JPS5850291B2 - Level and shape measurement method of blast furnace melting zone - Google Patents

Level and shape measurement method of blast furnace melting zone

Info

Publication number
JPS5850291B2
JPS5850291B2 JP3682381A JP3682381A JPS5850291B2 JP S5850291 B2 JPS5850291 B2 JP S5850291B2 JP 3682381 A JP3682381 A JP 3682381A JP 3682381 A JP3682381 A JP 3682381A JP S5850291 B2 JPS5850291 B2 JP S5850291B2
Authority
JP
Japan
Prior art keywords
sonde
furnace
gas
tip
metal tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP3682381A
Other languages
Japanese (ja)
Other versions
JPS57152405A (en
Inventor
俊行 山本
喜保 阪本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP3682381A priority Critical patent/JPS5850291B2/en
Publication of JPS57152405A publication Critical patent/JPS57152405A/en
Publication of JPS5850291B2 publication Critical patent/JPS5850291B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Blast Furnaces (AREA)

Description

【発明の詳細な説明】 この発明は高炉の操業管理にとって重要な炉内溶解帯の
レベル・形状を精度よく測定する高炉溶解帯のレベル・
形状測定方法及びその装置に関する。
[Detailed Description of the Invention] This invention provides a method for accurately measuring the level and shape of the melting zone in a blast furnace, which is important for operational management of a blast furnace.
This invention relates to a shape measuring method and device.

高炉において加熱還元された鉄鉱石が軟化溶融しはじめ
る領域(通常これを溶解帯と呼んでいる)をある一定の
レベルおよび形状に維持することは高炉炉熱の安定、炉
内反応の効率化にとり非常に重要である。
Maintaining the region where heated and reduced iron ore begins to soften and melt in the blast furnace (usually called the dissolution zone) at a certain level and shape is important for stabilizing the blast furnace heat and increasing the efficiency of the reactions in the furnace. Very important.

例えば、溶解帯のレベルの高低により鉄鉱石が溶けてか
ら炉床に到るまでの時間が異なり、その間にうける種々
の冶金反応が種々変化することは勿論であるが、溶銑温
度ひいては炉熱の動向にも影響がでてくる。
For example, the time it takes for iron ore to reach the hearth after melting varies depending on the level of the melting zone, and the various metallurgical reactions that occur during that time vary. Trends will also be affected.

また、溶解帯ではガスの通気抵抗が非常に太きいため、
溶解帯の形形状が変化するとガス還元等の効率が変化す
る。
In addition, gas ventilation resistance is extremely high in the dissolution zone, so
When the shape of the dissolution zone changes, the efficiency of gas reduction, etc. changes.

このように溶解帯の形状、レベルの制御は高炉操業にお
いて非常に重要な因子であり、その形状、レベルは可及
的に精度よく測定する必要がある。
Control of the shape and level of the dissolution zone is thus a very important factor in blast furnace operation, and it is necessary to measure the shape and level as accurately as possible.

従来行われている方法としては例えば、高炉の火入れ時
に炉内にシース熱電対を設置し、火入れ後に炉内温度分
布の変化を測定し炉内溶解帯の形成過程をトレースして
いく方法がある。
For example, a conventional method is to install a sheathed thermocouple inside the blast furnace when it is fired, and measure changes in the temperature distribution inside the furnace after firing to trace the formation process of the melting zone inside the furnace. .

しかし、この方法では測定点の位置は明確であるものの
、熱電対が一度断線するとその後の測定が困難になると
いう問題があり、長期にわたって溶解帯を測定できるも
のではなかった。
However, although this method allows the location of the measurement point to be clearly determined, once the thermocouple is disconnected, subsequent measurements become difficult, making it impossible to measure the dissolution zone over a long period of time.

これにかわる方法として、熱電対先端に重りをつけ、こ
の重りを装入物のストックライン上に置き、荷下がりと
ともに熱電対を炉内に繰り出して炉内高さ方向の温度分
布を連続して測定する方法がある。
An alternative method is to attach a weight to the tip of the thermocouple, place this weight on the stock line of the charge, and as the load lowers, the thermocouple is fed into the furnace to continuously control the temperature distribution in the height direction inside the furnace. There is a way to measure it.

しかし、この方法は炉内における重りの位置が不明であ
り、また温度情報だけでは溶解帯レベルを知る上で不十
分であるなどの問題があった。
However, this method has problems such as the position of the weight in the furnace is unknown and temperature information alone is insufficient to know the melting zone level.

