011220155A JP 5809512 B2 JP5809512 B2 JP 5809512B2
Authority
JP
Japan
Prior art keywords
brick
ultrasonic sensor
sensor
thickness measuring
carbon brick
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011220155A
Other languages
Japanese (ja)
Other versions
JP2013079871A (en
Inventor
貢 藤原
貢 藤原
佐藤 秀一
秀一 佐藤
新田 法生
法生 新田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
IHI Inspection and Instrumentation Co Ltd
Original Assignee
Nippon Steel Corp
IHI Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, IHI Inspection and Instrumentation Co Ltd filed Critical Nippon Steel Corp
Priority to JP2011220155A priority Critical patent/JP5809512B2/en
Publication of JP2013079871A publication Critical patent/JP2013079871A/en
Application granted granted Critical
Publication of JP5809512B2 publication Critical patent/JP5809512B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Description

本発明は、超音波センサを用いた高炉煉瓦の煉瓦残厚測定装置に関する。   The present invention relates to an apparatus for measuring a remaining brick thickness of a blast furnace brick using an ultrasonic sensor.

高炉の炉底(下方側壁)構造は、炉内稼働面側(内面側)にカーボン煉瓦(カーボンブロック)が配され、外部容器である鉄皮内面側に配されたステーブ(冷却配管により水冷されている)へ熱が逃げる構造となっている。また、ステーブが無い構造もあるが、この場合は鉄皮へ直接冷却水を散水して冷却する。いずれの構造においても、カーボン煉瓦は、稼働面側(内面側)の高温の溶銑に直接接触する機会があるため、長期間の使用により損耗することから、この厚みを計測し、管理する必要がある。   The furnace bottom (lower side wall) structure of the blast furnace has carbon bricks (carbon blocks) on the working surface side (inner surface side) inside the furnace, and is staircase (water cooling by cooling pipes) arranged on the inner surface side of the outer skin, which is an external container. It has a structure that allows heat to escape. In addition, there is a structure without a stave, but in this case, cooling is performed by spraying cooling water directly onto the iron skin. In any structure, carbon bricks have the opportunity to come into direct contact with hot metal on the working surface side (inner surface side) and wear out over long periods of time, so this thickness must be measured and managed. is there.

従来、炉底煉瓦の厚さを検査するためには、熱電対を用いた推定する手段が用いられていたが、バラツキが大きく、安定した測定が困難であった。熱電対を用いた推定手段では、高炉の炉内が安定状態のときは比較的精度が高く推定できるものの、炉内の流動状態によって急激に熱負荷が変化しつつある状態のときは精度が低下する傾向にあった。   Conventionally, in order to inspect the thickness of the furnace bottom brick, a means for estimating using a thermocouple has been used, but the variation is large and stable measurement is difficult. The estimation means using a thermocouple can be estimated with relatively high accuracy when the furnace inside the blast furnace is in a stable state, but the accuracy decreases when the heat load is changing rapidly due to the flow state in the furnace. Tended to be.

そこで、例えば特許文献1の手段が既に提案されている。なお、本発明に関連する超音波センサは、特許文献2に開示されている。   Therefore, for example, the means of Patent Document 1 has already been proposed. An ultrasonic sensor related to the present invention is disclosed in Patent Document 2.

特許文献1の手段は、図1に示すように、鉄皮1又は鉄皮1及びステーブ2に耐火物3同士の目地をずらして開孔4を形成し、この開孔4に超音波探触子5を挿入して開孔に臨んだステーブ2又は耐火物3に接触させ、超音波探触子5から20〜200kHzの超音波を耐火物3へ伝播させ、この伝播させた超音波が耐火物3を往復するのに要した時間を測定することで耐火物3の厚みを測定するものである。   As shown in FIG. 1, the means of Patent Document 1 forms an opening 4 by shifting the joints of the refractories 3 in the iron skin 1 or the iron skin 1 and the stave 2. The element 5 is inserted and brought into contact with the stave 2 or the refractory 3 facing the opening, and an ultrasonic wave of 20 to 200 kHz is propagated from the ultrasonic probe 5 to the refractory 3, and the propagated ultrasonic wave is refractory. The thickness of the refractory 3 is measured by measuring the time required to reciprocate the object 3.

特許文献2の超音波センサは、図2に示すように、検査対象面Bに接触させる検出外面52aと検出外面52aに任意の角度を持つ平面である検出内面52bとを有する導電性の台座52と、検出内面52bに密着する耐熱軟金属からなる第1電極54aと、第1電極54aを台座52との間で挟む形で第1電極54aと密着する平板状の圧電素子56と、圧電素子56を第1電極54aとの間で挟む形で圧電素子56と密着する耐熱軟金属からなる第2電極54bと、圧電素子56を第2電極54bを介して検出内面52bに向けて弾性的に付勢する耐熱付勢部材60と、耐熱付勢部材60を検出内面52bに向けて押圧する押さえ部材70と、一端が台座52に連結されており内部に第1電極54a、圧電素子56、第2電極54b、耐熱付勢部材60及び押さえ部材70を収容する本体50と、本体50に螺合し、押さえ部材70よりも本体の他端側で押さえ部材70からの反力を受ける支持手段69とを備え、支持手段69は、検出内面52bに向けて押さえ部材70に外部から押圧力を作用させるための第1貫通穴65を有し、押さえ部材70は、前記押圧力を受ける受け部72を有するものである。   As shown in FIG. 2, the ultrasonic sensor disclosed in Patent Document 2 has a conductive pedestal 52 having a detection outer surface 52a that is brought into contact with the inspection target surface B and a detection inner surface 52b that is a plane having an arbitrary angle with respect to the detection outer surface 52a. A first electrode 54a made of a heat-resistant soft metal that is in close contact with the detection inner surface 52b, a plate-like piezoelectric element 56 that is in close contact with the first electrode 54a in a form sandwiched between the first electrode 54a and the pedestal 52, and a piezoelectric element The second electrode 54b made of a heat-resistant soft metal that is in close contact with the piezoelectric element 56 in a form sandwiched between the first electrode 54a and the piezoelectric element 56 elastically toward the detection inner surface 52b via the second electrode 54b. A heat-resistant urging member 60 that urges, a pressing member 70 that presses the heat-resistant urging member 60 toward the detection inner surface 52b, and one end connected to the pedestal 52, and the first electrode 54a, the piezoelectric element 56, the first 2-electrode 54b, resistance A main body 50 that houses the urging member 60 and the pressing member 70; and a support means 69 that is screwed into the main body 50 and receives a reaction force from the pressing member 70 on the other end side of the main body with respect to the pressing member 70. The means 69 has a first through hole 65 for applying a pressing force to the pressing member 70 from the outside toward the detection inner surface 52b, and the pressing member 70 has a receiving portion 72 for receiving the pressing force. .

