JPH01317154A - Production of calcined substance for producing inorganic dielectric powder - Google Patents

Production of calcined substance for producing inorganic dielectric powder

Info

Publication number
JPH01317154A
JPH01317154A JP63148712A JP14871288A JPH01317154A JP H01317154 A JPH01317154 A JP H01317154A JP 63148712 A JP63148712 A JP 63148712A JP 14871288 A JP14871288 A JP 14871288A JP H01317154 A JPH01317154 A JP H01317154A
Authority
JP
Japan
Prior art keywords
powder
substance
inorganic dielectric
calcined
firing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63148712A
Other languages
Japanese (ja)
Inventor
Seishiro Yamakawa
山河 清志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63148712A priority Critical patent/JPH01317154A/en
Publication of JPH01317154A publication Critical patent/JPH01317154A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain a calcined substance capable of preparing low-cost inorganic dielectric powder in a short production time by using powder prepared by presubjecting the surface thereof to specific treatment as raw material powder in calcining the raw material powder and obtaining the calcined substance used for producing inorganic dielectric powder. CONSTITUTION:Raw material powder is calcined to provide a calcined substance for producing inorganic dielectric power. In the process, powder prepared by preapplying a substance 2 for providing a liquid phase in calcining and a substance 3 for weakening bond of mutual powder in calcining to the surface of powder 1 is used. The substance 2 for providing the liquid phase in calcining is preferably applied and then the substance 3 for weakening the bond of the mutual powder in calcining is preferably applied. In order to apply the above- mentioned substance 2, for example, an aqueous solution of Bi(NO3)3.5H2O is kneaded with fine ZrO2 powder so as to provide a composition of Bi2(ZrO3) to afford a slurry, which is then applied to the raw material powder, dried and pulverized.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無機誘電体粉末製造用焼成物の製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a fired product for producing inorganic dielectric powder.

〔従来の技術〕[Conventional technology]

高度情報化時代を迎え、情報伝送はより高速化・高周波
化の傾向にある。自動車電話やパーソナル無線等の移動
無線、衛星放送、衛星通信やCATV等のニューメディ
アも実用化の段階にある。
As we enter the advanced information age, information transmission tends to become faster and more frequent. Mobile radios such as car telephones and personal radios, new media such as satellite broadcasting, satellite communications, and CATV are also at the stage of practical application.

一方、移動無線やニューメディアでは機器コンパクト化
が推し進められていて、これに伴い誘電体共振器等のマ
イクロ波立体回路素子に対しても小型化が強(望まれて
いる。
On the other hand, in mobile radio and new media, devices are becoming more compact, and along with this, miniaturization of microwave three-dimensional circuit elements such as dielectric resonators is strongly desired.

マイクロ波立体回路素子の大きさは、使用電磁波の波長
が基準となる。比誘電率εrの誘電体中を伝播する電磁
波の波長λは、真空中の伝播波長をλ。とすると、λ−
λ。/εrOSとなる。したがって、素子は、使用され
る回路用誘電体基板の比誘電率が大きい程、小型化にな
る。また、誘電体基板の比誘電率が大きいと、電磁エネ
ルギーが基板内に集中するため、電磁波の漏れが少なく
好都合である。
The size of the microwave three-dimensional circuit element is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with relative permittivity εr is the propagation wavelength in vacuum. Then, λ−
λ. /εrOS. Therefore, the larger the dielectric constant of the circuit dielectric substrate used, the smaller the element becomes. Further, when the relative dielectric constant of the dielectric substrate is large, electromagnetic energy is concentrated within the substrate, which is advantageous in that leakage of electromagnetic waves is small.

誘電体基板として、セラミック基板が用いられることが
多い。セラミック基板で最も普及しているのが、Al2
zOi基板である。比誘電率はやや小さい(9,8)が
、通常の樹脂基板に比べると大きい。
A ceramic substrate is often used as the dielectric substrate. The most popular ceramic substrate is Al2.
It is a zOi substrate. Although the dielectric constant is somewhat small (9, 8), it is larger than that of a normal resin substrate.

ただ、セラミック基板は、後加工(孔明けや切断)が容
易でない、放熱板の圧着が容易でない、大面積化が困難
なので、回路板作成の際にいわゆる多数個取りの個数が
少なく生産性が低いといった難点がある。
However, with ceramic substrates, post-processing (drilling and cutting) is not easy, heat dissipation plates cannot be easily crimped, and it is difficult to make large areas, so when making circuit boards, the number of so-called multi-chip circuit boards is small and productivity is low. There is a drawback that it is low.