最近、熱電対を内挿した金属管の先端にガス導入カプセ
ルを取付けて、温度のみならずガス組成ガス圧力等も同
時に測定して溶解帯レベルを測定する方法が提案されて
いる。
Recently, a method has been proposed in which a gas introduction capsule is attached to the tip of a metal tube into which a thermocouple is inserted, and the level of the dissolution zone is measured by simultaneously measuring not only the temperature but also the gas composition and gas pressure.

しかし、この方法においても炉内におけるカプセルの位
置は明確でなく、また測定された温度はガス温度である
ためにガス温度と溶解帯温度の温瓜差変動により正確な
溶解帯レベルを測定することは困難であった。
However, even with this method, the position of the capsule in the furnace is not clear, and since the measured temperature is the gas temperature, it is difficult to accurately measure the level of the melting zone by varying the temperature difference between the gas temperature and the melting zone temperature. was difficult.

すなわち、高炉の炉体形状は周知のごとくジャスト下段
まではいわゆるすそ広がりであり、ベリ、ボッシュ部で
は逆にしぼられているため、装入された原料は必ずしも
鉛直には荷下りせず、シャフト部では主として径方向に
移動しながら下降していき、かつ炉下部の滴下帯領域で
は鉄鉱石だけが溶は滴下すること、および羽口部でコー
クスが大量に消費されるため固体の流れはより複雑にな
る。
In other words, as is well known, the shape of the blast furnace body is so-called wide at the base up to the bottom level, and is constricted at the bottom and bosch sections, so the charged raw material is not necessarily unloaded vertically, but rather extends down the shaft. In the lower part of the furnace, the melt descends while moving mainly in the radial direction, and in the dripping zone area at the bottom of the furnace, only the iron ore drips, and a large amount of coke is consumed at the tuyere, so the flow of solids is more rapid. It gets complicated.

また、この固体の流れは溶解 の形状、レベルが変わる
と、さらに複雑に変化する。
Furthermore, the flow of this solid changes even more complexly as the shape and level of dissolution changes.

このため、肝心の溶解帯が形成される炉内位置に測定カ
プセルが到達した時に、実際には炉内のどの位置に測定
カプセルがあるのか全く不明となる。
For this reason, when the measurement capsule reaches the position in the furnace where the important dissolution zone is formed, it is completely unclear where in the furnace the measurement capsule is actually located.

さらに、炉内では一般に固体温度とガス温度とは近似し
た値ではなく、高さ方向で異なるが約20〜300℃程
度固体温度が低くなることはよく知られている。
Furthermore, it is well known that the solid temperature and gas temperature are generally not close to each other in a furnace, and that the solid temperature decreases by about 20 to 300° C., although it varies in the height direction.

特に鉱石が軟化溶融着する領域では、固体温度はガス温
度より約数百度程度低くなる。
Particularly in the region where the ore softens and melts, the solid temperature is about several hundred degrees lower than the gas temperature.

この固体温度とガス温度との差は炉内の同じ位置でも常
に一定でなく、溶解帯のレベル、形状等が変わりガス流
れが変化すると大きく変化する。
This difference between the solid temperature and the gas temperature is not always constant even at the same location in the furnace, and changes greatly when the level, shape, etc. of the melting zone changes and the gas flow changes.

したがって、金属管内に測温点があるとガス温度となり
、固体温度を正確に測定することができない。
Therefore, if there is a temperature measurement point inside the metal tube, the temperature will be the gas temperature, making it impossible to accurately measure the solid temperature.

以上の理由により、前記の従来方法では正確な溶解帯レ
ベルの測定は困難であった。
For the above reasons, it is difficult to accurately measure the level of the dissolution zone using the conventional method described above.

この発明は従来の前記問題を解消するためになされたも
ので、溶解帯のレベル・形状を精度よく測定し得る方法
およびその装置を提案するものである。
The present invention has been made to solve the above-mentioned conventional problems, and proposes a method and apparatus that can accurately measure the level and shape of a dissolution zone.