特開平09−264735号公報、「耐火物の厚み測定方法及び装置」JP 09-264735 A, “Method and apparatus for measuring thickness of refractory” 特開2008−256423号公報、「高温用超音波探触子及びその製造方法」JP 2008-256423 A, “High-temperature ultrasonic probe and manufacturing method thereof”

上述した従来の手段は、以下の問題点があった。
高炉の運転条件の変化により、耐火物3の表面は鉄皮1に対して、相対的に3次元移動する。この3次元移動量は、例えば、超音波探触子5の計測面内において、2方向に±2〜5mm程度、半径方向に±2〜5mm程度である。
The conventional means described above has the following problems.
Due to changes in the operating conditions of the blast furnace, the surface of the refractory 3 moves three-dimensionally relative to the iron shell 1. This three-dimensional movement amount is, for example, about ± 2 to 5 mm in two directions and about ± 2 to 5 mm in the radial direction within the measurement surface of the ultrasonic probe 5.

超音波探触子5により耐火物3の厚みを正確に測定するためには、超音波探触子5の接触面が耐火物3の計測面に密着しながら倣い、かつ接触面の全面が所望の面圧で耐火物3の表面に押し付けられる必要がある。
しかし、従来の手段では、耐火物3の表面が鉄皮1に対して、相対的に3次元移動する場合、超音波探触子5の接触面が耐火物3の計測面に対して傾いて、接触面の一部に隙間ができ、或いは、その間の面圧が不均一になる問題点があった。
In order to accurately measure the thickness of the refractory 3 using the ultrasonic probe 5, the contact surface of the ultrasonic probe 5 is copied while closely contacting the measurement surface of the refractory 3, and the entire contact surface is desired. It is necessary to be pressed against the surface of the refractory 3 with a surface pressure of.
However, in the conventional means, when the surface of the refractory 3 moves relative to the iron shell 1 in a three-dimensional manner, the contact surface of the ultrasonic probe 5 is inclined with respect to the measurement surface of the refractory 3. There is a problem that a gap is formed in a part of the contact surface, or the surface pressure therebetween is not uniform.

本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、耐火物の計測面が鉄皮に対して、相対的に3次元移動しても、超音波探触子の接触面が耐火物の計測面に密着しながら追従することができ、接触面の全面を所望の面圧で耐火物の計測面に押し付けることができ、これにより超音波探触子により耐火物の厚みを正確に測定することができる煉瓦残厚測定装置を提供することにある。   The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to follow the contact surface of the ultrasonic probe in close contact with the measurement surface of the refractory, even if the measurement surface of the refractory moves relatively three-dimensionally with respect to the iron skin. Brick residual thickness measuring device that can press the entire contact surface against the refractory measurement surface with a desired surface pressure and can accurately measure the thickness of the refractory using an ultrasonic probe Is to provide.

本発明によれば、金属製の鉄皮の内側にカーボン煉瓦を有する高炉に取り付けられ、カーボン煉瓦の厚さを計測する煉瓦残厚測定装置であって、
高炉は、鉄皮を貫通しカーボン煉瓦まで達する計測孔と、計測孔と連通する鉄皮の貫通孔に気密に設けられた取付フランジとを有しており、
計測孔に挿入され接触媒体を介してカーボン煉瓦の計測面に押し付けられる超音波センサと、
取付フランジに取り付けられ、軸線に沿って内方に延び、その内方端に位置する中間部材をカーボン煉瓦へ向けて弾性的に押し付ける付勢装置と、
前記中間部材と超音波センサとの間で軸線に沿って延びるセンサ押付棒と、
前記中間部材と超音波センサに対しセンサ押付棒の両端部を揺動可能に連結する1対の球面軸受と、
超音波センサから球面軸受、センサ押付棒、及び付勢装置を通して鉄皮の外側まで引き出される信号線と、を備えることを特徴とする煉瓦残厚測定装置が提供される。
According to the present invention, a brick residual thickness measuring device that is attached to a blast furnace having a carbon brick inside a metal iron skin and measures the thickness of the carbon brick,
The blast furnace has a measurement hole that penetrates through the iron skin and reaches the carbon brick, and a mounting flange that is airtightly provided in the through hole of the iron skin that communicates with the measurement hole.
An ultrasonic sensor inserted into the measurement hole and pressed against the measurement surface of the carbon brick via the contact medium;
An urging device attached to the mounting flange, extending inward along the axis, and elastically pressing an intermediate member located at the inner end thereof toward the carbon brick;
A sensor pressing rod extending along an axis between the intermediate member and the ultrasonic sensor;
A pair of spherical bearings that pivotably connect both ends of the sensor pressing rod to the intermediate member and the ultrasonic sensor;
There is provided a brick residual thickness measuring device comprising a spherical bearing, a sensor pressing rod, and a signal line drawn from the ultrasonic sensor to the outside of the iron shell through an urging device.

上記本発明の構成によれば、中間部材と超音波センサに対しセンサ押付棒の両端部を揺動可能に連結する1対の球面軸受を備えるので、カーボン煉瓦の計測面が鉄皮に対して超音波センサの計測面内において、2方向に移動しても、超音波センサと付勢装置の軸線を常に平行に維持することができる。
また、センサ押付棒の長さは、カーボン煉瓦の表面から鉄皮表面までの距離又はそれ以上(例えば300〜500mm)に設定することにより、各球面軸受におけるセンサ押付棒の揺動角度は非常に小さくなる(例えば、5mmの変動の場合に、0.95〜1.43°)。
従って、付勢装置による押付け力は、センサ押付棒を介して超音波センサに同じ方向に作用するので、超音波センサの接触面がカーボン煉瓦の計測面に密着しながら追従することができ、接触面の全面を所望の面圧でカーボン煉瓦の計測面に押し付けることができ、これにより超音波センサによりカーボン煉瓦の厚みを正確に測定することができる。
According to the above configuration of the present invention, since the pair of spherical bearings that pivotably connect the both ends of the sensor pressing rod to the intermediate member and the ultrasonic sensor are provided, the measurement surface of the carbon brick is against the iron skin. Even if the ultrasonic sensor moves in two directions within the measurement surface of the ultrasonic sensor, the axes of the ultrasonic sensor and the biasing device can always be maintained in parallel.
The length of the sensor pressing bar is set to a distance from the surface of the carbon brick to the surface of the iron shell or more (for example, 300 to 500 mm), so that the swing angle of the sensor pressing bar in each spherical bearing is very large. It becomes smaller (for example, 0.95 to 1.43 ° in the case of a fluctuation of 5 mm).
Therefore, the pressing force by the urging device acts on the ultrasonic sensor in the same direction via the sensor pressing rod, so that the contact surface of the ultrasonic sensor can follow the carbon brick measurement surface while closely contacting it. The entire surface can be pressed against the measurement surface of the carbon brick with a desired surface pressure, whereby the thickness of the carbon brick can be accurately measured by the ultrasonic sensor.