これらの問題を解決するため、高比誘電率(εr=50
0〜8000)をもつ無機誘電体粉末と樹脂を用いた複
合基板が開発されつつある。この複合基板は、比誘電率
εrが適度に大きい(εr−10〜30程度)ことが要
求される。比誘電率が余り大きいと、回路の必要幅が細
くなりすぎて回路形成が難しくなる。高比誘電率の無機
誘電体粉末を樹脂と混合させることで適度に大きな比誘
電率εrを持たせるようにしているのである。
In order to solve these problems, a high dielectric constant (εr=50
Composite substrates using inorganic dielectric powders and resins having a particle size of 0 to 8,000) are being developed. This composite substrate is required to have a moderately large dielectric constant εr (about εr-10 to 30). If the dielectric constant is too large, the required width of the circuit becomes too narrow, making it difficult to form the circuit. By mixing inorganic dielectric powder with a high relative permittivity with a resin, a suitably large relative permittivity εr is achieved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、無機誘電体粉末と樹脂を用いた複合基板
は、比誘電率の対温度変化、比誘電率および誘電損失の
対周波数変化が大きく、安定性が十分でない。
However, a composite substrate using an inorganic dielectric powder and a resin has large changes in relative permittivity with respect to temperature and changes in relative permittivity and dielectric loss with respect to frequency, and is not sufficiently stable.

しかも、複合基板に使われる無機誘電体粉末は、製造時
間が長く、コストが高いという難点がある。焼成物粉砕
に要する時間が長いのである。
Moreover, the inorganic dielectric powder used for composite substrates has disadvantages in that it takes a long time to manufacture and is expensive. It takes a long time to grind the fired product.

この発明は、これらの事情に鑑み、製造時間が短くてコ
ストの安い無機誘電体粉末を作ることのできる焼成物の
製法を提供することを課題とする〔課題を解決するため
の手段〕 前記課題を解決するために、請求項1.2記載の発明で
は、原料粉末を焼成して無機誘電体粉末製造に用いられ
る焼成物を得るにあたり、前記原料粉末として、前記焼
成の際に液相となる物質と焼成の際の粉末同士の結合を
弱める物質を表面に予め付着させた粉末を用いるように
しており、請求項2記載の発明では、焼成の際に液相と
なる物質を付着させた上から焼成の際の粉末同士の結合
を弱める物質を付着させてある。
In view of these circumstances, it is an object of the present invention to provide a method for producing a fired product that can produce inorganic dielectric powder in a short manufacturing time and at low cost. [Means for Solving the Problems] The above-mentioned problems In order to solve the problem, in the invention according to claim 1.2, when a raw material powder is fired to obtain a fired product used for producing an inorganic dielectric powder, the raw material powder becomes a liquid phase during the firing. A powder is used in which a substance that weakens the bond between the substance and the powder during firing is attached to the surface of the powder in advance, and in the invention as claimed in claim 2, a substance that becomes a liquid phase during firing is attached to the surface of the powder. A substance is attached to the powder that weakens the bond between the powders during firing.

〔作   用〕[For production]

請求項1.2記載の発明で得られた焼成物では、焼成の
際に液相であった物質が粉末をくるんで圧縮応力を加え
るようになる。粉末内の結晶粒に圧縮応力がかかった状
態だと、誘電体の比誘電率の対温度特性、比誘電率およ
び誘電損失の対周波数特性が良くなる。
In the fired product obtained by the invention described in claim 1.2, the substance that was in a liquid phase during firing wraps the powder and applies compressive stress. When compressive stress is applied to the crystal grains in the powder, the dielectric's relative permittivity versus temperature characteristics and relative permittivity and dielectric loss versus frequency characteristics become better.

必要温度での焼成の際に粉末同士が焼結され結合するの
であるが、原料粉末表面には粉末同士の結合を弱める物
質が付着しているため、焼結の程度、すなわち結合の程
度が弱い。そのため、焼成物が粉砕されやすく、焼成物
粉砕に要する時間が短い。
During firing at the required temperature, the powders are sintered and bonded together, but because there is a substance attached to the surface of the raw powder that weakens the bond between the powders, the degree of sintering, that is, the degree of bonding, is weak. . Therefore, the fired product is easily crushed, and the time required for crushing the fired product is short.

