JPH01298053A - Production of sintered material for producing inorganic dielectric powder - Google Patents

Production of sintered material for producing inorganic dielectric powder

Info

Publication number
JPH01298053A
JPH01298053A JP63128639A JP12863988A JPH01298053A JP H01298053 A JPH01298053 A JP H01298053A JP 63128639 A JP63128639 A JP 63128639A JP 12863988 A JP12863988 A JP 12863988A JP H01298053 A JPH01298053 A JP H01298053A
Authority
JP
Japan
Prior art keywords
powder
calcined
dielectric
sintered material
powders
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63128639A
Other languages
Japanese (ja)
Inventor
Seishiro Yamakawa
山河 清志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63128639A priority Critical patent/JPH01298053A/en
Publication of JPH01298053A publication Critical patent/JPH01298053A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To obtain the title sintered material capable of producing inorg. dielectric powder in a short time at a low cost by previously depositing a substance capable of weakening the binding strength between powder particles in calcination on the surface of raw powder, and then sintering the raw powder. CONSTITUTION:The calcined powder of Ba0.9Sr0.1TiO2, etc., is ordinarily used as the raw powder to obtain a sintered material. Namely, the calcined material is wet-crushed by the wet crushing using a nylon pot And nylon-coated steel balls to obtain the calcined powder. The particle diameter of the calcined powder is controlled, for example, to about 0.5-5.0mum. A substance capable of weakening the binding strength between the powder particles such as fine ZrO2 powder is then deposited on the surface of the calcined powder. The obtained raw powder is sintered at 1200-1400 deg.C to obtain the sintered material for producing inorg. dielectric powder. In addition, the sintered material is crushed, for example, by the wet crushing using a nylon pot and nylon-coated steel balls.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無機誘電体粉末製造用焼成物の製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a fired product for producing inorganic dielectric powder.

〔従来の技術〕[Conventional technology]

高度情報化時代を迎え、情報伝送はより高速化・高周波
化の傾向にある。自動車電話やパーソナル無線等の移動
無線、衛星放送、衛星通信やCATV等のニューメディ
アも実用化の段階にある。
As we enter the advanced information age, information transmission tends to become faster and more frequent. Mobile radios such as car telephones and personal radios, new media such as satellite broadcasting, satellite communications, and CATV are also at the stage of practical application.

一方、移動無線やニューメディアでは機器コンパクト化
が推し進められていて、これに伴い誘電体共振器等のマ
イクロ波立体回路素子に対しても小型化が強く望まれて
いる。
On the other hand, in mobile radio and new media, devices are being made more compact, and along with this, there is a strong desire for miniaturization of microwave three-dimensional circuit elements such as dielectric resonators.

マイクロ波立体回路素子の大きさは、使用電磁波の波長
が基準となる。比誘電率εrの誘電体中を伝播する電磁
波の波長λは、真空中の伝播波長をλ、とすると、λ=
λ。/εrllSとなる。したがって、素子は、使用さ
れる回路用誘電体基板の比誘電率が大きい程、小型化に
なる。また、誘電体基板の比誘電率が大きいと、電磁エ
ネルギーが基板内に集中するため、電磁波の漏れが少な
く好都合である。
The size of the microwave three-dimensional circuit element is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with a relative permittivity εr is λ=
λ. /εrllS. Therefore, the larger the dielectric constant of the circuit dielectric substrate used, the smaller the element becomes. Further, when the relative dielectric constant of the dielectric substrate is large, electromagnetic energy is concentrated within the substrate, which is advantageous in that leakage of electromagnetic waves is small.

誘電体基板として、セラミック基板が用いられることが
多い。セラミック基板で最も普及しているのが、A1t
o*基板である。比誘電率はやや小さい(9,8)が、
通常の樹脂基板に比べると大きい。
A ceramic substrate is often used as the dielectric substrate. The most popular ceramic substrate is A1t.
o*Substrate. Although the relative dielectric constant is somewhat small (9, 8),
Larger than normal resin substrates.