この発明方法は熱電対を内挿したフレキシブルな高融点
金属管の先端に高融点金属製の重りを有し、紋型りに前
記熱電対の測温部を埋め込み、前記金属管の先端部に複
数個の通孔を設けたゾンデを用い、該ゾンデを炉頂より
複数個炉半径方向に装入し、各ゾンデ先端の重りを炉内
装入物のストックライン表面に当接させ、装入物の荷下
がりに伴なって各ゾンデが鉛直になるに必要な張力をか
けながら順次炉内に繰り出し、各ゾンデの繰り出し長さ
を測定するとともに、前記金属管先端部の通孔より適宜
He等のトレーサーガスを炉内に導入し、該トレーサー
ガスの炉頂での半径方向分布を測定することにより各重
りの炉内高さ方向および径方向位置を知り、さらに当該
位置での固体温度を熱電対を介して測定し、あわせて前
記各金属管先端部の通孔より炉内ガスを適宜吸引してガ
ス組成およびガス圧力を測定することにより溶解帯形状
を測定することを特徴とするものである。
This invention method has a weight made of a high melting point metal at the tip of a flexible high melting point metal tube into which a thermocouple is inserted, the temperature measuring part of the thermocouple is embedded in a pattern, and the temperature measuring part of the thermocouple is embedded in the tip of the metal tube. Using a sonde with multiple through holes, a plurality of sondes are charged from the top of the furnace in the radial direction of the furnace, and the weight at the tip of each sonde is brought into contact with the surface of the stock line of the charging material in the furnace. As the load is lowered, each sonde is sequentially fed into the furnace while applying the necessary tension to make it vertical, and the length of each sonde is measured. By introducing a tracer gas into the furnace and measuring the radial distribution of the tracer gas at the top of the furnace, the height and radial positions of each weight within the furnace can be determined, and the solid temperature at that position can be measured using a thermocouple. The method is characterized in that the shape of the dissolution zone is measured by suitably suctioning the furnace gas through the through hole at the tip of each of the metal tubes and measuring the gas composition and gas pressure. .

また、この発明の装置は、熱電対を内挿したフレキシブ
ルな高融点金属管と、該金属管の先端部に複数個の通孔
を設けるとともにその先端に前記熱電対の測温部を埋め
込んだ高融点金属製の重りを有し炉頂開孔部に貫通して
なるゾンデと、該ゾンデの基端部を固着連通して回動す
るリール、ならびにゾンデを挟んでゾンデの曲りを矯正
する矯正ローラ、および前記リールからのゾンデ繰り出
し長さを計測する繰り出し長さ測定器からなるゾンデ送
給装置と、熱電対からの測温値を表示する温度記録計と
、前記リールの中空の回転軸に連通して配管を設はゾン
デからの吸引炉内ガス圧を測定するガス圧力測定器と、
および吸引炉内ガス組成を分析するガス組成分析計と、
前記ゾンデの金属管先端部の通孔に供給するトレーサー
ガス供給管およびパージ用ガス供給配管を前記配管に連
通した構造の溶解帯形状測定用ゾンデと、該溶解帯形状
測定用ゾンデの下方の装入物層中に挿入し、トレーサー
ガス供給管からのトレーサーガスの濃度を測定する炉頂
ガスサンプラーとから構成したことを特徴とする。
Further, the device of the present invention includes a flexible high-melting point metal tube into which a thermocouple is inserted, a plurality of through holes provided at the tip of the metal tube, and a temperature measuring portion of the thermocouple embedded in the tip. A sonde having a weight made of a high melting point metal and penetrating through the opening at the top of the furnace, a reel that rotates with the proximal end of the sonde firmly connected, and a correction that corrects the bending of the sonde by sandwiching the sonde. A sonde feeding device consisting of a roller, a payout length measuring device that measures the length of the sonde payout from the reel, a temperature recorder that displays the temperature value from the thermocouple, and a hollow rotating shaft of the reel. A gas pressure measuring device that measures the gas pressure inside the suction furnace from the sonde, and
and a gas composition analyzer for analyzing the gas composition in the suction furnace;
A sonde for measuring the shape of a dissolution zone having a structure in which a tracer gas supply pipe and a purge gas supply pipe to be supplied to the through hole at the tip of the metal tube of the sonde are connected to the pipe, and a device below the sonde for measuring the shape of the dissolution zone. The furnace top gas sampler is inserted into the feed layer and measures the concentration of tracer gas from the tracer gas supply pipe.

高炉等ガスと固体が移動する移動層にお(1)では、層
内の固体の平均径に近い固体で、比較的層内の固体より
も熱伝導度が数倍以上よい物体の中心温度を測定するこ
とにより周囲の固体温度を測定することができる。
In a moving bed where gas and solids move, such as in a blast furnace, (1) calculates the center temperature of a solid that is close to the average diameter of the solids in the bed and has a thermal conductivity several times better than that of the solids in the bed. By measuring the temperature of the surrounding solid body, it is possible to determine the temperature of the surrounding solid body.

この発明はかかる知見に基づいて、熱電対を内挿した金
属管の先端に重りをつけ、この重りに熱電対の測温部を
埋め込んで、炉内における重りの温度を測定する方法を
とったのである。
Based on this knowledge, this invention employs a method of attaching a weight to the tip of a metal tube into which a thermocouple is inserted, and embedding the temperature measuring part of the thermocouple in this weight to measure the temperature of the weight inside the furnace. It is.