請求項2記載の発明のように、焼成の際に液相となる物
質が内側で焼成の際の粉末同士の結合を弱める物質が外
側となるように物質付着されていると、焼成の際に液相
となる物質が原料粉末表面に直に接するため効果的に粉
末をくるむ一方、粉末同士は、粉末同士の結合を弱める
物質を介して接触するだけであるため、効果的に焼成の
際の結合を弱めることができる。
According to the invention as claimed in claim 2, when the substance is attached so that the substance that becomes a liquid phase during firing is on the inside and the substance that weakens the bond between powders during firing is on the outside, The substance that becomes the liquid phase comes into direct contact with the surface of the raw powder, effectively enveloping the powder, while the powders only come into contact with each other through a substance that weakens the bond between them, so it effectively wraps the powder during firing. Bonds can be weakened.

〔実 施 例〕〔Example〕

以下、この発明を、その実施例に基づいて詳しく説明す
る。
Hereinafter, the present invention will be explained in detail based on examples thereof.

原料粉末には、通常、仮焼粉末が使われる。予め仮焼し
て一定の組成の誘電体粉末にしておくのである。
Calcined powder is usually used as the raw material powder. The dielectric powder is calcined in advance to form a dielectric powder with a certain composition.

例えば、B a o 、 y s S r o 、 z
 s T iOx組成の仮焼粉末を使う。BaC0□、
5rCO□およびTiO□の各粉末を所定量配合し、良
く混ぜ合わせて、アルミナルツボ中、空気雰囲気の下、
1100“Cの温度で仮焼成物を得る。これを、ナイロ
ンポットとナイロンコーティング鋼球を用いた湿式粉砕
により粉砕し仮焼粉末にする。この仮焼粉末は、例えば
、0.5〜5.0μm程度の範囲の粒径である。なお、
仮焼粉末の組成によっては、いわゆるデプレソサとして
、MgTi01.、CaTi0t、Ba5iO+ 、F
ew Ox等が併用されていてもよい。ただ、粉砕する
とデプレソサ効果は弱まるf順向がある。
For example, B a o , y s S r o , z
A calcined powder having a composition of s T iOx is used. BaC0□,
A predetermined amount of each powder of 5rCO□ and TiO□ was blended, mixed well, and placed in an alumina crucible under an air atmosphere.
A calcined product is obtained at a temperature of 1100"C. This is crushed into a calcined powder by wet pulverization using a nylon pot and nylon coated steel balls. This calcined powder has a particle size of, for example, 0.5 to 5. The particle size is in the range of about 0 μm.
Depending on the composition of the calcined powder, MgTi01. , CaTi0t, Ba5iO+ , F
ew Ox, etc. may be used in combination. However, when crushed, the depresosa effect weakens.

つぎに、上記仮焼粉末1の表面に、焼成の際には液相と
なる物質2を表面に付着させる処理を行う。
Next, the surface of the calcined powder 1 is subjected to a treatment in which a substance 2 that becomes a liquid phase during firing is attached to the surface.

この処理は、例えば、つぎのようにする。B12(Zr
O+)の組成となるように、B i  (No−)!・
5H20の水溶液にZr021g!粒子(住人セメン+
−H製 微粒子Zr○、  : 0.007〜0.01
 pm)を混練しスラリー状物を得て、ライカイ機で、
このスラリー状物を少しづつ添加しながら先の仮焼粉末
をかく拌して、スラリー状物を付着させる。そして、−
旦、乾燥・粉砕する。
This process is performed as follows, for example. B12 (Zr
B i (No-)! so that the composition is O+).・
Zr021g in an aqueous solution of 5H20! Particles (Resident Semen +
-H fine particles Zr○: 0.007-0.01
pm) to obtain a slurry, and use a Raikai machine to
While adding this slurry-like material little by little, the previously calcined powder is stirred to adhere the slurry-like material. And -
Then, dry and crush.

つぎに、第1図にみるように、焼成の際の粉末同士の結
合を弱める物質3をさらに付着させて原料粉末を得る。
Next, as shown in FIG. 1, a substance 3 that weakens the bond between the powders during firing is further attached to obtain a raw material powder.

ついで、このようにして作成した原料粉末を焼成(本焼
成)して焼成物を作る。   ゛焼成の際には液相とな
る物質2は、第2図にみるように、焼成により元の仮焼
粉末をくるむ層2′となる。得られた焼成物において、
N2’の熱膨張係数が、くるんでいる内側部分1′の熱
膨張係数よりも小さいため、結晶粒に圧縮応力(機械歪
み)がかかった状態となるのである。つまり、焼成の際
に液相となる物質と焼成の際の粉末同士の結合を弱める
物質は、内側部分1′をくるむ相2′になったときには
、熱膨張係数が内側部分1′よりも小さい物質なのであ
る。
Next, the raw material powder thus created is fired (main firing) to produce a fired product. As shown in FIG. 2, the substance 2 which becomes a liquid phase upon firing becomes a layer 2' surrounding the original calcined powder. In the obtained fired product,
Since the thermal expansion coefficient of N2' is smaller than that of the wrapped inner part 1', compressive stress (mechanical strain) is applied to the crystal grains. In other words, the substance that becomes a liquid phase during firing and the substance that weakens the bond between powders during firing have a coefficient of thermal expansion smaller than that of the inner part 1' when it becomes the phase 2' that surrounds the inner part 1'. It is a substance.

