JPH08189926A - Method for under-load softening test of ore - Google Patents
Method for under-load softening test of oreInfo
- Publication number
- JPH08189926A JPH08189926A JP7015596A JP1559695A JPH08189926A JP H08189926 A JPH08189926 A JP H08189926A JP 7015596 A JP7015596 A JP 7015596A JP 1559695 A JP1559695 A JP 1559695A JP H08189926 A JPH08189926 A JP H08189926A
- Authority
- JP
- Japan
- Prior art keywords
- ore
- carbon
- container
- load
- test
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、鉱石の高温性状を測定
する荷重軟化試験方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a load softening test method for measuring high temperature properties of ores.
【0002】[0002]
【従来の技術】1000℃以上での鉱石の還元率は鉱石
の収縮率、軟化/溶融開始温度等と密接な関係があり、
鉱石品質を表す重要な因子である。このため、「鉄と
鋼」,Vol.66(1980),p.1850に記載
されているように、従来より鉱石の高温性状を測定する
ために昇温しながら荷重をかけた状態で含COガスによ
り還元を行う荷重軟化試験が行われてきた。従来から行
われている荷重軟化試験方法の概要を以下に説明する。2. Description of the Related Art The reduction rate of ore at 1000 ° C. or higher is closely related to the shrinkage rate of the ore, the softening / melting start temperature, etc.
It is an important factor that represents ore quality. For this reason, "Iron and Steel", Vol. 66 (1980), p. As described in 1850, conventionally, a load softening test has been performed in which, in order to measure a high temperature property of an ore, a reduction is performed with a CO-containing gas while a load is applied while heating. The outline of the conventional load softening test method will be described below.
【0003】図2に示すように、カーボン製容器3内に
コークス層1を形成し、その上に鉱石層4を形成し、さ
らにその上にコークス層1を形成した後、カーボン製容
器を試験装置にセットする。そして、重量物をのせる
か、高圧ガスの圧力をカーボン製押し棒2に伝えること
により鉱石に荷重を掛ける。荷重を掛ける理由は、高炉
内での荷重が掛かった状態での昇温過程で鉱石内部に生
成する融液の気孔への拡散状況や鉱石外部への染みだし
状況をシミュレートするためであり、通常荷重は0.5
〜1kgf/cm2 の範囲にする。As shown in FIG. 2, a coke layer 1 is formed in a carbon container 3, an ore layer 4 is formed thereon, and a coke layer 1 is further formed on the coke layer 1. Then, the carbon container is tested. Set it on the device. Then, a load is applied to the ore by placing a heavy load or by transmitting the pressure of the high pressure gas to the carbon push rod 2. The reason for applying the load is to simulate the diffusion state to the pores and the exudation state to the outside of the ore of the melt generated inside the ore during the temperature rising process in the state where the load is applied in the blast furnace, Normal load is 0.5
To be in the range of 1 kgf / cm 2 .
【0004】その後、N2 等の不活性ガスをカーボン製
容器3の下部から流しながら5〜10℃/minの割合
で昇温し、所定の温度に達したら不活性ガスから還元ガ
スに切り換える。この温度は通常800〜1000℃で
ある。還元ガスに切り換えた時点から排出ガスの組成を
分析し、還元率を計算する。還元ガスは通常COとN2
の混合ガスであり、COの体積分率は30〜40%であ
るが、H2 、CH4 を含む場合もある。以下に還元率の
計算方法を説明する。Thereafter, the temperature is raised at a rate of 5 to 10 ° C./min while flowing an inert gas such as N 2 from the lower portion of the carbon container 3, and when the temperature reaches a predetermined temperature, the inert gas is switched to the reducing gas. This temperature is usually 800 to 1000 ° C. The composition of the exhaust gas is analyzed from the time of switching to the reducing gas, and the reduction rate is calculated. The reducing gas is usually CO and N 2.
Is a mixed gas of CO and has a volume fraction of CO of 30 to 40%, but may contain H 2 and CH 4 . The calculation method of the reduction rate will be described below.
【0005】鉱石の還元反応は、(1)〜(3)式数1
の間接還元反応と(4)〜(6)式数2の直接還元反応
で表される。従って、反応前と反応後の還元ガス組成か
らガス中に含まれるO(酸素原子)の量を計算し、反応
後の還元ガスすなわち排出ガス中に含まれるOの量から
反応前の還元ガス中に含まれるOの量を引くことによ
り、還元反応で鉱石から取り除かれたOの量が分かる。
H2 、CH4 等を含むガスの場合も、基本的に同様に鉱
石から取り除かれたOの量を計算することができる。一
方、還元される前の鉱石中に含まれるOの量は、予め鉱
石の化学分析を行い求めることができる。通常の800
〜1000℃で、上記の還元雰囲気の試験では、Ca
O、SiO2 、Al2 O3 、MgOは還元されず、Fe
2 O3 、Fe3 O4 、FeOのみが還元される。従っ
て、鉱石の被還元酸素量は、Fe2 O3、Fe3 O4 、
FeO中のOの量をさす。鉱石の還元率は、(7)式数
3により計算する。The reduction reaction of ore is represented by the following equations (1) to (3).
Of the indirect reduction reaction of (4) to (6) and the direct reduction reaction of the equation (2). Therefore, the amount of O (oxygen atom) contained in the gas is calculated from the composition of the reducing gas before and after the reaction, and the amount of O (oxygen atom) contained in the gas after the reaction, that is, the amount of O contained in the exhaust gas is calculated in the reducing gas before the reaction. By subtracting the amount of O contained in, the amount of O removed from the ore by the reduction reaction can be known.