さらにまた、金属管の先端部に通孔を設け、この通孔よ
り金属管内を通して炉内ガスのサンプリングを行なって
ガス圧力およびガス組成を測定するようにし、また同金
属管内にHe等のトレーサーガスを金属管先端部の通孔
より炉内に導入し、このHeガスの炉頂での径方向分布
を炉頂部に別に設けた炉頂ガスサンプラーにより測定す
る方法をとった。
Furthermore, a through hole is provided at the tip of the metal tube, and the gas in the furnace is sampled through the through hole into the metal tube to measure the gas pressure and gas composition. was introduced into the furnace through a hole at the tip of the metal tube, and the radial distribution of this He gas at the top of the furnace was measured using a top gas sampler installed separately at the top of the furnace.

すなわち、この発明は炉内における重りの温度を、該重
りり埋め込んだ熱電対により測定して炉内の固体温度を
測定し、また金属管を使って炉内ガスをサンプリングし
て炉内のガス圧力、組成を測定し、さらに金属管より炉
内に適宜導入したHe等ガスの炉頂径方向分布から重り
の径方向位置を、該金属管の繰出し長さより重りの炉内
高さ方向位置をそれぞれ測定し、前記固体温度、ガス圧
力および組成、重りの径方向および高さ方向位置より溶
解帯のレベル・形状を測定する方法およびその装置であ
る。
That is, this invention measures the temperature of a weight in the furnace using a thermocouple embedded in the weight to measure the solid temperature in the furnace, and also samples the gas in the furnace using a metal tube to measure the gas in the furnace. The pressure and composition are measured, and the radial position of the weight is determined from the radial distribution of He and other gases introduced into the furnace from the metal tube, and the height position of the weight within the furnace is determined from the length of the metal tube. This is a method and an apparatus for measuring the level and shape of the dissolution zone from the solid temperature, gas pressure and composition, and the position of the weight in the radial direction and height direction.

この発明によれば、固体の流れが複雑に変化する炉内に
おける重りの位置を的確に把握することができ、また重
り先端位置での固体温度、ガス圧力およびガス組成を正
確に測定することができるので、溶解帯のレベル・形状
を精度よく測定することができる。
According to this invention, it is possible to accurately grasp the position of a weight in a furnace where the flow of solids changes in a complicated manner, and it is also possible to accurately measure the solid temperature, gas pressure, and gas composition at the tip of the weight. Therefore, the level and shape of the dissolution zone can be measured with high accuracy.

次に、この発明法を実施するためのこの発明装置の一例
を第1図、第2図、第3図について説明する。
Next, an example of the inventive apparatus for carrying out the inventive method will be explained with reference to FIGS. 1, 2, and 3.

第1図において、1は高炉、2は装入物ストックライン
、3は羽口、4は溶解帯形状測定用ゾンデ、5は前記の
ゾンデ送給装置、6は炉頂ガスサンプラー、7は溶解帯
である。
In Fig. 1, 1 is a blast furnace, 2 is a charge stock line, 3 is a tuyere, 4 is a sonde for measuring the shape of a melting zone, 5 is the sonde feeding device, 6 is a furnace top gas sampler, and 7 is a melting zone. It is an obi.

溶解帯形状測定用ゾンデ4は第2図、第3図に示すどと
くシース熱電対4−1を内挿したフレキシブルなステン
レス、チタン等の高融点金属管4−2と、該金属管の先
端部に固着したステンレス、チタン等高融点金属製の重
り4−3とからなり、シース熱電対4−1の先端部は重
り4−3の中心部に埋め込まれており、金属管4−2の
先端部には複数個の通孔4−4が穿設されている。
The sonde 4 for measuring the shape of the dissolution zone consists of a flexible high-melting point metal tube 4-2 made of stainless steel, titanium, etc. into which a doku-sheathed thermocouple 4-1 shown in FIGS. 2 and 3 is inserted, and the tip of the metal tube. The tip of the sheathed thermocouple 4-1 is embedded in the center of the weight 4-3, and the tip of the sheathed thermocouple 4-1 is embedded in the center of the weight 4-3. A plurality of through holes 4-4 are bored at the tip.