焼成の際の粉末同士の結合を弱める物質3は、第2図に
みるように、最表面に残留物3′のかたちで残り粒子同
士の結合を弱める。
As shown in FIG. 2, the substance 3 that weakens the bond between the powders during firing remains on the outermost surface in the form of a residue 3' and weakens the bond between the particles.

本焼成の場合、焼成温度は、通常、1200〜1400
°Cの範囲である。これは、所定の誘電特性を有するよ
うに構成結晶をある程度まで粒成長させるためである。
In the case of main firing, the firing temperature is usually 1200 to 1400.
°C range. This is to cause the constituent crystals to grow to a certain extent so as to have predetermined dielectric properties.

上記の温度範囲の焼成では、通常、焼成物の粉末は強く
焼結するが、この発明の焼成物では表面に付着する物質
により焼結が弱められる。
When firing in the above temperature range, the powder of the fired product is usually strongly sintered, but in the fired product of the present invention, the sintering is weakened by substances adhering to the surface.

焼成物の粉砕は、例えば、ナイロンポットとナイロンコ
ーティング鋼球を用いた湿式粉砕等により粉末化する。
The fired product is pulverized by, for example, wet pulverization using a nylon pot and a nylon-coated steel ball.

この無機誘電体粉末(セラミック誘電体粉末)の粉末粒
径(平均粒径)は、複合基板の場合、通常、0.1〜3
μm(0,1〜10μm程度の粒度分布をもつ)程度が
好ましい。
The powder particle size (average particle size) of this inorganic dielectric powder (ceramic dielectric powder) is usually 0.1 to 3
The particle size is preferably about .mu.m (having a particle size distribution of about 0.1 to 10 .mu.m).

複合基板を作るには、樹脂組成物(架橋剤等を含む場合
もある)と無機誘電体粉末を混合し、必要に応じて銅薄
等の金属薄を積層し、加熱加圧成形するようにする。
To make a composite board, a resin composition (which may contain a crosslinking agent, etc.) and an inorganic dielectric powder are mixed, and if necessary, a thin metal such as copper is laminated, and then heated and pressure molded. do.

複合基板の強度を高くする場合には、樹脂と粉末の混合
物をガラスクロス等の基材に含浸させ、必要に応して金
属薄を積層し、加熱加圧成形するようにする。例えば、
PPO’(ポリフェニレンオキシド)樹脂と重合架橋剤
のスチレンを含む樹脂液70容量部に無機誘電体粉末を
30容量部を十分に混ぜ合わせたものを、100μmの
厚みのガラスクロスに含浸させ乾燥させる。乾燥させた
基材5枚と35μmの銅薄を両面に積層して、200°
Cの温度下、加熱加圧して硬化させ銅張り複合基板(厚
み0.81i+)を完成する。もちろん、銅薄は回路形
成のためのものであり、回路形成は通常のエツチング法
等により行う。
In order to increase the strength of the composite substrate, a base material such as glass cloth is impregnated with a mixture of resin and powder, and if necessary, a thin metal layer is laminated and molded under heat and pressure. for example,
A glass cloth with a thickness of 100 μm is impregnated with a mixture of 30 parts by volume of an inorganic dielectric powder and 70 parts by volume of a resin liquid containing PPO' (polyphenylene oxide) resin and styrene as a polymeric crosslinking agent, and then dried. Five dried base materials and 35 μm thin copper were laminated on both sides and heated at 200°.
The copper-clad composite substrate (thickness: 0.81i+) is completed by heating and pressurizing and curing at a temperature of C. Of course, the copper thin film is used for forming a circuit, and the circuit is formed by a normal etching method or the like.

続いて、この発明にかかる焼成物を得て、粉末化から複
合基板を得るまでのより具体的な実施例および比較例の
説明を行う。
Next, more specific examples and comparative examples from obtaining a fired product according to the present invention and from powdering to obtaining a composite substrate will be explained.

一実施例1− まず、仮焼粉末(誘電体粉末)を以下のようにして作成
した。
Example 1 - First, calcined powder (dielectric powder) was created as follows.