In the case of gas containing H 2 , CH 4, etc., basically, the amount of O removed from the ore can be calculated in the same manner. On the other hand, the amount of O contained in the ore before being reduced can be determined by performing a chemical analysis of the ore in advance. Normal 800
In the above reducing atmosphere test, the Ca
O, SiO 2 , Al 2 O 3 and MgO are not reduced and Fe
Only 2 O 3 , Fe 3 O 4 , and FeO are reduced. Therefore, the amount of oxygen to be reduced of ores is Fe 2 O 3 , Fe 3 O 4 ,
It means the amount of O in FeO. The reduction rate of the ore is calculated by the equation (3).
【0006】[0006]
【数1】 3Fe2O3 (s)+CO(g) =2Fe3O4(s)+CO2(g) …(1) Fe3O4(s)+CO(g) =3FeO(s)+CO2(g) …(2) FeO(s) +CO(g) =Fe(s) +CO2(g) …(3)[Equation 1] 3Fe 2 O 3 (s) + CO (g) = 2Fe 3 O 4 (s) + CO 2 (g) (1) Fe 3 O 4 (s) + CO (g) = 3FeO (s) + CO 2 (g)… (2) FeO (s) + CO (g) = Fe (s) + CO 2 (g)… (3)
【0007】[0007]
【数2】 3Fe2O3 (s)+C(graphite) =2Fe3O4(s)+CO(g) …(4) Fe3O4(s)+C(graphite) =3FeO(s)+CO(g) …(5) FeO(s) +C(graphite) =Fe(s) +CO(g) …(6)[Equation 2] 3Fe 2 O 3 (s) + C (graphite) = 2Fe 3 O 4 (s) + CO (g) (4) Fe 3 O 4 (s) + C (graphite) = 3FeO (s) + CO (g )… (5) FeO (s) + C (graphite) = Fe (s) + CO (g)… (6)
【0008】[0008]
【数3】 (Equation 3)
【0009】また、昇温が進むにつれて鉱石は軟化・溶
融するため収縮する。収縮挙動も高温性状の一つであ
り、所定の時間間隔で、あるいは連続的に収縮代の測定
を行う。鉱石の収縮代はカーボン製押し棒2の変位で表
す。そして、次式数4で定義される収縮率を求める。鉱
石の融け落ちが完了する温度に達したら還元ガスを不活
性ガスに切り換え、冷却する。Further, as the temperature rises, the ore softens and melts and contracts. The shrinkage behavior is also one of high temperature properties, and the shrinkage allowance is measured at predetermined time intervals or continuously. The shrinkage allowance of the ore is represented by the displacement of the carbon push rod 2. Then, the shrinkage rate defined by the following equation 4 is obtained. When the temperature at which the ore has completely melted is reached, the reducing gas is switched to an inert gas and cooled.
【0010】[0010]
【数4】 [Equation 4]
【0011】以上が従来から行われてきた荷重軟化試験
方法の概要である。The above is an outline of the conventional load softening test method.
【0012】[0012]
【発明が解決しようとする課題】しかし、従来の荷重軟
化試験方法では、図2に示すように鉱石層4の上部と下
部がコークス層1に接触し、側部はカーボン製容器3に
接触する。これは、実際の高炉内では鉱石はコークス層
に挟まれていることを考慮したものであるが、鉱石の高
温性状はカーボンとの接触の有無により大きく異なる。
その理由は、カーボンが鉱石の未還元部分あるいはウス
タイトまでの半還元部分と接触している場合は、(1)
〜(3)式の反応に加え(4)〜(6)式の直接還元反
応を起こすためである。また、鉱石とカーボンが接触し
ている場合は、鉱石の還元により生じた金属鉄中への浸
炭量がCOガスのみによる浸炭量より多いため、金属鉄
の融点が低下する。一方で、鉱石とカーボンが直接接触
する場合は接触しない場合に比べ還元率が高くなるた
め、酸化鉄のスラグ中への溶解量が低下し、スラグの凝
集が遅れるためスラグの滴下開始温度が高くなる。以上
の理由により、鉱石とカーボンの接触の有無により、鉱
石の高温性状が異なってくる。However, in the conventional load softening test method, as shown in FIG. 2, the upper and lower portions of the ore layer 4 contact the coke layer 1 and the side portions contact the carbon container 3. . This is because the ore is sandwiched between coke layers in the actual blast furnace, but the high-temperature properties of the ore greatly differ depending on whether or not it is in contact with carbon.
The reason is that when carbon is in contact with the unreduced part of the ore or the semi-reduced part up to wustite, (1)
This is because the direct reduction reaction of the formulas (4) to (6) is caused in addition to the reaction of the formulas (3) to (3). Further, when the ore and the carbon are in contact with each other, the amount of carburization into the metallic iron produced by the reduction of the ore is larger than the amount of carburization due to the CO gas alone, so that the melting point of the metallic iron lowers. On the other hand, when the ore and carbon are in direct contact, the reduction rate is higher than in the case where they are not in contact, so the amount of iron oxide dissolved in the slag decreases, and the slag dropping start temperature is high because the slag agglomeration is delayed. Become. For the above reasons, the high temperature properties of ores differ depending on whether ore and carbon are in contact.