このゾンデは高炉炉頂部に設置された送給装置5により
炉内に繰出されるようになっており、その送給装置は第
2図に示すごとく、保護パイプ5−1、矯正用ローラ5
−2、繰り出し長さ測定器5−3、制動装置付きリール
5−4とから構成されており、リール5−4から送り出
されたゾンデ4は繰り出し長さ測定器5−3を通過し、
矯正用ローラ5−2により曲りを矯正されたあと、保護
パイプ5−1を通り炉内のストックライン2上で半径方
向の定位置におろされ、かつ装入物の荷下がりに伴ない
、該ゾンデが鉛直になるに必要な一定の張力をリール5
−4に内蔵された制動装置によりかけられて順次炉内に
繰り出される構造となっている。
This sonde is fed into the blast furnace by a feeding device 5 installed at the top of the blast furnace.As shown in FIG.
-2, it is composed of a feeding length measuring device 5-3, and a reel 5-4 with a braking device, and the sonde 4 fed out from the reel 5-4 passes through the feeding length measuring device 5-3,
After the bend is corrected by the straightening roller 5-2, it is lowered to a fixed position in the radial direction on the stock line 2 in the furnace through the protection pipe 5-1, and as the charge is unloaded, the Apply a certain amount of tension to reel 5 to make the sonde vertical.
-4 is applied by a built-in braking device and is sequentially drawn out into the furnace.

またゾンデへの張力は、重りの荷重、および重りの上に
乗った装入物の荷重により加えられるが、この張力を増
すために重りを複数取りつけてもよい。
Further, the tension on the sonde is applied by the load of the weight and the load of the charge placed on the weight, and a plurality of weights may be attached to increase this tension.

なお、8は緊急用の遮断弁である。また、第2図中9は
温度記録計、10はガス圧力測定器、11はガス組成分
析計を示し、温度記録計9は前記リール5−4の回転軸
(中空)55にスリップリングを介して取付けられてお
り、ガス圧力測定器10およびガス組成分析計11は中
空のリール回転軸5−5に接続された配管12に設置さ
れている。
Note that 8 is an emergency shutoff valve. Further, in FIG. 2, numeral 9 indicates a temperature recorder, 10 indicates a gas pressure measuring device, and 11 indicates a gas composition analyzer. A gas pressure measuring device 10 and a gas composition analyzer 11 are installed in a pipe 12 connected to a hollow reel rotating shaft 5-5.

同図中、13はHe等のトレーサーガス供給配管、14
はゾンデの金属管4−2が詰まらないようにするための
パージ用ガス(N2ガス等の不活性ガス)の供給配管、
■1゜■2.■3.■4は流路切換え用電磁弁である。
In the figure, 13 is a tracer gas supply pipe such as He, 14
is a supply pipe for purge gas (inert gas such as N2 gas) to prevent the metal pipe 4-2 of the sonde from clogging;
■1゜■2. ■3. ■4 is a solenoid valve for switching the flow path.

上記装置により高炉内溶解帯のレベル・形状を測定する
場合は、リール5−4に巻取られているゾンデ4を巻戻
し、先端の重り4−3を装入物のストックライン2上に
おろし、装入物の荷下がりに伴って該ゾンデを順次炉内
に繰り出す。
When measuring the level and shape of the melted zone in the blast furnace using the above device, the sonde 4 wound on the reel 5-4 is unwound and the weight 4-3 at the tip is lowered onto the stock line 2 of the charge. As the charge is unloaded, the sondes are sequentially fed into the furnace.

この時、ゾンデはリール5−4に内蔵された制動装置に
より鉛直になるに必要な一定の張力をかけながら繰り出
す。
At this time, the sonde is reeled out while applying a constant tension necessary to make it vertical by a braking device built into the reel 5-4.

その間、ゾンデは微量のN2ガス等でパージ瞳属管先端
の通孔4−4より炉内ダストの侵入を防止する。
During this time, the sonde prevents dust from entering the furnace through the through hole 4-4 at the tip of the purge pupil tube using a small amount of N2 gas or the like.

パージ用ガスはトレーサガス供給配管の電磁弁■2とガ
ス分析計11への流路切換用電磁弁■4を閉じた状態で
電磁弁■1.■3を開にして供給する。
The purge gas is supplied using the solenoid valve ■1 with the solenoid valve ■2 of the tracer gas supply piping and the solenoid valve ■4 for switching the flow path to the gas analyzer 11 closed. ■3 Open and supply.

炉内ガスをサンプリングする場合は前記パージを中断し
、電磁弁v4を開にして金属管先端の通孔4−4より炉
内ガスを吸引し、ガス圧力測定器10およびガス組成分
析計11によりそれぞれガス圧力、ガス組成を測定、分
析する。
When sampling the furnace gas, the purge is interrupted, the solenoid valve v4 is opened, the furnace gas is sucked through the through hole 4-4 at the tip of the metal tube, and the gas is sampled by the gas pressure measuring device 10 and gas composition analyzer 11. Measure and analyze gas pressure and gas composition, respectively.

なお、炉内ガスのサンプリングは例えば20分毎に10
分間程度実施する。
Note that the furnace gas is sampled every 20 minutes, for example, 10 times.
This will take about a minute.