B a o、 v s S r o 、 2 G T 
! 02組成になるように、出発原料として、B a 
Cow 、S r Cow 、およびTiO2の各粉末
を配合し良く混合した混合物を、アルミナルツボ中、空
気雰囲気の下、温度1100°Cで仮焼成して仮焼成物
を得た。この仮焼成物を、ナイロンポットとナイロンコ
ーティング鋼球を用いた湿式粉砕により粉末化し、0.
5〜5μmの仮焼粉末を作成した。
B ao, vs S r o, 2 G T
! As a starting material, B a
A well-mixed mixture of Cow, Sr Cow, and TiO2 powders was calcined in an alumina crucible in an air atmosphere at a temperature of 1100°C to obtain a calcined product. This pre-calcined product was powdered by wet pulverization using a nylon pot and nylon coated steel balls, and the 0.
A calcined powder of 5 to 5 μm was prepared.

一方、B i 、(Z r O,)、の組成となるよう
に、B i  (NO=)、  ・5H,Oの水溶液に
Zr0z微粒子(住友セメント■製 微粒子Zr01 
:Q、007〜0.01μm)を混練しスラリー状物を
得ておく。このスラリー状物は固形分含有率を3%にし
た。ライカイ機で、このスラリー状物を少しづつ添加し
ながら先の仮焼粉末をかく拌し混合した。この混合物を
100℃で乾燥後にライカイ機で粉砕した。仮焼粉末の
表面に付着したスラリー状物が焼成の際に液相となる物
質である。
On the other hand, Zr0z fine particles (fine particles Zr01 manufactured by Sumitomo Cement ■) were added to an aqueous solution of B i (NO=), ・5H,O so that the composition became B i , (Z r O,).
:Q, 007 to 0.01 μm) to obtain a slurry. This slurry had a solids content of 3%. Using a Raikai machine, this slurry was added little by little while stirring and mixing the previously calcined powder. This mixture was dried at 100° C. and then ground using a Laikai machine. A slurry-like substance that adheres to the surface of the calcined powder is a substance that becomes a liquid phase during firing.

この発明にいう焼成の際に液相となる物質は、焼成前と
焼成後で同一とは限らない。この実施例では、焼成前は
、B i  (NO2)−とZr0zの混合物が、焼成
後にBiz(Zr○、)8の組成となる。もちろん、焼
成の前後で組成が変化しない物質を使ってもよいことは
いうまでもない。
The substance that becomes a liquid phase during firing in this invention is not necessarily the same before and after firing. In this example, before firing, a mixture of B i (NO2)- and Zr0z has a composition of Biz(Zr○, )8 after firing. Of course, it goes without saying that a substance whose composition does not change before and after firing may be used.

続いて、この粉末をビー力にとり、Zrアルコキシド系
コーテイング材(高純度化学@ Zrコーテイング材)
8%溶液を、イソプロピルアルコールで1%溶液に希釈
してから注ぎ、粉末を十分に濡した。その後、濾過によ
り余分なコーテイング液を分離除去した。粉末の方は乾
燥し、原料粉末を得た。粉末表面に付着したZrコーテ
イング材が、焼成の際の粉末同士の結合を弱める物質で
ある。
Next, take this powder and apply it to Zr alkoxide coating material (High Purity Chemical @ Zr Coating Material)
The 8% solution was diluted to a 1% solution with isopropyl alcohol and poured to thoroughly wet the powder. Thereafter, excess coating liquid was separated and removed by filtration. The powder was dried to obtain a raw material powder. The Zr coating material attached to the powder surface is a substance that weakens the bond between the powders during firing.

この発明にいう焼成の際の粉末同士の結合を弱める物質
は、焼成前と焼成後で同一とは限らない。この実施例で
は、焼成前は、Zrアルコキシド系組成であるが、焼成
後にZrO2になる。もちろん、焼成の前後で組成が変
化しない物質を使ってもよいことはいうまでもない。こ
の物質(焼成により組成が変化する場合は変化した物質
)は完全に下の液相に溶解(反応)することなく表面に
残る。この実施例の場合、例えば、X線分析を行うと、
ZrO□のピークがあられれる。
The substance that weakens the bond between powders during firing in this invention is not necessarily the same before and after firing. In this example, the composition is Zr alkoxide before firing, but becomes ZrO2 after firing. Of course, it goes without saying that a substance whose composition does not change before and after firing may be used. This material (or the changed material if the composition changes due to firing) remains on the surface without completely dissolving (reacting) in the liquid phase below. In this example, for example, when performing X-ray analysis,
A peak of ZrO□ appears.