【0013】ところが、高炉内ではカーボンであるコー
クスと接触する鉱石の量は10wt%未満であり、鉱石
が溶融/滴下するまで殆どの鉱石は間接還元のみを受け
ている。従って、鉱石の高温性状は間接還元量に強く依
存している。そこで、高炉内で実際に起きている反応を
厳密にシミュレートするためには、鉱石とカーボンが接
触している割合を合わせる必要があるが、坩堝内径が6
0mm以下の従来の小型荷重軟化試験では、試験に用い
る全鉱石重量に比べカーボンに接触する鉱石の割合が4
0〜70wt%と大きいため、高炉内条件に近いとは言
えなかった。このため、高炉内での反応を正確にシミュ
レートするためには、試験に用いる試料重量を増やし、
全鉱石重量に比べカーボンに接触する鉱石の割合を減ら
す必要があった。However, in the blast furnace, the amount of ore that comes into contact with the coke, which is carbon, is less than 10 wt%, and most of the ores undergo only indirect reduction until the ore melts / drops. Therefore, the high-temperature properties of ores strongly depend on the amount of indirect reduction. Therefore, in order to strictly simulate the reaction actually occurring in the blast furnace, it is necessary to match the ratios of contact between ore and carbon, but the inner diameter of the crucible is 6
In the conventional small load softening test of 0 mm or less, the ratio of the ore in contact with carbon was 4 compared to the total ore weight used in the test.
Since it is as large as 0 to 70 wt%, it cannot be said that it is close to the blast furnace conditions. Therefore, in order to accurately simulate the reaction in the blast furnace, increase the sample weight used in the test,
It was necessary to reduce the proportion of ore in contact with carbon compared to the total ore weight.
【0014】従来は、鉱石とカーボンの接触率を高炉内
でのものに近づけるために500〜1000gの鉱石と
約100gのコークスを用いていた。これだけの鉱石と
コークスをいれるには内径85〜120mm程度の容器
が必要であり、それに応じて試験装置の反応管の内径も
120mm以上のものが必要となる。従って、試験装置
が大がかりとなり、1回の試験に要するコストは非常に
高くなる。さらに、これだけの装置を用いても、カーボ
ンと接触する鉱石の割合は30〜40wt%もあり、高
炉内での条件に必ずしも近いとは言えない。このため、
直接還元反応(4)〜(6)の寄与が大きくなり、鉱石
による間接還元量の差が不明確になる。そこで本発明の
目的は、少量の鉱石で鉱石の間接還元量を精度良く測定
できる荷重軟化試験方法を提供することである。Conventionally, 500 to 1000 g of ore and about 100 g of coke have been used to bring the contact ratio of ore and carbon close to that in a blast furnace. A container having an inner diameter of about 85 to 120 mm is required to put such an amount of ore and coke, and accordingly, an inner diameter of the reaction tube of the test apparatus is also required to be 120 mm or more. Therefore, the test equipment becomes large-scale, and the cost required for one test becomes very high. Furthermore, even with such an apparatus, the proportion of ore in contact with carbon is as high as 30 to 40 wt%, which is not necessarily close to the conditions in the blast furnace. For this reason,
The contribution of the direct reduction reactions (4) to (6) becomes large, and the difference in the indirect reduction amount by the ore becomes unclear. Therefore, an object of the present invention is to provide a load softening test method capable of accurately measuring the indirect reduction amount of ore with a small amount of ore.
【0015】[0015]
【課題を解決するための手段】本発明は、カーボン製容
器に鉱石を充填した後に、カーボン製容器上部に設置し
たカーボン製押し棒で鉱石に荷重を掛けながら1000
〜1400℃で還元ガスをカーボン製容器内に導入し、
排出ガス組成から鉱石の還元率を求める鉱石の荷重軟化
試験方法において、カーボン製容器のカーボン壁及びカ
ーボン製押し棒と鉱石層との間にセラミックスを配置
し、荷重軟化試験を行うことを特徴とする鉱石の荷重軟
化試験方法である。鉱石層とカーボン製容器のカーボン
側壁との間に繊維状セラミックスを配し、カーボン製容
器底部と鉱石層との間及びカーボン製押し棒と鉱石層と
の間にセラミックスボールを配することは好ましい。な
お、鉱石とは鉄鉱石、焼結鉱、ペレットを意味する。According to the present invention, after filling a carbon container with ore, a carbon push rod installed on the upper part of the carbon container applies a load to the ore at 1000
Introducing a reducing gas into a carbon container at ~ 1400 ° C,
In the load softening test method of the ore for obtaining the reduction rate of the ore from the exhaust gas composition, ceramics is arranged between the carbon wall of the carbon container and the carbon push rod and the ore layer, and the load softening test is performed. This is a load softening test method for ores. It is preferable to dispose fibrous ceramics between the ore layer and the carbon side wall of the carbon container and to dispose ceramic balls between the carbon container bottom and the ore layer and between the carbon push rod and the ore layer. . The ore means iron ore, sinter, and pellets.