炉内ガスをサンプリングしない時は電磁弁■2.■4が
閉で、電磁弁V1 s V3が開の状態にあり、炉内の
ダストがゾンデ内に侵入し配管詰まりが生じないようN
2ガス等でパージが行われていることは前記したとおり
である。
When not sampling the furnace gas, use the solenoid valve■2. ■4 is closed and solenoid valve V1 s V3 is open to prevent dust from entering the furnace from entering the sonde and clogging the pipes.
As mentioned above, purging is performed using two gases or the like.

次に、ゾンデ先端の重り4−3の位置を測定するため、
炉頂ガスサンプラー6で検知可能な程度の適切なトレー
サーガスを電磁弁■1.v4を閉にし電磁弁v2.■3
を開にして炉内に供給する。
Next, to measure the position of the weight 4-3 at the tip of the sonde,
A solenoid valve ■1. Close solenoid valve v4 and close solenoid valve v2. ■3
Open it and feed it into the furnace.

しかる後、炉頂ガスサンプラー6を径方向に移動させト
レーサーガスの径方向分布を測定し、該分布のピーク位
置からゾンデ先端の重りの径方向位置を求め、さらに繰
り出し長さ測定器5−3により測定されたゾンデ繰り出
し長さ及び重りのストックライン着床点からのズレ量よ
り重り4−3の高さ方向位置を求める。
Thereafter, the top gas sampler 6 is moved in the radial direction to measure the radial distribution of the tracer gas, and the radial position of the weight at the tip of the sonde is determined from the peak position of the distribution. The height direction position of the weight 4-3 is determined from the measured sonde delivery length and the amount of deviation of the weight from the stock line landing point.

このようにして求めた重り先端位置での固体温度、ガス
圧力、ガス組成より溶解帯レベルを測定することができ
る。
The level of the dissolution zone can be measured from the solid temperature, gas pressure, and gas composition at the weight tip position determined in this manner.

また、第1図に示すごとく、本ゾンデを径方向に複数個
配置することにより溶解帯形状を測定することができる
Moreover, as shown in FIG. 1, by arranging a plurality of these probes in the radial direction, the shape of the dissolution zone can be measured.

第4図はこの発明法を実高炉に適用し各種測定を実施し
たときのゾンデ計測情報の代表例である。
FIG. 4 is a representative example of sonde measurement information obtained when various measurements were carried out by applying the method of this invention to an actual blast furnace.

図中、Rは絶対通気抵抗である。In the figure, R is the absolute ventilation resistance.

この図表より、炉内圧力Pおよび固体温度Tsが同時に
大きく変化する所が、鉄鉱石が軟化溶融する溶解帯レベ
ルと判断される。
From this chart, it is determined that the place where the furnace pressure P and the solid temperature Ts change greatly at the same time is the melting zone level where the iron ore softens and melts.

特に、炉内圧損の変化率を表わす絶対通気抵抗Rを用い
れば、鉄鉱石が軟化溶融し通気抵抗が大巾に増大してい
ることが明確となる。
In particular, if the absolute ventilation resistance R, which represents the rate of change in the pressure drop in the furnace, is used, it becomes clear that the iron ore is softened and melted, and the ventilation resistance increases significantly.

また、炉内ガス組成CO2CO2の含有比率も溶解帯に
おいてそれぞれ変動しており、このC02C02の変動
位置が溶解帯ともいえる。
Further, the content ratio of the in-furnace gas composition CO2CO2 also varies in the dissolution zone, and the position where this C02C02 fluctuates can be said to be the dissolution zone.