この原料粉末を、7. r Otルツボ中で1350°
C12時間の本焼成して焼成物を得た。この焼成物をポ
ットミルで粉砕して無機誘電体粉末を得た。この粉末の
粒径は約2μmであり、粉砕に要した時間は17.5時
間であった。
7. This raw material powder. r 1350° in Ot crucible
A fired product was obtained by main firing for C12 hours. This fired product was ground in a pot mill to obtain an inorganic dielectric powder. The particle size of this powder was approximately 2 μm, and the time required for pulverization was 17.5 hours.

このようにして得た粉末25容量部とPPO樹脂75容
量部の混合物を作り、両面に35μmの厚みの銅薄が積
層されたかたちとなるように金型にセントし、230℃
の温度で加圧成形し、圧力をかけたまま室温まで冷却す
るようにして複合基板を得た。
A mixture of 25 parts by volume of the powder obtained in this manner and 75 parts by volume of PPO resin was prepared, placed in a mold so that a thin copper layer of 35 μm in thickness was laminated on both sides, and heated to 230°C.
A composite substrate was obtained by pressure molding at a temperature of 100 mL and cooling to room temperature while applying pressure.

一実施例2− 焼成物の作成を以下のようにした他は、実施例1と同様
にして複合基板を得た。
Example 2 - A composite substrate was obtained in the same manner as in Example 1, except that the fired product was created as follows.

B 12(Z r Ox ) xの変わりにB 12(
T i O。
B 12 (Z r Ox ) Instead of x, B 12 (
T i O.

)、の組成になるように、Tie、の微粒子とBi(N
O=)−・5H60とのスラリーを用いるようにした。
), fine particles of Tie and Bi(N
A slurry with O=)-.5H60 was used.

一実施例3− 焼成物の作成を以下のようにした他は、実施例1と同様
にして複合基板を得た。
Example 3 - A composite substrate was obtained in the same manner as in Example 1, except that the fired product was created as follows.

B tg(ZrOt )xの変わりにB 12(S n
 OH)、の組成になるように、3nOtの微粒子とB
i(NO8)*  ・5H20とのスラリーを用いるよ
うにした。
B 12 (S n
OH), fine particles of 3nOt and B
A slurry with i(NO8)*.5H20 was used.

一実施例4− PPO樹脂の代わりに47フ化エチレン(フッ素樹脂)
の25μm粉末を用い、350℃で直圧成形した以外は
、実施例1と同様にして複合基板を得た。
Example 4 - 47 fluoride ethylene (fluororesin) instead of PPO resin
A composite substrate was obtained in the same manner as in Example 1, except that the 25 μm powder was used and direct pressure molding was performed at 350° C.

一実施例5− ppo樹脂の代わりに4フフ化エチレンの25μm粉末
を用い、350℃で直圧成形した以外は、実施例2と同
様にして複合基板を得た。
Example 5 - A composite substrate was obtained in the same manner as in Example 2, except that 25 μm powder of tetrafluoroethylene was used instead of the PPO resin and direct pressure molding was performed at 350°C.

一実施例6− PPO樹脂の代わりに47フ化エチレンの25μm粉末
を用い、350℃で直圧成形した以外は、実施例3と同
様にして複合基板を得た。
Example 6 - A composite substrate was obtained in the same manner as in Example 3, except that 25 μm powder of 47 fluoroethylene was used instead of the PPO resin and direct pressure molding was performed at 350°C.

−比較例1一 実施例1において、上記の2回のコーティングを施すこ
となく、そのまま7.rotルツボ中で1350℃、2
時間の焼成を行った他は、実施例1と同様にして複合基
板を得た。なお、焼成物の粉砕に要した時間は約37時
間であった。
- Comparative Example 1 - In Example 1, 7. 1350℃ in rot crucible, 2
A composite substrate was obtained in the same manner as in Example 1, except that the baking was performed for a certain time. The time required for pulverizing the fired product was approximately 37 hours.

−比較例2− PPO樹脂の代わりに4フツ化エチレンの25μm粉末
を用い、350℃で直圧成形した以外は、比較例1と同
様にして複合基板を得た。
-Comparative Example 2- A composite substrate was obtained in the same manner as in Comparative Example 1, except that 25 μm powder of tetrafluoroethylene was used instead of the PPO resin and direct pressure molding was performed at 350°C.

実施例1〜6および比較例1.2の複合基板について、
−20〜80℃での比誘電率εr変化割合(IMHz)
を測定した。IMHzとIGHzにおける比誘電率εr
と誘電損失tanδも測定した。測定結果を第1表に示
す。
Regarding the composite substrates of Examples 1 to 6 and Comparative Example 1.2,
Change rate of relative permittivity εr at -20 to 80℃ (IMHz)
was measured. Relative permittivity εr at IMHz and IGHz
and dielectric loss tan δ were also measured. The measurement results are shown in Table 1.