特許文献1による装置の構成図である。1 is a configuration diagram of an apparatus according to Patent Document 1. FIG. 特許文献2による超音波センサの構成図である。10 is a configuration diagram of an ultrasonic sensor according to Patent Document 2. FIG. 本発明による煉瓦残厚測定装置を備えた高炉の全体構成図である。It is a whole block diagram of a blast furnace provided with a brick residual thickness measuring device by the present invention. 本発明による煉瓦残厚測定装置の第1実施形態図である。It is 1st Embodiment figure of the brick remaining thickness measuring apparatus by this invention. 図4のA部の拡大図である。It is an enlarged view of the A section of FIG. 図4のB部の拡大図である。It is an enlarged view of the B section of FIG. 本発明による煉瓦残厚測定装置の第2実施形態図である。It is 2nd Embodiment figure of the brick remaining thickness measuring apparatus by this invention.

以下、本発明の好ましい実施形態を、図面を参照して説明する。なお各図において、共通する部分には同一の符号を付し、重複した説明は省略する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In each figure, common portions are denoted by the same reference numerals, and redundant description is omitted.

図3は、本発明による煉瓦残厚測定装置を備えた高炉の全体構成図であり、水平断面図を模式的に示している。
この図において、10は高炉であり、金属製の鉄皮1の内側に、本例では、ステーブ2、及びカーボン煉瓦3が順に積層されている。カーボン煉瓦3の厚さは例えば2m以上であり、カーボン煉瓦3の外表面の温度は、例えば100〜200℃に保持されている。
なお、鉄皮1とステーブ2の間にキャスタブルが存在したり、ステーブ2とカーボン煉瓦3の間にスタンプ材が存在するケースも多いが、これらの存在の有無にかかわらず、本発明の装置でカーボン煉瓦の残厚を測定可能である。
FIG. 3 is an overall configuration diagram of a blast furnace provided with a brick residual thickness measuring apparatus according to the present invention, and schematically shows a horizontal sectional view.
In this figure, 10 is a blast furnace, and in this example, a stave 2 and a carbon brick 3 are laminated in this order on the inside of a metallic iron skin 1. The thickness of the carbon brick 3 is 2 m or more, for example, and the temperature of the outer surface of the carbon brick 3 is maintained at 100 to 200 ° C., for example.
In many cases, there is a castable between the iron skin 1 and the stave 2 or there is a stamp material between the stave 2 and the carbon brick 3. However, regardless of the presence or absence of these materials, the apparatus of the present invention can be used. The remaining thickness of the carbon brick can be measured.

高炉10は、鉄皮1を貫通しカーボン煉瓦3まで達する計測孔12と、計測孔12と連通する鉄皮1の貫通孔に気密に設けられた取付フランジ14とを有する。   The blast furnace 10 includes a measurement hole 12 that penetrates through the iron skin 1 and reaches the carbon brick 3, and a mounting flange 14 that is airtightly provided in the through hole of the iron skin 1 that communicates with the measurement hole 12.

本発明の煉瓦残厚測定装置20は、高炉10の取付フランジ14に取り付けられ、カーボン煉瓦3の厚さを計測する装置である。   The remaining brick thickness measuring device 20 of the present invention is a device that is attached to the mounting flange 14 of the blast furnace 10 and measures the thickness of the carbon brick 3.

図4は、本発明による煉瓦残厚測定装置の第1実施形態図である。   FIG. 4 is a diagram showing a first embodiment of a remaining brick thickness measuring apparatus according to the present invention.

図4において、本発明の煉瓦残厚測定装置20は、超音波センサ16、付勢装置30、センサ押付棒22、1対の球面軸受24a,24b、及び信号線26を備える。   In FIG. 4, the remaining brick thickness measuring device 20 of the present invention includes an ultrasonic sensor 16, an urging device 30, a sensor pressing rod 22, a pair of spherical bearings 24 a and 24 b, and a signal line 26.

超音波センサ16は、計測孔12に挿入され、接触媒体を介してカーボン煉瓦3の計測面3aに押し付けられる。   The ultrasonic sensor 16 is inserted into the measurement hole 12 and pressed against the measurement surface 3a of the carbon brick 3 via the contact medium.

超音波センサ16は、2枚の電極の間にニオブ酸リチウム振動子が挟持された高温用超音波センサである。この高温用超音波センサは、例えば最高600℃の耐熱性を有し、カーボン煉瓦3の計測面3a近傍の温度に耐えるように構成されている。
なお、かかる超音波センサ16の構造は、例えば図2に示したように、特許文献2に開示されている。
The ultrasonic sensor 16 is a high-temperature ultrasonic sensor in which a lithium niobate vibrator is sandwiched between two electrodes. This high-temperature ultrasonic sensor has a heat resistance of, for example, a maximum of 600 ° C. and is configured to withstand the temperature near the measurement surface 3 a of the carbon brick 3.
The structure of the ultrasonic sensor 16 is disclosed in Patent Document 2, for example, as shown in FIG.

接触媒体は、カーボン煉瓦3の計測面3aの温度(例えば100〜200℃)に耐える接触媒体である。
接触媒体は、超音波伝達時に阻害要因となるカーボン煉瓦3および超音波センサ16のセンサ面との凹凸面の影響を低減し、損失を極力低減させた超音波伝達を行うために必要であり、かつ使用環境温度領域での超音波伝達性能を安定的に具備していなければならない。このため接触媒体には、変形能を有し、材質として粘土のように応力下で自在に変形し、凹凸部を均してカーボン煉瓦3と超音波センサ16とを接触媒体を介して密着させ、超音波をセンサ面からカーボン煉瓦3へと伝達させることができる材質であればよい。このような機能を満たすために、接触媒体は、粘土質を構成する骨材と、それらを結合させる結合材とから構成されることが好ましい。
The contact medium is a contact medium that can withstand the temperature (for example, 100 to 200 ° C.) of the measurement surface 3 a of the carbon brick 3.
The contact medium is necessary to reduce the influence of the uneven surface with the carbon brick 3 and the sensor surface of the ultrasonic sensor 16 which are obstructive factors during ultrasonic transmission, and perform ultrasonic transmission with the loss reduced as much as possible. In addition, the ultrasonic transmission performance must be stably provided in the use environment temperature region. For this reason, the contact medium has a deformability, and can be freely deformed under stress as a material such as clay, and the uneven portions are leveled to bring the carbon brick 3 and the ultrasonic sensor 16 into close contact via the contact medium. Any material that can transmit ultrasonic waves from the sensor surface to the carbon brick 3 may be used. In order to satisfy such a function, the contact medium is preferably composed of an aggregate constituting the clay and a binder for bonding them.

