JPS5916917A - Built-in type vertical sonde - Google Patents

Built-in type vertical sonde

Info

Publication number
JPS5916917A
JPS5916917A JP12531482A JP12531482A JPS5916917A JP S5916917 A JPS5916917 A JP S5916917A JP 12531482 A JP12531482 A JP 12531482A JP 12531482 A JP12531482 A JP 12531482A JP S5916917 A JPS5916917 A JP S5916917A
Authority
JP
Japan
Prior art keywords
blast furnace
flexible probe
lance
sonde
flexible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12531482A
Other languages
Japanese (ja)
Inventor
Norito Iwao
岩尾 範人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP12531482A priority Critical patent/JPS5916917A/en
Publication of JPS5916917A publication Critical patent/JPS5916917A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B7/00Blast furnaces
    • C21B7/24Test rods or other checking devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Blast Furnaces (AREA)
  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)

Abstract

PURPOSE:To quantitatively grasp physical chemical behavior in blast furnace, by a method wherein a duct is built in a lance and a flexible probe is guided therewith and forced to descend into blast furnace from its end opening part. CONSTITUTION:The duct 22 having tip opening part 22-1 which conducts flexible probe 23 and makes it 23 descend into blast furnace, is built-in a lance 21. In the trunk of lance 21, the duct 22 is provided with a penetrating hole so that the end opening part 22-1 of duct 22 is forced to face on the inside of blast furnace. The flexible probe 23 is sent into the duct 22 with, for example, reel or pinch roll and descends according to the descent of burden into blast furnace. When the detection terminal 23-1 of flexible probe 23 is provided with measuring point of thermocouple, gas sampling hole, etc., measuring temperature in blast furnace and defection of gas composition and gas pressure becomes possible to be carried out.

Description

【発明の詳細な説明】 この発明は、高炉内の温度、ガス組成、ガス圧力、充填
層厚さく原料種別に対応した)を測定するゾンデに関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a sonde for measuring temperature, gas composition, gas pressure, packed bed thickness (corresponding to raw material type) inside a blast furnace.

従来、高炉内における物理的、化学的な動的挙動を知る
ために種々のゾンデが提案されている。
Conventionally, various sondes have been proposed to understand the physical and chemical dynamic behavior inside a blast furnace.

たとえば高炉内の所定位置における温度或はノjス組成
を知るために、高炉の半径方向に変位自在に設けた所謂
水平ゾンデや、高炉炉頂からゾンデ或はプローブを鉛直
方向に降下させる所謂垂直ソ°ンデが提案されている。
For example, in order to find out the temperature or NOx composition at a predetermined location in the blast furnace, a so-called horizontal probe is installed that can be freely displaced in the radial direction of the blast furnace, and a so-called vertical probe is installed in which a sonde or probe is lowered vertically from the top of the blast furnace. Sonde is proposed.

従来提案されている垂直ゾンデは、第1図に示すように
、高炉炉頂部lから垂直にシール2を介して剛体ゾンデ
3を挿入して、高炉への装入物の降下(荷下り)に応じ
てゾンデを降下させ高炉内の所定半径方向位置における
軸方同各位置の温度の測定或はガスの採取を行うように
したものである。
As shown in Fig. 1, the conventionally proposed vertical sonde has a rigid body sonde 3 inserted vertically from the top l of the blast furnace through a seal 2 to lower (unload) the charge into the blast furnace. Accordingly, the sonde is lowered to measure the temperature or sample the gas at each predetermined radial position in the blast furnace.

一方高炉炉頂部、特に原料装入面より上部の空間にその
先端開口部を臨ませた導管を設けて、原料装入面に可撓
性プローブを落下せしめ、原半ルの降下(荷下り)に応
じてグローブを降下せしめるようにしたものもある。
On the other hand, a conduit with its tip opening facing the top of the blast furnace, especially the space above the raw material charging surface, is installed, and a flexible probe is dropped onto the raw material charging surface to lower the raw material (unloading). There is also one that lowers the glove depending on the situation.