【0016】[0016]
【作用】鉱石の高温性状は1250℃までの鉱石の還元
率と密接な関係がある。即ち、1000℃以上の温度に
なると鉱石が軟化/収縮を開始するが、高炉に装入され
る大部分の鉱石のようにカーボンと直接接触しない条件
ではCOガスによる金属鉄への浸炭量は0.3%以下と
非常に低いため融点が約1500℃と高く、還元により
生成した金属鉄が骨格の役割を担い、収縮を抑える働き
をする。また、約1200℃から生成する主にCaO−
SiO2 −Al2 O3 −FeO系の融液に溶解する酸化
鉄量は、1250℃までの鉱石の還元率に依存する。即
ち、還元率が低い鉱石は残存するウスタイト量が多いた
めウスタイトが融液に溶解し易い条件となり、融液量が
増大する。還元率が高い鉱石は残存するウスタイト量が
少ないためウスタイトが融液に溶解しにくい条件とな
り、融液量の増大はあまり無い。融液は気孔を閉塞する
ため、還元ガスの通路が無くなり、ある温度以上で間接
還元反応(3)は殆ど進行しなくなる。なお、1000
℃以上ではFe2 O3 及びFe3 O4 はFeOまで還元
されているため、反応(1)、(2)は考えなくてよ
い。実験により、間接還元反応(3)は1350℃以上
では殆ど進行しなくなることが分かっている。従って、
間接還元反応(3)が殆ど進行しなくなるときの還元率
を測定することにより、鉱石の高温性状を推定すること
ができる。また、試験は1400℃で中断する。140
0℃超では間接還元反応(3)が殆ど進行しなくなり、
また試料からにじみでる融液量が増大してカーボンに接
触するおそれがあるためである。従って、測定は100
0〜1400℃で行う。The high temperature property of ore is closely related to the reduction rate of ore up to 1250 ° C. That is, when the temperature rises above 1000 ° C., the ore starts to soften / shrink, but under the condition that it does not come into direct contact with carbon like most of the ore charged to the blast furnace, the amount of carburizing CO into the metallic iron is 0. The melting point is as high as about 1500 ° C. because it is extremely low at 0.3% or less, and metallic iron produced by reduction plays a role of a skeleton and functions to suppress shrinkage. In addition, mainly CaO- generated from about 1200 ℃
Iron oxide amount to be dissolved in the melt of the SiO 2 -Al 2 O 3 -FeO system depends on the ore reduction ratio of up to 1250 ° C.. That is, since the amount of remaining wustite in the ore having a low reduction rate is large, the condition becomes that the wustite is easily dissolved in the melt, and the amount of melt increases. Ore having a high reduction rate has a small amount of remaining wustite, which makes it difficult to dissolve wustite in the melt, and the amount of melt does not increase so much. Since the melt blocks the pores, the passage of the reducing gas is lost, and the indirect reduction reaction (3) hardly progresses at a certain temperature or higher. 1000
Above 2 ° C, Fe 2 O 3 and Fe 3 O 4 are reduced to FeO, so reactions (1) and (2) need not be considered. Experiments show that the indirect reduction reaction (3) hardly progresses at 1350 ° C. or higher. Therefore,
The high-temperature property of the ore can be estimated by measuring the reduction rate when the indirect reduction reaction (3) hardly progresses. Also, the test is discontinued at 1400 ° C. 140
Above 0 ° C, the indirect reduction reaction (3) hardly progresses,
This is also because the amount of melt oozing from the sample may increase and contact the carbon. Therefore, the measurement is 100
It is carried out at 0 to 1400 ° C.
【0017】本発明では、高炉に装入される鉱石の90
wt%以上の鉱石が、溶融するまではカーボンと接触し
ないことに着目し、鉱石とカーボンを非接触にし間接還
元反応のみが起こる試験方法とした。即ち、図1に示す
ように、コークスの代わりにジルコニア、アルミナ等の
鉱石と反応しにくいセラミックスボール6で鉱石層4を
挟み、カーボン製容器3のカーボン壁と鉱石層4の間に
繊維状セラミックス5を入れて荷重軟化試験を行う。鉱
石層4の上下に入れるセラミックスを球形にする理由
は、鉱石に荷重がスムーズ且つ均一に掛かるようにする
ためであり、鉱石層4とカーボン壁の間に挟むセラミッ
クスを繊維状にする理由は、鉱石の収縮に合わせてセラ
ミックスも収縮できるようにするためである。もし、鉱
石層4とカーボン壁の間に挟むセラミックスを可縮性の
ないものにしてしまうと、このセラミックスが荷重を支
えてしまい、鉱石に荷重が掛からなくなる。繊維状セラ
ミックス5は1400℃までの耐熱性を有するものにす
る。例えば、アルミナが50wt%以上、シリカが50
wt%以下の繊維状セラミックスが好ましい。また、セ
ラミックスボール6の直径は4〜10mmが好ましい。
4mm未満では通気抵抗が増大し、10mm超ではガス
の予熱が十分できない可能性があるためである。従来の
小型荷重軟化試験方法では、試験に用いる全鉱石重量に
比べてカーボンに接触する鉱石の割合が40〜70wt
%と大きく、高炉内での10wt%未満の条件とはかけ
はなれたものであったが、本発明法では鉱石とカーボン
を非接触に保って測定できるため、鉱石による間接還元
量が明確になる。According to the present invention, 90 of ore charged to the blast furnace is used.
Focusing on the fact that more than wt% of ore does not come into contact with carbon until it melts, we set the ore and carbon in a non-contact state and made a test method in which only an indirect reduction reaction occurs. That is, as shown in FIG. 1, an ore layer 4 is sandwiched between ceramic balls 6 that are hard to react with ore such as zirconia or alumina instead of coke, and a fibrous ceramics is provided between the carbon wall of the carbon container 3 and the ore layer 4. 5 is put and a load softening test is performed. The reason why the ceramics placed above and below the ore layer 4 are spherical is that the load is smoothly and uniformly applied to the ore, and the reason why the ceramics sandwiched between the ore layer 4 and the carbon wall is fibrous is as follows. This is so that the ceramics can shrink as the ore shrinks. If the ceramic sandwiched between the ore layer 4 and the carbon wall is made non-shrinkable, the ceramic will support the load and the ore will not be loaded. The fibrous ceramic 5 has heat resistance up to 1400 ° C. For example, 50% by weight or more of alumina and 50% of silica
Fibrous ceramics of up to wt% are preferred. The diameter of the ceramic balls 6 is preferably 4 to 10 mm.