この場合、骨材としては比較的高温下でも安定的に超音波を伝達可能な金属や酸化金属等の粉粒体を使用でき(例えば、0.1mm以下)、結合材については骨材同士のバインダーとしての役割を担いながら、変形能が高く、且つ、熱分解開始温度が使用環境温度領域よりも高温で安定的であり、結合剤中の揮発成分が揮発しても大きな空隙をつくらずに、超音波の伝達をできるだけ阻害しないような材料がより好ましい。
骨材の具体例としては、アルミナ粉、ムライト粉、アルミニウム粉、フリット粉などが挙げられ、これらを単独又は混合して使用できる。
また、結合材の具体例としては、樹脂やタールやピッチなどが挙げられ、これらを単独又は混合して使用できる。中でもフェノール樹脂が上記機能を高いレベルで満たすため、結合剤中に含まれていることが好ましい。
また、接触媒体の変形能をより高めるため、例えば、モノエチレングリコールなどが含まれていても構わない。
市販品では、耐火材料製品として販売されている黒崎播磨製「クロジョック」(商標登録)を接触媒体として用いることができる。
In this case, the aggregate can be a metal or metal oxide powder that can transmit ultrasonic waves stably even at relatively high temperatures (for example, 0.1 mm or less). While having a role as a binder, it has high deformability and is stable at a thermal decomposition starting temperature higher than the operating environment temperature range, and does not create a large gap even if the volatile components in the binder volatilize. A material that does not obstruct the transmission of ultrasonic waves as much as possible is more preferable.
Specific examples of the aggregate include alumina powder, mullite powder, aluminum powder, frit powder and the like, and these can be used alone or in combination.
Specific examples of the binder include resin, tar and pitch, and these can be used alone or in combination. Among these, since the phenol resin satisfies the above functions at a high level, it is preferably contained in the binder.
Moreover, in order to further improve the deformability of the contact medium, for example, monoethylene glycol or the like may be included.
In the commercial product, “Kurojoc” (registered trademark) manufactured by Kurosaki Harima sold as a refractory material product can be used as a contact medium.

付勢装置30は、取付フランジ14に取り付けられ、軸線に沿って内方に延び、その内方端に位置する中間部材31をカーボン煉瓦3へ向けて弾性的に押し付ける。また、付勢装置30は、軸線に沿う中空孔を有する。
中間部材31は、鉄皮1の表面の近傍又はそれより外側に位置している。また中間部材31の形状は、中空円筒形の好ましくは平板であり、鉄皮近傍の温度(例えば30〜100℃)に耐える好ましくは金属製である。
The biasing device 30 is attached to the attachment flange 14, extends inward along the axis, and elastically presses the intermediate member 31 positioned at the inner end thereof toward the carbon brick 3. Further, the urging device 30 has a hollow hole along the axis.
The intermediate member 31 is located in the vicinity of the surface of the iron skin 1 or on the outside thereof. The shape of the intermediate member 31 is preferably a hollow cylindrical plate, preferably a flat plate, and is preferably made of metal that can withstand the temperature in the vicinity of the iron skin (for example, 30 to 100 ° C.).

(中間部材31の必要性)
鉄皮外側のスペースが狭く、センサ押付棒22と付勢棒36とが一体の場合、取付けフランジ14から超音波センサ16を挿入する事が困難であり、センサ押付棒22を分割して、鉄皮外側のスペースが狭い場所においてもセンサ挿入を可能とした。
また中間部材31の形状は、センサ押付棒22と付勢棒36の中心部へ信号線26を通すため、中空円筒形が望ましい。
(Necessity of intermediate member 31)
When the space outside the iron skin is narrow and the sensor pressing bar 22 and the biasing bar 36 are integrated, it is difficult to insert the ultrasonic sensor 16 from the mounting flange 14, and the sensor pressing bar 22 is divided into iron The sensor can be inserted even in a place where the space outside the skin is narrow.
Further, the shape of the intermediate member 31 is preferably a hollow cylindrical shape because the signal line 26 is passed through the center of the sensor pressing rod 22 and the biasing rod 36.

センサ押付棒22は、中空円筒形であり、軸線に沿う中空孔22aを有し、中間部材31と超音波センサ16との間で軸線に沿って延びる。センサ押付棒22は、この例では中空円筒管であり、カーボン煉瓦3の計測面3aの温度(例えば100〜200℃)に耐える好ましくは金属製である。   The sensor pressing rod 22 has a hollow cylindrical shape, has a hollow hole 22 a along the axis, and extends along the axis between the intermediate member 31 and the ultrasonic sensor 16. In this example, the sensor pressing rod 22 is a hollow cylindrical tube, and is preferably made of metal that can withstand the temperature (for example, 100 to 200 ° C.) of the measurement surface 3 a of the carbon brick 3.

センサ押付棒22の長さは、超音波センサ16の計測面3a内において、2方向に±5mm程度移動しても、1対の球面軸受24a,24bの揺動角度が所定の範囲(例えば±2°)になるように設定する。
この長さは、カーボン煉瓦3の表面から鉄皮1表面までの距離又はそれ以上に設定するのがよい。
例えば長さが300〜500mmである場合、5mmの変動に対する球面軸受24a,24bの揺動角度は、0.95〜1.43°である。
The length of the sensor pressing bar 22 is such that the swing angle of the pair of spherical bearings 24a and 24b is within a predetermined range (for example, ± 5 mm) even if the sensor pressing rod 22 moves about ± 5 mm in two directions within the measurement surface 3a of the ultrasonic sensor 16. 2 °).
This length is preferably set to a distance from the surface of the carbon brick 3 to the surface of the iron skin 1 or longer.
For example, when the length is 300 to 500 mm, the swinging angle of the spherical bearings 24 a and 24 b with respect to a variation of 5 mm is 0.95 to 1.43 °.

1対の球面軸受24a,24bは、軸線に沿う中空孔を有し、中間部材31と超音波センサ16に対しセンサ押付棒22の両端部を揺動可能に連結する。
球面軸受24a,24bは、軸線に対して360度のどの方向にも揺動可能であり、かつその揺動範囲が所定の範囲(例えば±2°)に設定されている。
また、1対の球面軸受24a,24bは図示しない固定ネジにより、センサ押付棒22から分離できるようになっている。
The pair of spherical bearings 24 a and 24 b have a hollow hole along the axis, and both ends of the sensor pressing rod 22 are swingably connected to the intermediate member 31 and the ultrasonic sensor 16.
The spherical bearings 24a, 24b can swing in any direction of 360 degrees with respect to the axis, and the swing range is set to a predetermined range (for example, ± 2 °).
The pair of spherical bearings 24a and 24b can be separated from the sensor pressing rod 22 by a fixing screw (not shown).

上述のように球面軸受24a,24b、センサ押付棒22、及び付勢装置30は、それぞれ軸線に沿う中空孔を有する。この中空孔は、信号線26と2芯コネクタ18を通すためである。
信号線26は、超音波センサ16から球面軸受24a,24b、センサ押付棒22、及び付勢装置30の中空孔を通して鉄皮1の外側まで引き出される。
As described above, the spherical bearings 24a and 24b, the sensor pressing rod 22, and the urging device 30 each have a hollow hole along the axis. This hollow hole is for passing the signal line 26 and the two-core connector 18.
The signal line 26 is drawn from the ultrasonic sensor 16 to the outside of the iron skin 1 through the spherical bearings 24 a and 24 b, the sensor pressing rod 22, and the hollow hole of the urging device 30.