しかしながら、上に述べた高炉軸力向に剛体ゾンデを降
下せしめるようにしたものにおいては、原料装入分布制
御機器、即ち、犬、小ベル、およびムーバブルアーマ−
1或はPW型分配装置にょリゾンデの挿入位置が規制さ
れ、高炉炉壁がら半径方向2〜3m以内の範囲に限定さ
れる。また炉頂部から装入するから、たとえば原料装入
面から20m斗方1での範囲を測定対象にしようとする
と・高炉炉頂部から原料装入面捷で約15mあるから、
ゾンデの長さは35mを要する。従ってゾンデが最も降
下したときの炉内に於けるソンデ先端部と、ゾンデを垂
直方向に引き抜いたときのゾンデ最上部の間の距離は’
70mにもなり装置が大型となり設備コストも高価とな
り実際的でない。
However, in the above-mentioned device in which the rigid sonde is lowered in the direction of the blast furnace axial force, the raw material charging distribution control equipment, ie, the dog, the small bell, and the movable armor
1 or the PW type distribution device, the insertion position of the resonde is regulated and is limited to a range within 2 to 3 m in the radial direction from the blast furnace wall. Also, since charging is done from the top of the blast furnace, for example, if you want to measure a range of 20 m from the raw material charging surface, the distance from the top of the blast furnace to the raw material charging surface is approximately 15 m.
The length of the sonde is 35 m. Therefore, the distance between the tip of the sonde in the furnace when the sonde descends the most and the top of the sonde when the sonde is pulled out vertically is '
The distance is 70 m, which makes the device large and the equipment cost expensive, which is impractical.

さらにゾンデの高炉内滞在時間は、2〜5時間孕要しゾ
ンデは高温下にさらされるがらゾンデを冷却しなければ
ならないけれども・ゾンデが極めて長く々るから安全な
ヒートパイプ方式の採用が困難であり、また水冷方式の
場合、ゾンデ破損時に爆発の危険を伴う。他方ガス冷却
の場合、媒体の熱容量の関係から大きな冷却面積を必要
とじ7ゾンデが大型になる。さらに壕だ剛体ゾンデとい
えどもゾンデ長が犬であるため、そのたわみ量に、無視
できない大きさとなる等の問題を有している。
Furthermore, the time the sonde stays in the blast furnace is 2 to 5 hours, and the sonde must be cooled while being exposed to high temperatures. However, since the sonde is extremely long, it is difficult to use a safe heat pipe method. However, in the case of a water-cooled system, there is a risk of explosion if the sonde is damaged. On the other hand, in the case of gas cooling, a large cooling area is required due to the heat capacity of the medium, resulting in a large 7 sonde. Furthermore, even though the trench is a rigid body sonde, the length of the sonde is a dog, so there are problems such as the amount of deflection that cannot be ignored.

一方従来の可撓型垂直ゾンデは、使用法は簡単であるけ
れども、測定点の推定が不確かである。
On the other hand, conventional flexible vertical probes are easy to use, but the measurement point estimation is uncertain.

第2図に示すようにンール12を介して降下せしめられ
る可撓性プローブ13が装入物により挿入後第1回のダ
ンプで中央部に押し流されてし捷う。
As shown in FIG. 2, the flexible probe 13, which is lowered through the noon 12, is swept away to the center by the first dump after being inserted by the charge.

さらに第2回第3回以降のダンプにより可撓性グローブ
は鵬炉半径方向の中央部に移動せしめられ、装入原料降
下速度よりも早い速度で引き込捷れ可撓性プローブの挿
入移動量が高炉鉛直方向位置に対応しなくなる。
Furthermore, the flexible globe is moved to the center of the furnace in the radial direction by the second and third dumps, and the flexible probe is pulled in at a speed faster than the charging material descending speed, and the flexible probe is inserted and moved. does not correspond to the vertical position of the blast furnace.