This is because if it is less than 4 mm, the ventilation resistance increases, and if it exceeds 10 mm, the gas may not be sufficiently preheated. In the conventional small load softening test method, the proportion of ore in contact with carbon is 40 to 70 wt% compared to the total ore weight used in the test.
%, Which is far from the condition of less than 10 wt% in the blast furnace, but since the method of the present invention can measure the ore and the carbon in a non-contact state, the indirect reduction amount by the ore becomes clear. .
【0018】なお、供試験鉱石の重量は15〜80gと
する。15g未満では試料量が少ないため、試料のバラ
ツキの問題や被還元酸素量が少ないことによる酸素量測
定時の誤差の増大といった問題がある。80g超では試
験装置の小型化が難しく、低コストでの試験ができなく
なる。The weight of the test ore is 15 to 80 g. If the amount is less than 15 g, the amount of the sample is small, so that there are problems such as a variation in the sample and an error in measuring the oxygen amount due to the small amount of oxygen to be reduced. If it exceeds 80 g, it is difficult to reduce the size of the test apparatus, and the test cannot be performed at low cost.
【0019】また、(8)式数5のように生成したCO
2 とカーボンとの反応による排出ガス組成の変化が懸念
されるが、本発明法での試験後のカーボン製容器及び押
し棒の損傷は殆ど無く、(8)式の反応は十分無視でき
る。Further, the CO generated by the equation (8)
Although there is concern that the exhaust gas composition may change due to the reaction between 2 and carbon, there is almost no damage to the carbon container and the push rod after the test according to the method of the present invention, and the reaction of formula (8) can be sufficiently ignored.
【0020】[0020]
【数5】 C(graphite)+CO2 (g)=2CO(g) …(8)## EQU5 ## C (graphite) + CO 2 (g) = 2CO (g) (8)
【0021】[0021]
【実施例】本発明の実施例を図1に基づいて説明する。EXAMPLE An example of the present invention will be described with reference to FIG.
【0022】鉱石重量、還元ガス流量、昇温速度等の試
験条件は、還元率と温度の実炉ゾンデ測定結果を基にし
て決定した。以下の例では、1000℃の還元率が27
〜30%、1200℃での還元率が45〜55%となる
ような条件に設定した。この試験条件は、対象高炉の操
業状況に合わせて変えることが望ましい。Test conditions such as the ore weight, the reducing gas flow rate, and the heating rate were determined based on the measurement results of the actual furnace sonde of the reduction rate and the temperature. In the following example, the reduction rate at 1000 ° C is 27
The conditions were set so that the reduction rate at -30% and 1200 ° C was 45-55%. It is desirable to change the test conditions according to the operating conditions of the target blast furnace.
【0023】[0023]
【実施例1】内径42mmのカーボン製容器3の底に5
mm径のジルコニアからなるセラミックスボール6を敷
き詰め、その上に12±1mmの粒径の焼結鉱36gを
カーボン壁と焼結鉱の間に繊維状セラミックス5である
カオウールを挟み装入して鉱石層4とし、鉱石層4の上
にジルコニア製のセラミックスボール6を敷き詰めるこ
とにより焼結鉱とカーボンを非接触にした。焼結鉱は予
めウスタイトの段階の還元率約30%まで還元しておい
た。カーボン製容器3を荷重軟化試験装置にセットした
後、カーボン製押し棒2により荷重1kgf/cm2 を
かけ、N2 を4リットル/min流しながら7℃/mi
nで昇温した。1000℃でN2 からCO/N2 =30
/70の還元ガスに切り換え、4リットル/min流し
た。1350℃で昇温を止め、還元ガスをN2 に切り換
え、試料を急冷した。この間、1000℃になった時点
から5分毎に排出ガス分析及び収縮測定を行い、焼結鉱
の還元率及び収縮率を計算した。1350℃での焼結鉱
Aと焼結鉱Bの還元率を表1に示す。1350℃での焼
結鉱A、焼結鉱Bの還元率はそれぞれ60.1%、5
3.8%であり、融液が生成する条件下での焼結鉱Aの
被還元性は焼結鉱Bよりも優れていることが分かった。
また、収縮曲線を図3に示すが、焼結鉱Bの収縮の方が
焼結鉱Aよりも低温側から起こっており、焼結鉱Bは焼
結鉱Aよりも軟化しやすいことが分かった。Example 1 A carbon container 3 having an inner diameter of 42 mm is provided with 5
Ceramic balls 6 made of zirconia with a diameter of mm are spread, and 36 g of sinter ore having a particle diameter of 12 ± 1 mm is placed on the sinter ore, which is a fibrous ceramic 5 between the carbon wall and the sinter. Layer 4 was used, and ceramic balls 6 made of zirconia were spread on ore layer 4 to make sinter ore and carbon non-contact. The sinter was previously reduced to a wustite reduction rate of about 30%. After the carbon container 3 is set in the load softening test device, a load of 1 kgf / cm 2 is applied by the carbon push rod 2, and N 2 is flown at 4 liters / min at 7 ° C./mi.
The temperature was raised at n. N 2 to CO / N 2 = 30 at 1000 ° C.