1 E 実施例1〜6では、焼成物粉砕時間が17.5時間であ
り、比較例1の粉砕時間の37時間の半分に過ぎない。
1E In Examples 1 to 6, the pulverization time of the fired product was 17.5 hours, which was only half of the pulverization time of Comparative Example 1, which was 37 hours.

粉砕時間が大幅に短縮されていることが分かる。第1表
にみるように、実施例では、比誘電率の温度変化が約3
〜6%程度と、比較例の20%に比べて極めて小さい。
It can be seen that the grinding time is significantly shortened. As shown in Table 1, in the example, the temperature change in relative permittivity was approximately 3
~6%, which is extremely small compared to 20% in the comparative example.

比誘電率と誘電損失の対周波数変化も少ない。なお、複
合基板においては、樹脂により無機誘電体粉末にかかる
圧縮応力も、比誘電率や誘電損失の対周波数特性の向上
に寄与している。
There is also little change in relative permittivity and dielectric loss with respect to frequency. In the composite substrate, the compressive stress applied to the inorganic dielectric powder by the resin also contributes to improving the relative permittivity and dielectric loss vs. frequency characteristics.

この発明は、上記実施例に限らない。粉末組成が上記例
示以外の組成であってもよいことはいうまでもない。焼
成の際の粉末同士の結合を弱める物質として、7.rO
z粉末を始めから付着させるようにしてもよい。
This invention is not limited to the above embodiments. It goes without saying that the powder composition may have a composition other than those exemplified above. 7. As a substance that weakens the bond between powders during firing. rO
The z powder may be applied from the beginning.

焼成物の粉砕に振動ミルやジェットミルを用いるように
してもよい。
A vibration mill or a jet mill may be used to grind the fired product.

複合基板の樹脂が不飽和ポリエステル樹脂やエポキシ樹
脂等であってもよい。ただ、不飽和ポリエステル樹脂を
用いた複合基板では、誘電損失が大きくなる傾向がある
The resin of the composite substrate may be unsaturated polyester resin, epoxy resin, or the like. However, composite substrates using unsaturated polyester resin tend to have large dielectric loss.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、請求項1.2記載の発明の無機誘電
体粉末製造用焼成物の製法では、焼成物における粉末同
士の結合が弱いため、焼成物粉砕に要する時間が短くな
り、粉末製造時間が短くコストが下がる。
As described above, in the method for producing a fired product for producing inorganic dielectric powder according to the invention described in claim 1.2, since the bond between the powders in the fired product is weak, the time required for pulverizing the fired product is shortened, and the powder production Shorter time and lower costs.

また、粉末の結晶粒は圧縮応力を受けて常誘電体特性と
なっており、焼成物を粉砕して得た誘電体粉末では、比
誘電率の対温度特性および比誘電率と誘電損失の対周波
数特性が改善される。
In addition, the crystal grains of the powder are subjected to compressive stress and have paraelectric properties, and in the dielectric powder obtained by pulverizing the fired product, the relative permittivity vs. temperature characteristics and the relative permittivity vs. dielectric loss vs. Frequency characteristics are improved.

請求項2記載の発明の製法では、より効果的に特性を改
善することができ、かつ、粉末同士の結合を弱めること
ができる。
According to the manufacturing method of the invention described in claim 2, the characteristics can be improved more effectively and the bond between the powders can be weakened.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ、この発明の製法で用
いる原料粉末を模式的にあられす断面図であり、第1図
は焼成前、第2図は焼成後をそれぞれあられす。 1・・・仮焼粉末  2・・・焼成の際に液相となる物
質  3・・・焼成の際の粉末同士の結合を弱める物質 第1 図 第2図 丁糧甫正書(自発) 昭和63年8月5日 昭和63年特許願第148712号 2、発明の名称 無機誘電体粉末製造用焼成物の製法 3、補正をする者 事件との関係  特許出願人 住   所    大阪府門真市大字門真1048番地
名 称(583)松下電工株式会社 代表者 イ薇耕役三好 俊 夫 4、代理人 な   し 6、補正の対象 6、補正の対象 明細書 7、補正の内容 ■ 明細書第7頁第18行に「小さい」とあるを、「大
きい」と訂正する。 ■ 明細書第8頁第3行に「小さい」とあるを、「大き
い」と訂正する。
1 and 2 are schematic cross-sectional views of the raw material powder used in the manufacturing method of the present invention, with FIG. 1 showing the powder before firing and FIG. 2 after firing, respectively. 1...Calculated powder 2...Substance that becomes a liquid phase during firing 3...Substance that weakens the bond between powders during firing 1 Figure 2 Figure 2 Ding Fufu Seisho (self-published) Showa August 5, 1983 Patent Application No. 148712 2 Title of the invention Method for manufacturing fired product for manufacturing inorganic dielectric powder 3 Relationship with the case of the person making the amendment Patent applicant address Oaza Kadoma, Kadoma City, Osaka Prefecture 1048 Address Name (583) Matsushita Electric Works Co., Ltd. Representative Toshio Miyoshi 4, No agent 6, Subject of amendment 6, Specification subject to amendment 7, Contents of amendment■ Specification page 7 In line 18, the word "small" should be corrected to "large." ■ In the third line of page 8 of the specification, the word "small" should be corrected to "large."