超音波センサ16からの信号線26は、一端が2枚の電極に接続し他端が円筒形部分を有する2芯コネクタ18(図6参照)に接続された2芯ケーブルである。なお、2枚の電極の一方を接地(アース)してもよい。
信号線26は、超音波センサ16から球面軸受24a,24b、センサ押付棒22、及び付勢装置30の中空孔を通して鉄皮1の外側まで延びる長さを有する。また、2芯コネクタ18の円筒形部分は、直径約8mmの密閉された円筒形金属パイプからなり、その外方端にコネクタの接点が設けられている。
The signal line 26 from the ultrasonic sensor 16 is a two-core cable having one end connected to two electrodes and the other end connected to a two-core connector 18 (see FIG. 6) having a cylindrical portion. One of the two electrodes may be grounded.
The signal line 26 has a length extending from the ultrasonic sensor 16 to the outside of the iron skin 1 through the spherical bearings 24 a and 24 b, the sensor pressing rod 22, and the hollow hole of the biasing device 30. The cylindrical portion of the two-core connector 18 is formed of a sealed cylindrical metal pipe having a diameter of about 8 mm, and a connector contact is provided on the outer end thereof.

図5は、図4のA部の拡大図である。
この図において、計測孔12は、超音波センサ16の傾きを抑制する内径を有している。計測孔12の内径は、超音波センサ16の挿入に支障がない限りで、超音波センサ16の直径に近いのがよい。具体的には、超音波センサ16の直径に対して、2〜8mmのクリアランスを有することが好ましい。
例えば、超音波センサ16が直径約40mmの円筒形である場合に、計測孔12の内径を42〜48mm(直径隙間が2〜8mm)に設定することにより、計測孔12の内部における超音波センサ16の傾きを防止し、超音波センサ16の軸線を計測面3aに対し、ほぼ垂直に維持することができる。
また計測面3aは、カーボン煉瓦3の外表面より内側に位置している。計測面3aの外表面からの深さは、計測面3aが鉄皮1に対して、相対的に3次元移動しても、超音波センサ16が、計測面3aに対しほぼ垂直に維持し、かつ計測面3aから離れないように設定する。この深さは、超音波センサ16が円筒形状である場合、その長さの半分から1倍程度、例えば100mmである場合に、50〜100mm程度であるのがよい。
FIG. 5 is an enlarged view of a portion A in FIG.
In this figure, the measurement hole 12 has an inner diameter that suppresses the inclination of the ultrasonic sensor 16. The inner diameter of the measurement hole 12 is preferably close to the diameter of the ultrasonic sensor 16 as long as the insertion of the ultrasonic sensor 16 is not hindered. Specifically, it is preferable to have a clearance of 2 to 8 mm with respect to the diameter of the ultrasonic sensor 16.
For example, when the ultrasonic sensor 16 has a cylindrical shape with a diameter of about 40 mm, the ultrasonic sensor inside the measurement hole 12 is set by setting the inner diameter of the measurement hole 12 to 42 to 48 mm (diameter gap of 2 to 8 mm). 16 can be prevented, and the axis of the ultrasonic sensor 16 can be maintained substantially perpendicular to the measurement surface 3a.
Moreover, the measurement surface 3 a is located inside the outer surface of the carbon brick 3. The depth from the outer surface of the measurement surface 3a is maintained so that the ultrasonic sensor 16 is substantially perpendicular to the measurement surface 3a even if the measurement surface 3a moves relative to the iron skin 1 in a three-dimensional manner. And it sets so that it may not leave | separate from the measurement surface 3a. When the ultrasonic sensor 16 has a cylindrical shape, this depth is preferably about 50 to 100 mm when the ultrasonic sensor 16 is about half to one time, for example, 100 mm.

図6は、図4のB部の拡大図である。
この図において、付勢装置30は、治具フランジ32、ネジパイプ34、付勢棒36、及び付勢部材38を有する。
FIG. 6 is an enlarged view of a portion B in FIG.
In this figure, the urging device 30 includes a jig flange 32, a screw pipe 34, an urging rod 36, and an urging member 38.

治具フランジ32は、取付フランジ14に取り付けられ、計測孔12の軸心を中心とする雌ネジ部33を有する。
ネジパイプ34は、中空円筒形であり、雌ネジ部33と螺合する雄ネジ部35を有し、軸心に沿って鉄皮1の外側から内側まで延びる。
付勢棒36は、ネジパイプ34の中空孔を貫通してネジパイプ34の外側から内側まで延び、内方端に中間部材31が設けられている。
付勢部材38は、この例ではコイルバネであり、ネジパイプ34の内端面と中間部材31との間に位置し、中間部材31をカーボン煉瓦3へ向けて弾性的に押し付ける。
The jig flange 32 is attached to the attachment flange 14 and has a female screw portion 33 centering on the axis of the measurement hole 12.
The screw pipe 34 has a hollow cylindrical shape, has a male screw portion 35 that is screwed with the female screw portion 33, and extends from the outer side to the inner side of the iron skin 1 along the axis.
The biasing bar 36 extends from the outside to the inside of the screw pipe 34 through the hollow hole of the screw pipe 34, and the intermediate member 31 is provided at the inner end.
In this example, the urging member 38 is a coil spring, and is positioned between the inner end surface of the screw pipe 34 and the intermediate member 31, and elastically presses the intermediate member 31 toward the carbon brick 3.

上述した付勢装置30の構成により、雌ネジ部33と雄ネジ部35の螺合により、ネジパイプ34を軸方向に移動することで、付勢部材38の圧縮長さを調整し、中間部材31をカーボン煉瓦3へ向けて弾性的に押し付ける押し付け力(例えば50〜100kg)を調節することができる。
なお、超音波センサ16の感度特性は、50kg以上で良好な感度が得られるが、100kgを超えると感度が鈍化することが確認されている。
With the configuration of the urging device 30 described above, the compression length of the urging member 38 is adjusted by moving the screw pipe 34 in the axial direction by screwing the female screw portion 33 and the male screw portion 35, and the intermediate member 31. It is possible to adjust the pressing force (for example, 50 to 100 kg) that elastically presses against the carbon brick 3.
In addition, although the sensitivity characteristic of the ultrasonic sensor 16 has a favorable sensitivity at 50 kg or more, it has been confirmed that the sensitivity decreases when the sensitivity exceeds 100 kg.