It was switched to a reducing gas of / 70 and a flow rate of 4 liter / min was flown. The temperature rise was stopped at 1350 ° C., the reducing gas was changed to N 2 , and the sample was rapidly cooled. During this period, exhaust gas analysis and shrinkage measurement were performed every 5 minutes from the time when the temperature reached 1000 ° C., and the reduction rate and shrinkage rate of the sinter were calculated. Table 1 shows the reduction rates of the sintered ore A and the sintered ore B at 1350 ° C. The reduction rates of sintered ore A and sintered ore B at 1350 ° C. are 60.1% and 5 respectively.
It was 3.8%, and it was found that the reducibility of sinter ore A under the condition that a melt was generated was superior to that of sinter ore B.
Further, the shrinkage curve is shown in FIG. 3, and it is found that the shrinkage of the sintered ore B occurs from the lower temperature side than the sintered ore A, and the sintered ore B is more easily softened than the sintered ore A. It was
【0024】[0024]
【実施例2】内径50mmのカーボン製容器3の底に6
mm径のアルミナからなるセラミックスボール6を敷き
詰め、その上に10±1mmの粒径のペレット80gを
カーボン製容器3のカーボン壁とペレットの間に繊維状
セラミックス5であるカオウールを挟み装入して鉱石層
4とし、鉱石層4の上にアルミナ製のセラミックスボー
ル6を敷き詰めることによりペレットとカーボンを非接
触にした。カーボン製容器3を荷重軟化試験装置にセッ
トした後、カーボン製押し棒2により荷重1kgf/c
m2 をかけ、N2 を8リットル/min流しながら7℃
/minで昇温した。800℃でN2 からCO/N2 =
30/70の還元ガスに切り換え、8リットル/min
流した。1400℃で昇温を止め、還元ガスをN2 に切
り換え、試料を急冷した。この間、800℃になった時
点から10分毎に排出ガス分析及び収縮測定を行い、ペ
レットの還元率及び収縮率を計算した。ペレットC、ペ
レットDの1400℃での還元率を表1に示す。[Embodiment 2] 6 is attached to the bottom of a carbon container 3 having an inner diameter of 50 mm
Ceramic balls 6 made of alumina having a diameter of mm are spread, and 80 g of pellets having a particle size of 10 ± 1 mm are placed on the ceramic balls 6 by sandwiching the kaool of fibrous ceramics 5 between the carbon wall of the carbon container 3 and the pellets. The ore layer 4 was formed, and the ceramic balls 6 made of alumina were spread on the ore layer 4 so that the pellets and the carbon were not in contact with each other. After setting the carbon container 3 in the load softening tester, the carbon push rod 2 applies a load of 1 kgf / c.
Applying m 2 and flowing N 2 at 8 liter / min, 7 ℃
The temperature was raised at / min. N 2 to CO / N 2 =
Switch to 30/70 reducing gas, 8 liters / min
Shed The temperature rise was stopped at 1400 ° C., the reducing gas was changed to N 2 , and the sample was rapidly cooled. During this period, exhaust gas analysis and shrinkage measurement were performed every 10 minutes from the time when the temperature reached 800 ° C., and the reduction rate and shrinkage rate of the pellets were calculated. Table 1 shows the reduction ratios of Pellet C and Pellet D at 1400 ° C.
【0025】実施例1、2により得られた鉱石の還元率
は間接還元量のみを表しており、同じ試験方法で得られ
た他の試料との高温性状の比較が容易である。また、実
施例1、2では、試料のセットから排出ガスの分析が完
了するまでの試験時間は1回につき約6時間であった。
装置の整備は試験毎にする必要は無く、15〜25回試
験を行い、反応管及び発熱体の交換を行えばよい。The reduction rates of the ores obtained in Examples 1 and 2 represent only the amount of indirect reduction, and it is easy to compare the high temperature properties with other samples obtained by the same test method. Further, in Examples 1 and 2, the test time from setting the sample to completing the analysis of the exhaust gas was about 6 hours per time.
It is not necessary to maintain the device for each test, and the test may be performed 15 to 25 times to replace the reaction tube and the heating element.
【0026】[0026]
【比較例1】従来の通り、粒径が12±1mmの焼結鉱
700gの上下をコークスで挟み、内径120mmのカ
ーボン製容器に入れ、焼結鉱とカーボン壁を接触させ
た。カーボン製容器を荷重軟化装置にセットした後、荷
重1kgf/cm2 をかけ、N2 を28リットル/mi
n流しながら7℃/minで昇温した。800℃でN2
からCO/N2 =30/70の還元ガスに切り換え、2
8リットル/min流した。1550℃で昇温を止め、
還元ガスをN2 に切り換え、試料を急冷した。この間、
800℃になった時点から5分毎に排出ガス分析を行
い、焼結鉱の還元率を計算した。また、収縮率と圧力損
失は常時測定した。この例では、1550℃までの還元
率、収縮率、圧力損失が測定できたが、試験1回あたり
のコストが実施例1、2の10〜20倍もかかった。ま
た、試験1回あたりの時間は、試料のセットから装置の
整備が完了するまでまる2日かかった。Comparative Example 1 As before, 700 g of a sintered ore having a particle size of 12 ± 1 mm was sandwiched between coke and placed in a carbon container having an inner diameter of 120 mm to bring the sintered ore into contact with the carbon wall. After the carbon container was set in the load softening device, a load of 1 kgf / cm 2 was applied, and N 2 was 28 liters / mi.