Claims (1)

【特許請求の範囲】 1 原料粉末を焼成して無機誘電体粉末製造用の焼成物
を得るにあたり、前記原料粉末として、前記焼成の際に
液相となる物質と焼成の際の粉末同士の結合を弱める物
質を表面に予め付着させた粉末を用いるようにすること
を特徴とする無機誘電体粉末製造用焼成物の製法。 2 焼成の際に液相となる物質を付着させた上から焼成
の際の粉末同士の結合を弱める物質を付着させてある請
求項1記載の無機誘電体粉末製造用焼成物の製法。
[Scope of Claims] 1. When firing a raw material powder to obtain a fired product for producing an inorganic dielectric powder, the raw material powder includes a substance that becomes a liquid phase during the firing and a bond between the powders during the firing. 1. A method for producing a fired product for producing an inorganic dielectric powder, characterized in that the powder has a surface preliminarily attached with a substance that weakens the dielectric properties. 2. The method for producing a fired product for producing an inorganic dielectric powder according to claim 1, wherein a substance that weakens the bond between the powders during firing is attached on top of the deposited substance that becomes a liquid phase during firing.
JP63148712A 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder Pending JPH01317154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63148712A JPH01317154A (en) 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63148712A JPH01317154A (en) 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder

Publications (1)

Publication Number Publication Date
JPH01317154A true JPH01317154A (en) 1989-12-21

Family

ID=15458911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63148712A Pending JPH01317154A (en) 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder

Country Status (1)

Country Link
JP (1) JPH01317154A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149565A (en) * 1997-07-31 1999-02-23 Taiyo Yuden Co Ltd Production of ceramic powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1149565A (en) * 1997-07-31 1999-02-23 Taiyo Yuden Co Ltd Production of ceramic powder

Similar Documents

Publication Publication Date Title
JP2002158135A (en) Electronic component
JP2002355544A (en) Method of producing spherical ceramic powder, spherical ceramic powder, and composite material
JPH01317154A (en) Production of calcined substance for producing inorganic dielectric powder
JP3546001B2 (en) Electronic components
JP4828692B2 (en) Method for producing dielectric powder
JP5566183B2 (en) Dielectric powder and sintered body and capacitor using the same
JPS62170102A (en) Dielectric ceramic and making thereof
JPH01298053A (en) Production of sintered material for producing inorganic dielectric powder
JP2004221603A (en) Coupler
JPH01317153A (en) Production of calcined substance for producing inorganic dielectric powder
JP2006260895A (en) Compound dielectric material, prepreg using the same, metal foil coating object, molded body, compound dielectric substrate, and multilayer substrate
JP2006344407A (en) Composite dielectric material, prepreg using the same, metal foil painted object, molded compact, composite dielectric base board, multi-layered base board, and manufacturing method of composite dielectric material
JPH02225357A (en) Complex dielectric material
JP3339989B2 (en) Low dielectric loss material
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JPH02225358A (en) Complex dielectric material
FI129541B (en) Manufacturing composite electroceramics
KR100493834B1 (en) Porous Ceramic and Method for Preparation Thereof, and Microstrip Substrate
US20240067571A1 (en) Manufacturing composite electroceramics using waste electroceramics
JPH10231173A (en) Dielectric porcelain composition, dielectric porcelain material and its production, and dielectric element and its production
JP4998833B2 (en) Manufacturing method of glass ceramic substrate and glass ceramic substrate
JPH0840769A (en) Dielectric material for high frequency
JPH09235160A (en) Ceramics composition and production of ceramics ware
JPH01298004A (en) Production of calcined material for producing inorganic dielectric powder
JP2004201333A (en) Balun transformer