上述した本発明の構成によれば、中間部材31と超音波センサ16に対しセンサ押付棒22の両端部を揺動可能に連結する1対の球面軸受24a,24bを備えるので、カーボン煉瓦3の計測面3aが鉄皮1に対して超音波センサ16の計測面3a内において、2方向に移動しても、超音波センサ16と付勢装置30の軸線を常に平行に維持することができる。
また、センサ押付棒22の長さは、カーボン煉瓦3の表面から鉄皮1表面までの距離又はそれ以上(例えば300〜500mm)に設定することにより、各球面軸受24a,24bにおけるセンサ押付棒22の揺動角度は非常に小さくなる(例えば、5mmの変動の場合に、0.95〜1.43°)。
従って、付勢装置30による押付け力は、センサ押付棒22を介して超音波センサ16に同じ方向に作用するので、超音波センサ16の接触面がカーボン煉瓦3の計測面3aに密着しながら追従することができ、接触面の全面を所望の面圧でカーボン煉瓦3の計測面3aに押し付けることができ、これにより超音波センサ16によりカーボン煉瓦3の厚みを正確に測定することができる。
According to the configuration of the present invention described above, since the pair of spherical bearings 24a and 24b that connect the both ends of the sensor pressing rod 22 to the intermediate member 31 and the ultrasonic sensor 16 so as to be swingable are provided, the carbon brick 3 Even if the measurement surface 3a moves in two directions within the measurement surface 3a of the ultrasonic sensor 16 with respect to the iron skin 1, the axes of the ultrasonic sensor 16 and the biasing device 30 can always be maintained in parallel.
The length of the sensor pressing bar 22 is set to a distance from the surface of the carbon brick 3 to the surface of the iron shell 1 or longer (for example, 300 to 500 mm), so that the sensor pressing bar 22 in each of the spherical bearings 24a and 24b. Is very small (for example, 0.95 to 1.43 ° for a variation of 5 mm).
Accordingly, the pressing force by the urging device 30 acts in the same direction on the ultrasonic sensor 16 via the sensor pressing rod 22, so that the contact surface of the ultrasonic sensor 16 follows while closely contacting the measurement surface 3 a of the carbon brick 3. The entire contact surface can be pressed against the measurement surface 3a of the carbon brick 3 with a desired surface pressure, whereby the thickness of the carbon brick 3 can be accurately measured by the ultrasonic sensor 16.

図6において、本発明の煉瓦残厚測定装置20は、さらに、メインケース42とサブケース44を備える。
メインケース42とサブケース44は、付勢装置30を気密に囲み、信号線26の信号を、気密を保持したまま外部に取り出すようになっている。
In FIG. 6, the remaining brick thickness measuring apparatus 20 of the present invention further includes a main case 42 and a sub case 44.
The main case 42 and the sub case 44 hermetically surround the urging device 30 and take out the signal of the signal line 26 to the outside while maintaining the hermeticity.

メインケース42は、主管と枝管からなるL字管42a、主管の開口部に取り付けられ取付フランジ14に気密に取り付けられる主フランジ42b、及び枝管の開口部に取り付けられた中間メクラフランジ42cからなる。   The main case 42 includes an L-shaped pipe 42a composed of a main pipe and a branch pipe, a main flange 42b attached to the opening flange of the main pipe and airtightly attached to the mounting flange 14, and an intermediate mechula flange 42c attached to the opening of the branch pipe. Become.

サブケース44は、直管44a、直管44aの一端に取り付けられ中間メクラフランジ42cと気密に結合される中間フランジ44b、直管44aの他端に取り付けられた外部フランジ44c、及び外部フランジ44cと気密に結合される外部メクラフランジ44dからなる。   The sub case 44 includes a straight pipe 44a, an intermediate flange 44b attached to one end of the straight pipe 44a and hermetically coupled to the intermediate mechula flange 42c, an external flange 44c attached to the other end of the straight pipe 44a, and an external flange 44c. It consists of an outer mecha flange 44d that is hermetically coupled.

上述した超音波センサ16、付勢装置30、センサ押付棒22、及び球面軸受24a,24bは、取付けフランジ14に気密に取り付けられており、かつ、気密を保持したまま信号線26を外部に取り出す構造を備えている。   The ultrasonic sensor 16, the urging device 30, the sensor pressing rod 22, and the spherical bearings 24a and 24b described above are airtightly attached to the mounting flange 14, and the signal line 26 is taken out while keeping the airtightness. It has a structure.

上述した構成により、メインケース42がL字形になっているので、メインケース42とサブケース44の超音波センサ16の軸方向長さを短くすることができる。
また、球面軸受24aが図示しない固定ネジにより、センサ押付棒22から分離できるので、付勢装置30をメインケース42とともにセンサ押付棒22から分離することができる。
従って、鉄皮1の表面から非常樋背面(図示せず)までの距離が900mm以内であっても、本発明による煉瓦残厚測定装置20を組み立て、或いは分解することができる。
With the above-described configuration, the main case 42 has an L shape, so that the axial lengths of the ultrasonic sensors 16 of the main case 42 and the sub case 44 can be shortened.
Further, since the spherical bearing 24a can be separated from the sensor pressing rod 22 by a fixing screw (not shown), the urging device 30 can be separated from the sensor pressing rod 22 together with the main case 42.
Therefore, even if the distance from the surface of the iron skin 1 to the back of the emergency fence (not shown) is within 900 mm, the brick remaining thickness measuring device 20 according to the present invention can be assembled or disassembled.

図7は、本発明による煉瓦残厚測定装置の第2実施形態図である。
この例において、超音波センサ16と球面軸受24aとの間に、フレキシブルカップリング17が配置されている。その他の構成は、第1実施形態と同様である。
FIG. 7 is a diagram showing a second embodiment of the remaining brick thickness measuring apparatus according to the present invention.
In this example, a flexible coupling 17 is disposed between the ultrasonic sensor 16 and the spherical bearing 24a. Other configurations are the same as those of the first embodiment.

この構成により、球面軸受24aが得意とする上下方向5mmの煉瓦変位変動(例えば、熱膨張による変動)の良好な追従性に加えて、横方向(炉体周方向)の煉瓦変位変動(例えば、高炉立ち上げ初期の炉体膨張による変動)にもより良好な追従性を得ることができ、長期安定した残厚測定が可能となる。   With this configuration, in addition to good followability of brick displacement fluctuation in the vertical direction of 5 mm (for example, fluctuation due to thermal expansion) that the spherical bearing 24a is good at, the brick displacement fluctuation in the lateral direction (furnace body circumferential direction) (for example, (Fluctuation due to furnace expansion at the initial stage of blast furnace start-up) can be obtained with better followability, and the remaining thickness can be measured stably for a long time.

鉄皮、キャスタブル、ステーブ、スタンプ材、及びカーボン煉瓦の順に部材が配置されている高炉の炉底に、図4に示した煉瓦残厚測定装置を設置した。その際、鉄皮〜カーボン煉瓦壁(背面)までを通して、50mmの開孔径を空けて、超音波センサ径40mmの本装置を設置した。
その結果、測定途中に、熱膨張による上下方向5mmの煉瓦変位変動が生じたが、本発明の装置により、反射波信号を安定的に得ることができた。
また、高炉設備の臨時停止時における圧力変動にも耐え、十分に追従し、連続的で安定した計測を行うことができた。
また、高炉の炉内状態が安定した状態のときに、同時に併設した温度計による従来技術の計測値と比較したところ、差が0〜10mmの範囲でほぼ同一の残厚の測定値が得られ、測定値に信頼性もあることを確認した。
The brick remaining thickness measuring apparatus shown in FIG. 4 was installed at the bottom of the blast furnace in which members were arranged in the order of iron skin, castable, stave, stamp material, and carbon brick. At that time, the apparatus was installed with an ultrasonic sensor diameter of 40 mm with a hole diameter of 50 mm passing through from the iron skin to the carbon brick wall (back surface).
As a result, a brick displacement fluctuation of 5 mm in the vertical direction due to thermal expansion occurred during the measurement, but the reflected wave signal could be stably obtained by the apparatus of the present invention.
In addition, it was able to withstand pressure fluctuations during a temporary shutdown of the blast furnace equipment, followed up sufficiently, and performed continuous and stable measurements.
In addition, when the in-furnace state of the blast furnace is in a stable state, when compared with the measured value of the prior art by the thermometer provided at the same time, almost the same measured value of the remaining thickness is obtained in the range of 0 to 10 mm. The measured value was confirmed to be reliable.