The temperature was raised at 7 ° C / min while flowing n. N 2 at 800 ° C
To CO / N 2 = 30/70 reducing gas, 2
Flowed at 8 liter / min. Stop heating at 1550 ° C,
The reducing gas was switched to N 2 and the sample was quenched. During this time,
Exhaust gas analysis was performed every 5 minutes from the time when the temperature reached 800 ° C., and the reduction rate of the sinter was calculated. The shrinkage rate and the pressure loss were constantly measured. In this example, the reduction rate, shrinkage rate, and pressure loss up to 1550 ° C. could be measured, but the cost per test was 10 to 20 times that of Examples 1 and 2. The time required for one test took 2 days from the setting of the sample to the completion of the maintenance of the device.
【0027】[0027]
【比較例2】従来の通り、粒径が12±1mmの焼結鉱
36gの上下をコークスで挟み、内径42mmのカーボ
ン製容器に入れ、焼結鉱とカーボン壁を接触させた。焼
結鉱は予めウスタイトの段階の還元率約30%まで還元
しておいた。カーボン製容器を荷重軟化試験装置にセッ
トした後、荷重1kgf/cm2 をかけ、N2 を4リッ
トル/min流しながら7℃/minで昇温した。10
00℃でN2 からCO/N2 =30/70の還元ガスに
切り換え、4リットル/min流した。1350℃で昇
温を止め、還元ガスをN2 に切り換え、試料を急冷し
た。この間、1000℃になった時点から5分毎に排出
ガス分析及び収縮測定を行い、焼結鉱の還元率及び収縮
率を計算した。実施例1で使用した焼結鉱A、焼結鉱B
の試験結果では、試料がカーボンと接触していて還元率
が高めにでるため、焼結鉱Aと焼結鉱Bの還元率の差が
不明確なものとなった。比較例2は試験1回あたりのコ
ストは本発明法と同程度であるが、還元率が高めに出る
ため、鉱石による高温性状の差が明確にでなかった。Comparative Example 2 As in the conventional case, 36 g of a sintered ore having a particle size of 12 ± 1 mm was sandwiched between coke and placed in a carbon container having an inner diameter of 42 mm, and the sintered ore and the carbon wall were brought into contact with each other. The sinter was previously reduced to a wustite reduction rate of about 30%. After setting the carbon container in the load softening tester, a load of 1 kgf / cm 2 was applied and the temperature was raised at 7 ° C / min while flowing N 2 at 4 l / min. 10
At 00 ° C., N 2 was changed to a reducing gas of CO / N 2 = 30/70, and a flow rate of 4 liters / min was flown. The temperature rise was stopped at 1350 ° C., the reducing gas was changed to N 2 , and the sample was rapidly cooled. During this period, exhaust gas analysis and shrinkage measurement were performed every 5 minutes from the time when the temperature reached 1000 ° C., and the reduction rate and shrinkage rate of the sinter were calculated. Sinter Ore A and Sinter Ore B used in Example 1
In the test result, since the sample was in contact with carbon and the reduction rate was high, the difference in the reduction rate between the sintered ore A and the sintered ore B was unclear. In Comparative Example 2, the cost per test was about the same as that of the method of the present invention, but the reduction rate was high, and therefore the difference in the high temperature properties due to the ore was not clear.
【0028】比較例1、2で直接還元量と間接還元量の
割合を特定することは、N2 バランスをとりガス体積の
増加分を直接還元によるものとして計算することで原理
上可能であるが、試験誤差や分析誤差のため実際には精
度良く特定することは困難であるため、正確な高温性状
を推定することができなかった。It is possible in principle to specify the ratio of the direct reduction amount and the indirect reduction amount in Comparative Examples 1 and 2 by calculating N 2 balance and calculating the increase in gas volume by direct reduction. However, since it is difficult to specify accurately in practice due to a test error and an analysis error, it was not possible to accurately estimate the high temperature property.
【0029】[0029]
【表1】 [Table 1]
【0030】[0030]
【発明の効果】本発明により、鉱石による間接還元量を
明確にし、試験1回あたりにかかる時間の短縮や試験方
法の簡単化をはかることができる。その結果、鉱石の正
確な高温性状を知ることができ、試験回数を増加するこ
とができる。Industrial Applicability According to the present invention, the amount of indirect reduction by ore can be clarified, and the time required for one test can be shortened and the test method can be simplified. As a result, it is possible to know the accurate high-temperature property of the ore and increase the number of tests.
【図1】本発明の荷重軟化試験方法での試料装入方法を
示す図である。FIG. 1 is a diagram showing a sample charging method in a load softening test method of the present invention.
【図2】従来の荷重軟化試験方法での試料装入方法を示
す図である。FIG. 2 is a diagram showing a sample charging method in a conventional load softening test method.
【図3】焼結鉱の収縮曲線を示す図である。FIG. 3 is a diagram showing a shrinkage curve of sinter.
1 コークス層 2 カーボン製押し棒 3 カーボン製容器 4 鉱石層 5 繊維状セラミックス 6 セラミックスボール 1 Coke layer 2 Carbon push rod 3 Carbon container 4 Ore layer 5 Fibrous ceramics 6 Ceramic ball
Claims (2)
カーボン製容器上部に設置したカーボン製押し棒で鉱石
に荷重を掛けながら1000〜1400℃で還元ガスを
カーボン製容器内に導入し、排出ガス組成から鉱石の還
元率を求める鉱石の荷重軟化試験方法において、カーボ
ン製容器のカーボン壁及びカーボン製押し棒と鉱石層と
の間にセラミックスを配置し、荷重軟化試験を行うこと
を特徴とする鉱石の荷重軟化試験方法。1. After filling a carbon container with ore,
A load softening test method for an ore in which a reducing gas is introduced into the carbon container at 1000 to 1400 ° C. while applying a load to the ore with a carbon push rod installed on the upper part of the carbon container and the reduction rate of the ore is obtained from the exhaust gas composition. 2. A load softening test method for ores, comprising: placing a ceramic between a carbon wall of a carbon container and a carbon push rod and an ore layer, and performing a load softening test.