以上説明したごとく、この発明法によれば、高炉の操業
管理にとって重要な溶解帯のレベル・形状を精度よく計
測することができ、高炉の安定操業並びに低燃料費操業
に寄与するところ極めて犬である。
As explained above, according to the method of this invention, it is possible to accurately measure the level and shape of the dissolution zone, which is important for blast furnace operational management, and it is extremely effective in contributing to stable blast furnace operation and low fuel cost operation. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例を示す説明図、第2図はこ
の発明法を実施するための装置を示す説明図、第3図は
同上装置における要部の拡大縦断面図、第4図はこの発
明法を実高炉に適用したときのゾンデ計測情報の一例を
示す図表である。 1・・・・・・高炉、2・・・・・・装入物ストックラ
イン、3・・・・・・羽口、4・・・・・・ゾンデ、4
−1・・・・・・シース熱電対、4−2・・・・・・金
属管、4−3・・・・・・重り、、4−4・・・・・・
通孔、5・・・・・・ゾンデ送給装置、5−1・・・・
・保護パイプ、5−2・・・・・・矯正用ローラ、5−
3・・・・・・繰り出し長さ測定器、5−4・・・・・
・リール、6・・・・・・ガスサンプラー、7・・・・
・・溶解帯、8・・・・・・遮断弁、9・・・・・・温
度記録計、10・・・・・・ガス圧力測定器、11・・
・・・・ガス組成分析計、12・・・・・・配管、13
・・・・・・トレーサーガス供給管、14・・・・・・
パージ用ガス供給管、■1.■2.■3.■4・・・・
・・電磁弁。
FIG. 1 is an explanatory diagram showing an embodiment of the present invention, FIG. 2 is an explanatory diagram showing an apparatus for carrying out the method of this invention, FIG. The figure is a chart showing an example of sonde measurement information when this invention method is applied to an actual blast furnace. 1... Blast furnace, 2... Charge stock line, 3... Tuyere, 4... Sonde, 4
-1...Sheath thermocouple, 4-2...Metal tube, 4-3...Weight, 4-4...
Through hole, 5...Sonde feeding device, 5-1...
・Protection pipe, 5-2...Correction roller, 5-
3...Feeding length measuring device, 5-4...
・Reel, 6...Gas sampler, 7...
...Dissolution zone, 8...Shutoff valve, 9...Temperature recorder, 10...Gas pressure measuring device, 11...
... Gas composition analyzer, 12 ... Piping, 13
...Tracer gas supply pipe, 14...
Purge gas supply pipe, ■1. ■2. ■3. ■4・・・・・・
··solenoid valve.

Claims (1)

【特許請求の範囲】 1 熱電対を内挿したフレキシブルな高融点金属管と、
該金属管の先端部に複数個の通孔を設けるとともにその
先端に前記熱電対の測温部を埋め込んだ高融点金属製の
重りを有したゾンデを用い、該ゾンデを炉頂より複数個
炉半径方向に装入し、各ゾンデ先端の重りを炉内装入物
のストックライン表面に当接させ、装入物の荷下がりに
伴なって各ゾンデが鉛直になるに必要な張力をかけなが
ら順次炉内に繰り出し、各ゾンデの繰り出し長さを測定
するとともに、あわせて前記金属管先端の通孔より適宜
He等のトレーサーガスを炉内に導入し、該トレーサー
ガスの炉頂での半径方向分布を測定することにより各重
りの炉内高さ方向および半径方向位置を知り、さらに当
該位置での固体温度を熱電対を介して測定し、あわせて
前記各金属管先端の通孔より炉内ガスを適宜吸引してガ
ス組成およびガス圧力を測定することにより溶解帯形状
を測定することを特徴とする高炉溶解帯のレベル・形状
測定方法。 2 熱電対を内挿したフレキシブルな高融点金属管と、
該金属管の先端部に複数個の通孔を設けるとともに、そ
の先端に前記熱電対の測温部を埋め込んだ高融点金属性
の重りを有し炉頂開孔部に貫通してなるゾンデと、該ゾ
ンデの基端部を固着連通して回動するリール、ならびに
ゾンデを挟んでゾンデの曲りを矯正する矯正ローラ、お
よび前記リールからのゾンデ繰り出し長さを計測する繰
り出し長さ測定器からなるゾンデ送給装置と、前記リー
ルの中空の回転軸に連通して配管を設はゾンデからの吸
引炉内ガス圧を測定するガス圧力測定器と、吸引炉内ガ
ス組成を分析するガス組成分析計と、前記ゾンデの金属
管先端部の通孔に供給するトレーサーガス供給管および
パージ用ガス供給配管を前記配管に連通した構造の溶解
帯形状測定用ゾンデと、該溶解体形状測定用ゾンデの下
方の装入物層中に挿入し、トレーサーガス供給管からの
トレーサーガスの濃度を測定する炉頂ガスサンプラーと
から構成したことを特徴とする高炉溶解体のレベル・形
状測定装置。
[Claims] 1. A flexible high melting point metal tube with a thermocouple inserted therein;
A sonde having a weight made of a high melting point metal with a plurality of through holes provided at the tip of the metal tube and a temperature measuring part of the thermocouple embedded in the tip thereof is used, and the sonde is inserted into the furnace from the top of the furnace. Charging is carried out in the radial direction, and the weight at the tip of each sonde is brought into contact with the stock line surface of the charge in the furnace, and as the charge is unloaded, each sonde is sequentially loaded while applying the necessary tension to make it vertical. The length of each sonde is measured. At the same time, a tracer gas such as He is introduced into the furnace through the hole at the tip of the metal tube, and the radial distribution of the tracer gas at the top of the furnace is measured. By measuring the height and radial position of each weight in the furnace, the solid temperature at that position is measured via a thermocouple, and the gas in the furnace is A method for measuring the level and shape of a blast furnace melting zone, characterized in that the shape of the melting zone is measured by suitably aspirating gas composition and gas pressure. 2. A flexible high melting point metal tube with a thermocouple inserted,
A sonde is formed by providing a plurality of through holes at the tip of the metal tube, and having a weight made of a high melting point metal in which the temperature measurement part of the thermocouple is embedded in the tip, and penetrating the furnace top opening. , a reel that rotates with the proximal end of the sonde fixedly connected, a correction roller that pinches the sonde and corrects the bending of the sonde, and a length measuring device that measures the length of the sonde that is fed out from the reel. A sonde feeding device, a gas pressure measuring device with piping connected to the hollow rotating shaft of the reel to measure the gas pressure in the suction furnace from the sonde, and a gas composition analyzer to analyze the gas composition in the suction furnace. and a sonde for measuring the shape of a dissolution zone having a structure in which a tracer gas supply pipe and a purge gas supply pipe to be supplied to the through hole at the tip of the metal tube of the sonde are connected to the pipe, and a lower part of the sonde for measuring the shape of the dissolved body. A top gas sampler inserted into the charge layer of the furnace to measure the concentration of tracer gas from a tracer gas supply pipe.
JP3682381A 1981-03-13 1981-03-13 Level and shape measurement method of blast furnace melting zone Expired JPS5850291B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3682381A JPS5850291B2 (en) 1981-03-13 1981-03-13 Level and shape measurement method of blast furnace melting zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3682381A JPS5850291B2 (en) 1981-03-13 1981-03-13 Level and shape measurement method of blast furnace melting zone