さらに、可撓性プローブに対する後方張力のがけ方如(
i’Jでは、高炉半径方向中心に向って力が加わりプロ
゛”ブ先端の高炉半径方向の位置が不確実になる。即ち
、第3図(a)、(b)、(c)、(d)に示すように
、その先端に検出端13−’ l ′f:有する可撓性
プローブ13は、第3図(a)に示すように可撓性プロ
ーブ13を装入した後の最初の原料装入(ダンプ)(1
4−2)によって高炉半径方向中心へ流される。さらに
第3図(b)に示すように次の原料装入(14−3)で
検出端コ。3−1の位置よりも可撓性グローブ]3の方
が高炉半径方向中心へ流される。可撓性グローブ13の
供給長さによって先端(検出端正−1)の高炉軸方向に
おける位置を知るべく、第3図(bJに示す可撓性プロ
ーブ13が高炉半径方向中心へ蛇行するのを防止せんと
して可撓性プローブ13に後方張カ年かけると第3図(
CJに示すように先端(検出端13〜1)の位置が高炉
半径方向中心に、かつ鉛直方向上部へずれる。一方EJ
撓性プローブ13に後方張力をかけないと可撓性グロー
ブ13−高炉内で大きく撓み、高炉内への装入原料の変
位によって可撓性グローブ13の供給速度或は供給長さ
と検出端コ−3−1の高炉内にセ・ける3次元的位置は
対応しなくなってし寸う(第3図(dJJ−1:た、こ
の目」撓性グローブは高炉内の温度測定は可能であるけ
れどもガス採取、および原ネ1層厚を測定するには不向
きなゾンデである。
Furthermore, how to apply rear tension to the flexible probe (
At i'J, a force is applied toward the center of the blast furnace in the radial direction, making the position of the tip of the probe in the radial direction of the blast furnace uncertain. As shown in FIG. 3(d), the flexible probe 13 having a detection end 13-'l'f: Raw material charging (dump) (1
4-2) to the center of the blast furnace in the radial direction. Furthermore, as shown in FIG. 3(b), the detection end is removed during the next raw material charging (14-3). Flexible globe] 3 is flowed toward the center in the radial direction of the blast furnace than the position 3-1. In order to know the position of the tip (detection end -1) in the axial direction of the blast furnace by the supply length of the flexible globe 13, the flexible probe 13 shown in FIG. As shown in Figure 3 (
As shown in CJ, the position of the tip (detection end 13-1) is shifted to the center in the blast furnace radial direction and to the top in the vertical direction. On the other hand, E.J.
If backward tension is not applied to the flexible probe 13, the flexible globe 13 will flex significantly in the blast furnace, and the feed speed or length of the flexible globe 13 and the detection end code will be affected by the displacement of the charging material into the blast furnace. 3-1, the three-dimensional position inside the blast furnace will no longer correspond (Figure 3 (dJJ-1: This eye) Although it is possible to measure the temperature inside the blast furnace with a flexible glove. This sonde is not suitable for gas sampling or measuring the thickness of one layer of raw material.

他方、水平ゾンデでは高炉内高さ方向のいくつかの位置
における温度、ガス組成の測定を行う場合、高炉の高さ
方向にいくつものゾンデを配置しなければならず高炉の
外部装置の干渉等により実際には不可能である。
On the other hand, when using horizontal sondes to measure the temperature and gas composition at several positions in the height direction of the blast furnace, it is necessary to place several sondes in the height direction of the blast furnace, which may cause interference with equipment external to the blast furnace. Actually it's not possible.

この発明は上に求べた従来のゾンデにおシブる問題を解
決し、高炉炉内における任意の3次元的位置における温
度、ガス組成、ガス圧力、装入原料層厚さの測定を可能
ならしめる測定手段を得ることを目的としてなされた。
This invention solves the above-mentioned problems with conventional sondes, and makes it possible to measure temperature, gas composition, gas pressure, and charging material layer thickness at any three-dimensional position within a blast furnace. The aim was to obtain a means of measurement.

その特徴とするところは(1)可撓性グローブを案内し
、該可撓性プローブを高炉内において降下せしめる先端
開孔部を有する1つ以上の導管を中空部に内蔵するとと
もに、前記導管の先端開孔部を外部に臨ませる開口部を
軸方向先端或は胴部に有し、高炉内充填層中で高炉半径
方向に延在する剛性ランスと、前記導管中に可撓性プロ
ーブを給送する手段とからなる埋込型垂直ゾンデであり
、またこのランスは高炉半径方向において進退自在にし
たところにある。
Its features include (1) one or more conduits having an opening at the tip for guiding the flexible globe and lowering the flexible probe in the blast furnace; A rigid lance that has an opening in the axial tip or body part that exposes the tip opening to the outside, and that extends in the radial direction of the blast furnace in a packed bed in the blast furnace, and a flexible probe that is fed into the conduit. This is an embedded vertical sonde consisting of a feeding means, and this lance is movable in the radial direction of the blast furnace.

以下に、この発明の詳細な説明する。The present invention will be explained in detail below.