実施例1で使用した装置の超音波センサと球面軸受との間に、フレキシブルカップリングを配置した装置を使用して、実施例1と同様に高炉のカーボン煉瓦の残厚を測定した。実施例2では、高炉の立ち上げ時から残厚を測定した。
その結果、熱膨張による上下方向5mmの煉瓦変位変動に追従しただけでなく、高炉立ち上げ初期の炉体膨張による、横方向(炉体周方向)の3〜5mmの移動にも十分追従し、立上初期から連続して安定した信号を得ることができた。
The residual thickness of the carbon brick in the blast furnace was measured in the same manner as in Example 1 by using an apparatus in which a flexible coupling was disposed between the ultrasonic sensor and the spherical bearing of the apparatus used in Example 1. In Example 2, the remaining thickness was measured from the start of the blast furnace.
As a result, not only following the vertical displacement of 5mm brick due to thermal expansion, but also sufficiently following the movement of 3-5mm in the lateral direction (furnace body circumferential direction) due to the furnace body expansion at the initial stage of blast furnace startup, A stable signal could be obtained continuously from the initial rise.

なお、本発明は、上述した実施形態に限定されず、本発明の要旨を逸脱しない範囲で種々に変更することができることは勿論である。   In addition, this invention is not limited to embodiment mentioned above, Of course, it can change variously in the range which does not deviate from the summary of this invention.

1 鉄皮、2 ステーブ、3 カーボン煉瓦(耐火物)、
3a 計測面、4 開孔、5 超音波探触子、
10 高炉、12 計測孔、14 取付フランジ、
16 超音波センサ、17 フレキシブルカップリング、
18 2芯コネクタ、
20 煉瓦残厚測定装置、
22 センサ押付棒、22a 中空孔、
24a,24b 球面軸受、26 信号線、
30 付勢装置、31 中間部材、
32 治具フランジ、33 雌ネジ部、
34 ネジパイプ、35 雄ネジ部、
36 付勢棒、38 付勢部材、
42 メインケース、42a L字管、
42b 主フランジ、42c 中間メクラフランジ、
44 サブケース、44a 直管、44b 中間フランジ、
44c 外部フランジ、44d 外部メクラフランジ
1 Iron skin, 2 stave, 3 carbon brick (refractory),
3a Measuring surface, 4 holes, 5 ultrasonic probe,
10 blast furnace, 12 measuring holes, 14 mounting flanges,
16 Ultrasonic sensor, 17 Flexible coupling,
18 2-core connector,
20 Brick residual thickness measuring device,
22 sensor pressing rod, 22a hollow hole,
24a, 24b spherical bearing, 26 signal line,
30 biasing device, 31 intermediate member,
32 jig flange, 33 female thread,
34 thread pipe, 35 male thread,
36 biasing bar, 38 biasing member,
42 Main case, 42a L-shaped tube,
42b main flange, 42c intermediate mekura flange,
44 Subcase, 44a Straight pipe, 44b Intermediate flange,
44c External flange, 44d External mecha flange

Claims (7)

金属製の鉄皮の内側にカーボン煉瓦を有する高炉に取り付けられ、カーボン煉瓦の厚さを計測する煉瓦残厚測定装置であって、
高炉は、鉄皮を貫通しカーボン煉瓦まで達する計測孔と、計測孔と連通する鉄皮の貫通孔に気密に設けられた取付フランジとを有しており、
計測孔に挿入され接触媒体を介してカーボン煉瓦の計測面に押し付けられる超音波センサと、
取付フランジに取り付けられ、軸線に沿って内方に延び、その内方端に位置する中間部材をカーボン煉瓦へ向けて弾性的に押し付ける付勢装置と、
前記中間部材と超音波センサとの間で軸線に沿って延びるセンサ押付棒と、
前記中間部材と超音波センサに対しセンサ押付棒の両端部を揺動可能に連結する1対の球面軸受と、
超音波センサから球面軸受、センサ押付棒、及び付勢装置を通して鉄皮の外側まで引き出される信号線と、を備えることを特徴とする煉瓦残厚測定装置。
A brick residual thickness measuring device that is attached to a blast furnace having a carbon brick inside a metal iron skin and measures the thickness of the carbon brick,
The blast furnace has a measurement hole that penetrates through the iron skin and reaches the carbon brick, and a mounting flange that is airtightly provided in the through hole of the iron skin that communicates with the measurement hole.
An ultrasonic sensor inserted into the measurement hole and pressed against the measurement surface of the carbon brick via the contact medium;
An urging device attached to the mounting flange, extending inward along the axis, and elastically pressing an intermediate member located at the inner end thereof toward the carbon brick;
A sensor pressing rod extending along an axis between the intermediate member and the ultrasonic sensor;
A pair of spherical bearings that pivotably connect both ends of the sensor pressing rod to the intermediate member and the ultrasonic sensor;
A brick residual thickness measuring device comprising: a spherical bearing, a sensor pressing rod, and a signal line drawn from the ultrasonic sensor to the outside of the iron skin through an urging device.
前記超音波センサは、軸線に沿って延びる円筒形であり、
前記計測孔は、前記超音波センサの直径に近い内径を有しており、
前記計測面は、カーボン煉瓦の外表面より内側に位置している、ことを特徴とする請求項1に記載の煉瓦残厚測定装置。
The ultrasonic sensor has a cylindrical shape extending along an axis;
The measurement hole has an inner diameter close to the diameter of the ultrasonic sensor ,
2. The brick residual thickness measuring apparatus according to claim 1, wherein the measurement surface is located on an inner side than an outer surface of the carbon brick.
前記中間部材は、鉄皮表面の近傍又はそれより外側に位置しており、
前記センサ押付棒の長さは、カーボン煉瓦の表面から鉄皮表面までの距離又はそれ以上に設定されている、ことを特徴とする請求項1又は2に記載の煉瓦残厚測定装置。
The intermediate member is located in the vicinity of the iron skin surface or outside thereof,
The length of the said sensor pressing bar is set to the distance from the surface of a carbon brick to the iron skin surface or more, The brick residual thickness measuring apparatus of Claim 1 or 2 characterized by the above-mentioned.
前記球面軸受、前記センサ押付棒、及び付勢装置は、それぞれ軸線に沿う中空孔を有する、ことを特徴とする請求項1〜3のいずれか1項に記載の煉瓦残厚測定装置。 The spherical bearing, wherein the sensor pressing rod, and the biasing device comprises a hollow hole, respectively along the axis, brick residual thickness measuring apparatus according to claim 1, characterized in that. 前記付勢装置は、取付フランジに取り付けられ前記計測孔の軸心を中心とする雌ネジ部を有する治具フランジと、
前記雌ネジ部と螺合する雄ネジ部を有し、軸心に沿って鉄皮の外側から内側まで延びる中空円筒形のネジパイプと、
前記ネジパイプの中空孔を貫通してネジパイプの外側から内側まで延び、内方端に前記中間部材が設けられた付勢棒と、
前記ネジパイプの内端面と前記中間部材との間に位置し中間部材をカーボン煉瓦へ向けて弾性的に押し付ける付勢部材と、を有する、ことを特徴とする請求項1〜4のいずれか1項に記載の煉瓦残厚測定装置。
Wherein the biasing device includes a jig flange having an internal thread portion is attached to the mounting flange about the axis of said measuring hole,
A hollow cylindrical threaded pipe having a male threaded portion that engages with the female threaded portion and extending from the outside to the inside of the iron skin along the axial center;
A biasing rod extends to the inside, which is the intermediate member at an inner end provided from the outside of the Nejipaipu through the hollow hole of the Nejipaipu,
Having a biasing member to press elastically toward the intermediate member to the carbon brick located between the intermediate member and the inner end surface of the Nejipaipu, any one of the preceding claims, characterized in that 1 The brick residual thickness measuring apparatus as described in the item.
前記超音波センサと前記球面軸受との間に、フレキシブルカップリングが配置されている、ことを特徴とする請求項1〜5のいずれか1項に記載の煉瓦残厚測定装置。 The brick residual thickness measuring apparatus according to any one of claims 1 to 5, wherein a flexible coupling is disposed between the ultrasonic sensor and the spherical bearing. 前記超音波センサ、前記付勢装置、前記センサ押付棒、前記球面軸受は前記取付フランジの内側に取り付けられており、
前記取付フランジの外側に気密に取り付けられた主フランジと、メクラフランジとを有する中空ケースを備え、
前記信号線は、外方端が円筒形部分を有する2芯コネクタに接続された2芯ケーブルであり、
前記2芯コネクタの円筒形部分は、密閉された円筒形金属パイプからなり、その外方端にコネクタの接点が設けられており、
前記信号線は、前記中空ケースの内側を通り、前記円筒形部分が前記メクラフランジを貫通して気密に取り付けられている、ことを特徴とする請求項1〜6のいずれか1項に記載の煉瓦残厚測定装置。