ただ、セラミック基板は、後加工(孔明けや切断)が容
易でない、放熱板の圧着が容易でない、大面積化が困難
なので、回路板作成の際にいわゆる多数個取りの個数が
少なく生産性が低いといった難点がある。
However, with ceramic substrates, post-processing (drilling and cutting) is not easy, heat dissipation plates cannot be easily crimped, and it is difficult to make large areas, so when making circuit boards, the number of so-called multi-chip circuit boards is small and productivity is low. There is a drawback that it is low.

これらの問題を解決するため、高比誘電率(εr=50
0〜8000)をもつ無機誘電体粉末と樹脂を用いた複
合基板が開発されつつある。この複合基板は、比誘電率
εrが適度に大きい(εr−10〜30程度)ことが要
求される。比誘電率が余り大きいと、回路の必要幅が細
くなりすぎて回路形成が難しくなる。高比誘電率の無機
誘電体粉末を樹脂と混合させることで適度に大きな比誘
電率εrを持たせるようにしているのである。
In order to solve these problems, a high dielectric constant (εr=50
Composite substrates using inorganic dielectric powders and resins having a particle size of 0 to 8,000) are being developed. This composite substrate is required to have a moderately large dielectric constant εr (about εr-10 to 30). If the dielectric constant is too large, the required width of the circuit becomes too narrow, making it difficult to form the circuit. By mixing inorganic dielectric powder with a high relative permittivity with a resin, a suitably large relative permittivity εr is achieved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、複合基板に使われる無機誘電体粉末は、製造時
間が長く、コストが高いという難点がある。焼成物粉砕
に要する時間が長いのである。
However, inorganic dielectric powder used in composite substrates has drawbacks such as long manufacturing time and high cost. It takes a long time to grind the fired product.

この発明は、上記事情に鑑み、製造時間が短くてコスト
の安い無機誘電体粉末を作ることのできる焼成物の製法
を提供することを課題とする。
SUMMARY OF THE INVENTION In view of the above circumstances, it is an object of the present invention to provide a method for producing a fired product that can produce inorganic dielectric powder in a short production time and at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

この発明では、前記課題を解決するために、原料粉末を
焼成して無機誘電体粉末製造用の焼成物を得るにあたり
、原料粉末として、焼成の際の粉末同士の結合を弱める
物質を表面に予め付着させた粉末を用いるようにしてい
る。
In this invention, in order to solve the above problem, when firing raw material powder to obtain a fired product for producing inorganic dielectric powder, a substance that weakens the bond between the powders during firing is preliminarily applied to the surface of the raw material powder. The attached powder is used.

〔作   用〕[For production]

必要温度での焼成の際に粉末同士が焼結され結合するの
であるが、原料粉末表面には粉末同士の結合を弱める物
質が付着しているため、焼結の程度、すなわち結合の程
度力回叩)。そのため、焼成物が粉砕されやすく、焼成
物粉砕に要する時間が短い。
During firing at the required temperature, the powders are sintered and bonded together, but since there is a substance attached to the surface of the raw powder that weakens the bond between the powders, the degree of sintering, that is, the degree of bonding (beat). Therefore, the fired product is easily crushed, and the time required for crushing the fired product is short.

〔実 施 例〕〔Example〕

以下、この発明を、その実施例に基づいて詳しく説明す
る。
Hereinafter, the present invention will be explained in detail based on examples thereof.

原料粉末には、通常、仮焼粉末が使われる。予め仮焼し
て一定の組成の誘電体粉末にしておくのである。
Calcined powder is usually used as the raw material powder. The dielectric powder is calcined in advance to form a dielectric powder with a certain composition.

例えば、B a*、* S ro、+ T i Ox組
成の仮焼粉末を使う。B a COs 、S r CO
!およびTiO□の各粉末を所定量配合し、良(混ぜ合
わせて、アルミナルツボ中で1100℃の温度で仮焼成
物を得る。これを、ナイロンポットとナイロンコーティ
ング鋼球を用いた湿式粉砕により粉砕し仮焼粉末にする
。この仮焼粉末は、例えば、0.5〜5.0μm程度の
範囲の粒径である。なお、仮焼粉末の組成によっては、
いわゆるデプレッサとして、MgTi0* 、CaTi
0* 、BaS ios、Fegoz等が併用されてい
てもよい。ただ、粉砕するとデプレッサ効果は弱まる傾
向がある。
For example, a calcined powder having a composition of B a *, * S ro, + T i Ox is used. B a COs , S r CO
! A pre-calcined product is obtained by blending a predetermined amount of each powder of TiO□ and TiO□ in an aluminum crucible at a temperature of 1100°C. This calcined powder has a particle size in the range of, for example, 0.5 to 5.0 μm. Depending on the composition of the calcined powder,
As so-called depressors, MgTi0*, CaTi
0*, BaS ios, Fegoz, etc. may be used in combination. However, when crushed, the depressor effect tends to weaken.