上に述べたように、従来の可撓型垂直ゾンデにおける問
題は高炉への原料装入過程で生起している0 本光明者は高炉内における装入物の物理的挙動全調査し
た結果、原料装入2ダンプはど装入面から下の位置、つ
才り通常の大型高炉では装入面から約1mの深さより深
い位置から可撓性プローブを装入すれば、高炉半径方向
におけるプローブの位置変動がないことを知見した。
As mentioned above, problems with conventional flexible vertical sondes occur during the process of charging raw materials into the blast furnace. Charging 2 In a large blast furnace, if the flexible probe is inserted from a position below the charging surface of the dump, at a depth of about 1 m from the charging surface, the probe will move in the radial direction of the blast furnace. It was found that there was no change in position.

さらに、プローブの挿入初期にはグローブに少々の後方
張力を加え、高炉への装入原料の降下速度(荷下り)の
約80h程度の速度で降下させると・装入原料の平均降
下方向に一致させて降下させることができることが分っ
た。この発ψ1はとノtらの知見に基すいて完成された
Furthermore, when the probe is initially inserted, a slight backward tension is applied to the globe, and it is lowered at a speed of approximately 80 h, which corresponds to the average descending direction of the charged material. It turned out that it was possible to make it descend. This development ψ1 was completed based on the findings of Tonot et al.

この発明を、その一実施例を示す第4図に基すいて説明
する。
This invention will be explained based on FIG. 4 showing one embodiment thereof.

第4図において2Jはランスであり、高炉内における原
料装入面から2ダンプ分以上深い位置に高炉半径方向に
延在せしめるが、進退自在に設ける。ランス21は剛性
を有する耐熱性合釜鋼製のものが好捷しく、必要に応じ
て、ヒ=ドパイブ或は水冷手段によって冷却する。22
a導管であ広ランス2Jに内蔵され、可撓性プローブ2
3を案内し、その端部開口部(22−1)から高炉炉内
へ降下せしめる。ランス2Jの胴部に―、導管22の端
部開口部(22−1)を高炉内に臨捷せるべく導管22
の貫通孔を有する。導管22の高炉外に存在する端部に
は、7−ル24を有し、導管中空部とプローブ23の間
を7−ルする。可撓性プ1’−フ23ij、、たとえば
リールからピンチロール(図示せすりによって導管内に
送り込寸れ高炉内装入物の降下に応じて降下して行く。
In FIG. 4, 2J is a lance, which extends in the blast furnace radial direction at a position deeper than two dumps from the raw material charging surface in the blast furnace, and is provided so as to be movable forward and backward. The lance 21 is preferably made of rigid, heat-resistant alloy steel, and is cooled by a hydraulic pipe or water cooling means, if necessary. 22
A conduit is built into the wide lance 2J, and the flexible probe 2
3 is guided and lowered into the blast furnace through the end opening (22-1). In the body of the lance 2J, a conduit 22 is installed to allow the end opening (22-1) of the conduit 22 to enter the blast furnace.
It has a through hole. The end of the conduit 22 located outside the blast furnace has a 7-rule 24, and a 7-rule is provided between the hollow part of the conduit and the probe 23. The flexible tube 23ij, for example, is fed from a reel into the conduit by a pinch roll (not shown) and is lowered in accordance with the lowering of the contents in the blast furnace.

可撓性プローブ23が高炉内を降下する際、プローブ挿
入初期は(約2m程度の降下距離)までは、高炉装入物
の降下速度の約80%の速度で降下せしめるとi」撓性
プローブ23の高炉半径方向に於ける位置変動をさらに
小さくすることができる。oJ撓性プローブ2ご口の先
端(検出端23− ]−)には・たとえば熱電対の測定
点、ガス採取孔等を設けておくことにより高炉内半径方
向の所定位置における高炉内鉛直方向の任意の位置の測
温、ガス組成、カス圧力の検出を行うことができる。
When the flexible probe 23 descends inside the blast furnace, the flexible probe 23 is lowered at a speed of about 80% of the descending speed of the blast furnace charge until the probe is inserted (a descending distance of about 2 m). 23 in the radial direction of the blast furnace can be further reduced. The tip of the oJ flexible probe 2 mouth (detection end 23-]-) is provided with, for example, a thermocouple measurement point, a gas sampling hole, etc., so that the vertical direction inside the blast furnace can be measured at a predetermined position in the radial direction inside the blast furnace. It is possible to measure temperature, gas composition, and gas pressure at any location.