との間に繊維状セラミックスを配し、カーボン製容器底
部と鉱石層との間及びカーボン製押し棒と鉱石層との間
にセラミックスボールを配することを特徴とする請求項
1記載の鉱石の荷重軟化試験方法。2. A fibrous ceramic is disposed between the ore layer and the carbon side wall of the carbon container, and ceramic balls are provided between the bottom of the carbon container and the ore layer and between the carbon push rod and the ore layer. The load softening test method for ores according to claim 1, wherein the load ore is arranged.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7015596A JPH08189926A (en) | 1995-01-06 | 1995-01-06 | Method for under-load softening test of ore |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7015596A JPH08189926A (en) | 1995-01-06 | 1995-01-06 | Method for under-load softening test of ore |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH08189926A true JPH08189926A (en) | 1996-07-23 |
Family
ID=11893106
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7015596A Withdrawn JPH08189926A (en) | 1995-01-06 | 1995-01-06 | Method for under-load softening test of ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH08189926A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812944A1 (en) * | 2000-08-08 | 2002-02-15 | Nippon Denko | Sintered manganese based ore conforming to a specific relationship between CaO, MgO, Al2O3 and SiO2 contents for the electric furnace production of a ferro-alloy |
JP2012247289A (en) * | 2011-05-27 | 2012-12-13 | Jfe Steel Corp | Reduction powdering rate measuring method of ore |
KR20160129032A (en) | 2014-03-28 | 2016-11-08 | 제이에프이 스틸 가부시키가이샤 | Method for charging raw material into blast furnace |
JP2020147824A (en) * | 2019-03-15 | 2020-09-17 | 日本製鉄株式会社 | Reactor for simulating blast furnace cohesive zone |
-
1995
- 1995-01-06 JP JP7015596A patent/JPH08189926A/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2812944A1 (en) * | 2000-08-08 | 2002-02-15 | Nippon Denko | Sintered manganese based ore conforming to a specific relationship between CaO, MgO, Al2O3 and SiO2 contents for the electric furnace production of a ferro-alloy |
JP2012247289A (en) * | 2011-05-27 | 2012-12-13 | Jfe Steel Corp | Reduction powdering rate measuring method of ore |
KR20160129032A (en) | 2014-03-28 | 2016-11-08 | 제이에프이 스틸 가부시키가이샤 | Method for charging raw material into blast furnace |
JP2020147824A (en) * | 2019-03-15 | 2020-09-17 | 日本製鉄株式会社 | Reactor for simulating blast furnace cohesive zone |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kemppainen et al. | Softening behaviors of acid and olivine fluxed iron ore pellets in the cohesive zone of a blast furnace | |
Philbrook et al. | Rate of FeO reduction from a CaO-SiO 2-Al 2 O 3 slag by carbon-saturated iron | |
Siddiqi et al. | Slag–graphite wettability and reaction kinetics Part 1 Kinetics and mechanism of molten FeO reduction reaction | |
Nogueira et al. | Blast furnace burden softening and melting phenomena: Part II. Evolution of the structure of the pellets | |
JPH08189926A (en) | Method for under-load softening test of ore | |
Dash et al. | A novel technique for determination of flow characteristics of blast furnace slag | |
US4098576A (en) | Method for analyzing the latent gas content of metal samples | |
FUKAGAWA et al. | Smelting reduction mechanism of chromium ore sinter by solid carbon | |
Kinaev et al. | Kinetics of reduction of lead smelting slags with solid carbon | |
Kawashiri et al. | Effect of Nitrogen-less Reducing Atmosphere on Permeability of Cohesive Layer in Blast Furnace | |
Hooey et al. | Evaluation of operational data from the LKAB experimental blast furnace | |
Shiau et al. | Development of slag flowability prediction formula for blast furnace operation and its application | |
NARITA et al. | Fundamental Study on the Behavior of Pellets at Higher Temperature in Blast Furnace | |
CN117233043B (en) | Method for determining cooperative wetting behavior of iron-slag on surface of carbonaceous material and application of method | |
JP2007271579A (en) | Analysis method for magnetite content | |
JP2023089461A (en) | Method for estimating high temperature region reduction rate of sintered ore and method for manufacturing sintered ore | |
Shiau | Real-time indices focus on slag flowability and coke strength for blast furnace operation | |
CN112179802B (en) | Test method and system for measuring slag volatilization performance in laboratory | |
Basu et al. | Application of thermal analysis to study smelting reduction kinetics | |
US4329868A (en) | Method for the determination of hydrogen content in inorganic materials | |
Bhattacharyya et al. | Experimental Analysis of the Interfacial Wetting Phenomena between Slag and Coke Surface under Simulated Conditions of the Bosh Region of Blast Furnace | |
Jang et al. | Phase Equilibria in the System'FeO'-CaO-SiO-AlO-MgO at Different CaO/SiO Ratios. | |
TWI564394B (en) | Method of evaluating permeable property of deadman | |
Ozturk et al. | Dissolution of Fe2O3 and FeO pellets in bath smelting slags | |
Gomez et al. | Microwaves for reduction of iron ore pellet by carbon |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20020402 |