Publications (2)

Publication Number Publication Date
JPS57152405A JPS57152405A (en) 1982-09-20
JPS5850291B2 true JPS5850291B2 (en) 1983-11-09

Family

ID=12480469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3682381A Expired JPS5850291B2 (en) 1981-03-13 1981-03-13 Level and shape measurement method of blast furnace melting zone

Country Status (1)

Country Link
JP (1) JPS5850291B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6067604A (en) * 1983-09-19 1985-04-18 Sumitomo Metal Ind Ltd Measurement of interior condition of blast furnace
WO2004040099A1 (en) 2002-10-29 2004-05-13 Kabushiki Kaisha Toshiba Steam valve
KR100647245B1 (en) 2005-07-29 2006-11-23 주식회사 포스코 Calorimeter in the byproduct gas management system for ironworks

Also Published As

Publication number Publication date
JPS57152405A (en) 1982-09-20

Similar Documents

Publication Publication Date Title
JPS60228665A (en) Steel gas cementation and device
JPS5850291B2 (en) Level and shape measurement method of blast furnace melting zone
US6302941B1 (en) Method for operating a blast furnace
US4105507A (en) Method and system for instantaneously determining the oxygen activity in molten metals
US5556556A (en) Method for producing endothermic atmospheres and non-catalytic probe therefor
JP4616456B2 (en) Immersion type optical fiber radiation thermometer for measuring molten metal temperature and method for measuring temperature of molten metal
JP3287246B2 (en) Temperature measuring device for molten metal
JP3303140B2 (en) Manufacture of copper bars
US20210396602A1 (en) Device and Method for Measuring a Temperature of a Molten Metal
JPS6325043B2 (en)
US5687187A (en) Process and device for regulating the position of the tip of an electric furnace electrode
DE102005043778A1 (en) Flushing gas`s e.g. nitrogen, pressure measurement device for use in e.g. metallurgical melting furnace, has pressure sensor that is connected with exhaust channel by outlet port for determining pressure prevalent in exhaust channel
JPS6028678Y2 (en) Blast furnace furnace condition measuring device
JPS6028679Y2 (en) Blast furnace furnace condition measuring device
US3128323A (en) Measurement and control of constituent potentials
JPS6085361A (en) Quick measurement of amount of silicon in molten metal
JPH0954057A (en) Consumptive electric conductivity measuring probe and method for measuring electric conductivity of molten oxide
JPH0625725A (en) Detection of activation degree of core part in blast furnace
JPS5916917A (en) Built-in type vertical sonde
US4569237A (en) Method of sampling molten metal
JPH08189926A (en) Method for under-load softening test of ore
JPH09145450A (en) Slag layer thickness measuring method
SU705321A2 (en) Device for continuous determinination of carbon content in metal
CA1229748A (en) Temperature measurement technique
JPS63282482A (en) Method of detecting state of inside of vertical type furnace