さらに可撓性プローブ23を高抗張力の44別で構成す
ることにより・n」撓性プローブ23を引き上げること
を可能ならしめ、電極式グローブの通用により装入され
た各原料層、たとえば鉱石層・コークス層の厚さ°を測
定することがDJ能である。
Furthermore, by configuring the flexible probe 23 with a high tensile strength 44, it is possible to pull up the flexible probe 23, and by using the electrode type glove, each raw material layer charged, for example, an ore layer, etc. It is DJ capability to measure the thickness of the coke layer.

この電極式プローブは・可撓性プローブ23の検出端2
3−1に電極を設け、2箇の検出端23−1の電極(検
出端)位置を高炉軸方向において異なるようにしておき
、電極間の導電性を測定するようにしたものである。ま
た可撓性プローブの降下を停止せしめれば、高炉内にお
ける装入原料の降下速度を検出することも可能となる。
This electrode type probe is the detection end 2 of the flexible probe 23.
3-1 is provided with an electrode, and the positions of the electrodes (detection ends) of the two detection ends 23-1 are set to be different in the blast furnace axial direction, and the conductivity between the electrodes is measured. Furthermore, by stopping the descent of the flexible probe, it is also possible to detect the rate of descent of the charged material within the blast furnace.

第5図にこの発明の他の実施態様例を示す。この例では
ランス21を筒炉軸方向における異なる2箇所から挿入
し、尚炉半径方向において異なる3つの位置から、高炉
軸方向へ可撓性グローブ23を降下せしめ、それぞれ高
炉軸方向における任意の位置におりるガス組成(A)、
温#(θ)、ガスIAi力(P)。
FIG. 5 shows another embodiment of the present invention. In this example, the lance 21 is inserted from two different positions in the axial direction of the cylinder furnace, and the flexible globe 23 is lowered in the axial direction of the blast furnace from three different positions in the radial direction of the furnace, each at an arbitrary position in the axial direction of the blast furnace. Gas composition (A),
temperature #(θ), gas IAi force (P).

装入原料層厚(d)、装入原料降下速度(荷下り)(V
)を検出するようにしたものである。
Charging material layer thickness (d), charging material descending speed (unloading) (V
).

この発明は、以上説明したように構成し、かつ作用せし
めるようにしたから高炉内のあらゆる位置における温度
の測定、ガス組成、ガス圧力、装入原料層の厚さ、装入
原料の降下速度の検出が可能となシ高炉内における物理
的化学的挙動を定量的に把握することを可能ならしめ高
炉技術の進歩に大きく寄与し得る効果がある。
Since this invention is constructed and operated as described above, it is possible to measure the temperature at every position in the blast furnace, the gas composition, the gas pressure, the thickness of the layer of charged material, and the rate of descent of the charged material. This has the effect of making it possible to quantitatively understand the physical and chemical behavior inside the blast furnace, which can be detected, and thereby greatly contributing to the advancement of blast furnace technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の垂直ゾンデを示す図、第2図は、従来
の可撓型垂直ゾンデを示す図、第3図(a)。 (b+ 、 (C) l (dl従来の可撓型垂直ゾン
デにおいて、可撓性グローブの検出端或は可撓性プロー
ブが高炉への装入原料の動きによって大きく変動する状
態を示す図、第4図は、本発明の可撓型垂直ゾンデの構
造を示す図、第5図は、本発明の他の実施例に示す図で
ある。 1・・・・・・高炉炉頂部 2.12.24・・・シール 3・・・・・・ゾンデ 13.23・・・・可撓性プローブ 13−1.23−1・・検出端 21・・・・ ・ランス 22・・・ ・・導管 出 願 人 新日本製鐵株式会社 第1wh 第2図 第3図 (al 第411 第5図
FIG. 1 shows a conventional vertical sonde, FIG. 2 shows a conventional flexible vertical sonde, and FIG. 3(a). (b+, (C) l (dl) In a conventional flexible vertical sonde, the detection end of the flexible globe or the flexible probe fluctuates greatly depending on the movement of the raw material charged into the blast furnace. Fig. 4 is a diagram showing the structure of a flexible vertical sonde of the present invention, and Fig. 5 is a diagram showing another embodiment of the present invention. 1... Blast furnace top 2.12. 24...Seal 3...Sonde 13.23...Flexible probe 13-1.23-1...Detection end 21... -Lance 22......Conduit exit Applicant Nippon Steel Corporation No. 1w Fig. 2 Fig. 3 (al Fig. 411 Fig. 5

Claims (2)