The ultrasonic sensor, wherein the biasing device, wherein the sensor pressing rod, the spherical bearings is attached to the inside of said mounting flange,
A hollow case having a main flange airtightly attached to the outside of the mounting flange, and a mekura flange,
The signal line is a two-core cable connected to a two-core connector having an outer end having a cylindrical portion;
The cylindrical portion of the two-core connector is formed of a sealed cylindrical metal pipe, and a connector contact is provided on the outer end thereof.
7. The signal line according to claim 1, wherein the signal line passes through the inside of the hollow case, and the cylindrical portion is airtightly attached through the mechula flange . Brick residual thickness measuring device.

JP2011220155A 2011-10-04 2011-10-04 Brick residual thickness measuring device Active JP5809512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011220155A JP5809512B2 (en) 2011-10-04 2011-10-04 Brick residual thickness measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011220155A JP5809512B2 (en) 2011-10-04 2011-10-04 Brick residual thickness measuring device

Publications (2)

Publication Number Publication Date
JP2013079871A JP2013079871A (en) 2013-05-02
JP5809512B2 true JP5809512B2 (en) 2015-11-11

Family

ID=48526363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011220155A Active JP5809512B2 (en) 2011-10-04 2011-10-04 Brick residual thickness measuring device

Country Status (1)

Country Link
JP (1) JP5809512B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643591B (en) * 2016-12-12 2018-11-09 大连理工大学 The thin-wall part adaptively adjusted pop one's head in machine ultrasonic thickness-measuring method
CN109518739B (en) * 2019-01-22 2024-02-02 东华理工大学 Sediment thickness detector

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6061634U (en) * 1983-10-04 1985-04-30 川崎製鉄株式会社 pressure measuring device
JPH051764Y2 (en) * 1986-10-21 1993-01-18
JP3070475B2 (en) * 1996-03-29 2000-07-31 住友金属工業株式会社 Ultrasonic probe
JP2973298B2 (en) * 1997-07-09 1999-11-08 上田日本無線株式会社 Measurement surface tracking thickness gauge probe
JP2005354281A (en) * 2004-06-09 2005-12-22 Ishikawajima Inspection & Instrumentation Co Ultrasonic probe for high temperature
JP2006075462A (en) * 2004-09-13 2006-03-23 Matsushita Electric Ind Co Ltd Drum type washing machine
JP5248099B2 (en) * 2007-12-19 2013-07-31 新日鐵住金株式会社 Refractory thickness measuring terminal and refractory thickness measuring method

Also Published As

Publication number Publication date
JP2013079871A (en) 2013-05-02

Similar Documents

Publication Publication Date Title
RU2491524C2 (en) Device with membrane manometric element
US8297115B2 (en) Piezoresistive pressure-measuring plug for a combustion engine
CN201707164U (en) Force monitoring equipment
JPH09119880A (en) Pressure sensor
WO2017143542A1 (en) Coating residual stress testing method and instrument
JP7544230B2 (en) Sensor Device
JP7111895B2 (en) Non-intrusive process fluid pressure measurement system
JP5809512B2 (en) Brick residual thickness measuring device
WO2015081264A1 (en) High-temperature, high pressure acoustic resonance cell
WO2023193366A1 (en) Testing device
JP4638934B2 (en) Pressure sensor
JP6813906B1 (en) Temperature / displacement measuring device
CN101071079A (en) Novel molten steel temperature continuous measuring method and temperature-measuring tube
JP5809513B2 (en) Brick residual thickness measuring device
JP5373658B2 (en) Pressure sensor
CN110095198A (en) A kind of explosion-proof teletransmission Multi-point detection thermocouple
CN104075829A (en) Novel vibrating wire type concrete pressure stress meter
WO2018127987A1 (en) Vacuum gauge
US20200232861A1 (en) Pressure gauge
JP2005227001A (en) Pressure sensor
NO343151B1 (en) Pressure and temperature measurement system
KR101902334B1 (en) Thermocouple assembly
US9506828B2 (en) Passive pressure sensing
JP2007205717A (en) Method and probe for measuring remaining thickness of worn member
KR102584352B1 (en) Sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150911

R150 Certificate of patent or registration of utility model

Ref document number: 5809512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250