つぎに、この仮焼粉末の表面に焼成の際の粉末同士の結
合を弱める物質を付着させた原料粉末を作る。この物質
は、第1図にみるように、仮焼粉末1表面に粒状2で付
着させるようにしてもよいし、第2図にみるように、層
状3に付着させるようにしてもよい。具体的にはZrO
□微粉末を付着させる等の処理を行う。
Next, a raw material powder is prepared by attaching a substance to the surface of this calcined powder to weaken the bond between the powders during firing. This substance may be attached to the surface of the calcined powder 1 in the form of particles 2, as shown in FIG. 1, or may be attached in the form of layers 3, as shown in FIG. Specifically, ZrO
□ Perform processing such as attaching fine powder.

ついで、このようにして作成した原料粉末を焼成(本焼
成)して焼成物を作る。
Next, the raw material powder thus created is fired (main firing) to produce a fired product.

本焼成の場合、焼成温度は、通常、1200〜1400
℃の範囲である。これは、所定の誘電特性を有するよう
に構成結晶をある程度まで粒成長させるためである。
In the case of main firing, the firing temperature is usually 1200 to 1400.
℃ range. This is to cause the constituent crystals to grow to a certain extent so as to have predetermined dielectric properties.

上記の温度範囲の焼成では、通常、焼成物の粉末は強く
焼結するが、この発明の焼成物では表面に付着する物質
により焼結が弱められる。
When firing in the above temperature range, the powder of the fired product is usually strongly sintered, but in the fired product of the present invention, the sintering is weakened by substances adhering to the surface.

焼成物の粉砕は、例えば、ナイロンポットとナイロンコ
ーティング鋼球を用いた湿式粉砕等により粉末化する。
The fired product is pulverized by, for example, wet pulverization using a nylon pot and a nylon-coated steel ball.

この無機誘電体粉末(セラミック誘電体粉末)の粉末粒
径(平均粒径)は、複合基板の場合、通常、0.1〜3
μm(0,1〜10μm程度の粒度分布をもつ)程度が
好ましい。
The powder particle size (average particle size) of this inorganic dielectric powder (ceramic dielectric powder) is usually 0.1 to 3
The particle size is preferably about .mu.m (having a particle size distribution of about 0.1 to 10 .mu.m).

複合基板を作るには、樹脂組成物(架橋剤等を含む場合
もある)と無機誘電体粉末を混合し、必要に応じて銅薄
等の金属薄を積層し、加熱加圧成形するようにする。
To make a composite board, a resin composition (which may contain a crosslinking agent, etc.) and an inorganic dielectric powder are mixed, and if necessary, a thin metal such as copper is laminated, and then heated and pressure molded. do.

複合基板の強度を高くする場合には、樹脂と粉末の混合
物をガラスクロス等の基材に含浸させ、必要に応じて金
属薄を積層し、加熱加圧成形するようにする。例えば、
PP0(ポリフェニレンオキシド)樹脂と重合架橋剤の
スチレンを含む樹脂液70容量部に無(幾誘電体粉末を
30容量部を十分に混ぜ合わせたものを、100μmの
厚みのガラスクロスに含浸させ乾燥させる。乾燥させた
基材5枚と35μmの銅薄を両面に積層して、200℃
の温度下、加熱加圧して硬化させ銅張り複合基板(厚み
0.8 mm )を完成する。もちろん、銅薄は回路形
成のだめのものであり、回路形成は通常のエツチング法
等により行う。
In order to increase the strength of the composite substrate, a base material such as glass cloth is impregnated with a mixture of resin and powder, and if necessary, a thin metal layer is laminated thereon, followed by heat-pressing molding. for example,
A mixture of 70 parts by volume of a resin solution containing PP0 (polyphenylene oxide) resin and styrene as a polymeric crosslinking agent and 30 parts by volume of geometric dielectric powder was impregnated into a 100 μm thick glass cloth and dried. 5 dried base materials and 35 μm thin copper were laminated on both sides and heated at 200°C.
The copper-clad composite substrate (thickness: 0.8 mm) is completed by curing by heating and pressurizing at a temperature of . Of course, thin copper is not suitable for forming circuits, and circuits are formed by ordinary etching methods.