【特許請求の範囲】[Claims] (1)可撓性プローブを案内し、該可撓性プローブケ高
炉内において降下せしめる先端開孔部を有する1つ以上
の導管を中空部に内蔵するとともに、前記導管の先端開
孔部を外部に臨ませる開口部を軸方向先端或は胴部に有
し、高炉内充填層中で高炉半径方向に延在する剛性ラン
スと、前記導管中に可撓性プローブを給送する手段とか
らなる埋込型垂直ゾンデ
(1) One or more conduits having an opening at the tip for guiding the flexible probe and lowering the flexible probe in the blast furnace are built into the hollow part, and the opening at the tip of the conduit is exposed to the outside. A buried lance comprising a rigid lance having a facing opening at the axial tip or body and extending in the radial direction of the blast furnace in a packed bed in the blast furnace, and means for feeding a flexible probe into the conduit. Included vertical sonde
(2)ランスは高炉半径方向において進退自在である特
許請求の範囲第1項記載の埋込型垂直ゾンデ
(2) The embedded vertical sonde according to claim 1, wherein the lance is movable in the radial direction of the blast furnace.
JP12531482A 1982-07-19 1982-07-19 Built-in type vertical sonde Pending JPS5916917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12531482A JPS5916917A (en) 1982-07-19 1982-07-19 Built-in type vertical sonde

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12531482A JPS5916917A (en) 1982-07-19 1982-07-19 Built-in type vertical sonde

Publications (1)

Publication Number Publication Date
JPS5916917A true JPS5916917A (en) 1984-01-28

Family

ID=14907035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12531482A Pending JPS5916917A (en) 1982-07-19 1982-07-19 Built-in type vertical sonde

Country Status (1)

Country Link
JP (1) JPS5916917A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572096A1 (en) * 1984-10-19 1986-04-25 Usinor METHOD AND INSTALLATION FOR THE CONTINUOUS MONITORING OF BLAST FURNACES
JPS61226299A (en) * 1985-03-29 1986-10-08 日立造船産業株式会社 Preparatory cutter for mouth section of plastic vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2572096A1 (en) * 1984-10-19 1986-04-25 Usinor METHOD AND INSTALLATION FOR THE CONTINUOUS MONITORING OF BLAST FURNACES
JPS61226299A (en) * 1985-03-29 1986-10-08 日立造船産業株式会社 Preparatory cutter for mouth section of plastic vessel

Similar Documents

Publication Publication Date Title
US4442706A (en) Probe and a system for detecting wear of refractory wall
GB2043247A (en) Measurement of temperature in reactors operated at high temperatures
JPS5916917A (en) Built-in type vertical sonde
US20210396602A1 (en) Device and Method for Measuring a Temperature of a Molten Metal
JP2023552324A (en) Method and system for determining temperature values of molten metal baths
JPH10176954A (en) Apparatus for measuring temperature of molten metal
JPS6119712A (en) Detecting device of thickness of layer of charged burden
JPS6325043B2 (en)
JP5381955B2 (en) In-furnace condition detector for blast furnace
US4378993A (en) Method and apparatus for measuring height level of melting zone in blast furnace
JP7111277B1 (en) METHOD AND DEVICE FOR DETECTING LIQUID LEVEL HEIGHT OF MELTS, AND METHOD OF OPERATING VERTICAL FURNACE
JPS6028678Y2 (en) Blast furnace furnace condition measuring device
JPH09509521A (en) Method and device for adjusting position of tip of electric furnace electrode
JPS5933164B2 (en) Blast furnace molten zone level measuring device
WO2022168557A1 (en) Detection method and detection device for liquid level height of liquid, detection method and detection device for liquid level height of molten material, and operation method for vertical furnace
JPH0360882B2 (en)
JPS6028679Y2 (en) Blast furnace furnace condition measuring device
JP2003155508A (en) Instrument for measuring potential difference at bottom in blast furnace and method for estimating pig iron slag height in blast furnace
KR20230124065A (en) Method and device for detecting residual amount of liquid, method and device for detecting residual amount of melt, and method for operating a vertical furnace
JPH0717931B2 (en) Blast furnace furnace interior entrance layer boundary measurement method
JPS6046307A (en) Measurement of temperatures in blast furnace
KR100931166B1 (en) Ventilation control method in blast furnace
Mirkovic et al. Monitoring the Blast furnace working state by a combination of innovative measurement techniques
JPS5993809A (en) Operating method of blast furnace
JPS572810A (en) Method for measuring in-furnace condition of blast furnace or the like