ところで、複合基板では、比誘電率の対温度変化が大き
く、安定性が十分でない。しかし、本焼成される原料粉
末が、キュリー温度が異なる複数種類の仮焼粉末の混合
物からなる場合には、対温度変化を小さくすることがで
きる。最終的に得られた無機誘電体粉末として、キュリ
ー温度の異なる部分が並列・直列結合した粉末が得られ
、これにより複合基板の比誘電率の対温度特性が著しく
改善される。
By the way, in a composite substrate, the relative dielectric constant changes greatly with respect to temperature, and stability is not sufficient. However, when the raw material powder to be subjected to main firing is a mixture of a plurality of types of calcined powders having different Curie temperatures, the change with respect to temperature can be reduced. The finally obtained inorganic dielectric powder is a powder in which portions with different Curie temperatures are connected in parallel and series, thereby significantly improving the temperature characteristics of the relative dielectric constant of the composite substrate.

もちろん、キュリー温度の異なる無機誘電体粉末を別々
に装潰し、樹脂と混ぜる段階で始めて混合しても比誘電
率の対温度変化を小さくさせることができる。しかし、
本焼成の前の仮焼粉末の段階で異なるキュリー温度の粉
末を混合するようにした方が対温度特性向上の程度が大
きい。
Of course, even if inorganic dielectric powders with different Curie temperatures are packed separately and mixed together at the stage of mixing with the resin, the change in relative dielectric constant with respect to temperature can be reduced. but,
Temperature characteristics can be improved to a greater degree by mixing powders with different Curie temperatures at the stage of calcining powder before main firing.

続いて、この発明にかかる焼成物を得て、粉末化から複
合基板を得るまでのより具体的な実施例および比較例の
説明を行う。
Next, more specific examples and comparative examples from obtaining a fired product according to the present invention and from powdering to obtaining a composite substrate will be explained.

一実施例1− 3種類の仮焼粉末(誘電体粉末)を以下のようにして作
成した。
Example 1 Three types of calcined powders (dielectric powders) were created as follows.

Bao、*es re、+oT i Oz組成になるよ
うに、B a COx 、 S r COx 、および
TiO,の各粉末を配合し良く混合した混合物を、アル
ミナルツボ中で、温度1100℃で仮焼成して仮焼成物
を得た。この仮焼成物を、ナイロンポットとナイロンコ
ーティング鋼球を用いた湿式粉砕により粉末化し、0.
5〜5μmの仮焼粉末(仮焼粉末A)を作成した。
A well-mixed mixture of B a COx , S r COx , and TiO powders was calcined at a temperature of 1100°C in an aluminum crucible so that it had a composition of Bao, *es re, +oTiOz. A pre-fired product was obtained. This pre-calcined product was powdered by wet pulverization using a nylon pot and nylon coated steel balls, and the 0.
A calcined powder (calcined powder A) having a diameter of 5 to 5 μm was prepared.

上記と同様、B a T i o、*s Z r e、
+sos組成になるように、BaC0* 、Zr0gお
よびTiO3の各粉末を配合し良く混合した混合物を、
アルミナルツボ中で、温度1100°Cで仮焼成して仮
焼成物を得た。この仮焼成物を、ナイロンポットとナイ
ロンコーティング鋼球を用いた湿式粉砕により粉末化し
、0.5〜5μmの仮焼粉末(仮焼粉末B)を作成した
As above, B a T io, *s Z r e,
A mixture of BaC0*, Zr0g, and TiO3 powders was blended and mixed well so as to have a +sos composition.
A calcined product was obtained by calcining in an aluminum crucible at a temperature of 1100°C. This calcined product was pulverized by wet pulverization using a nylon pot and a nylon-coated steel ball to create a calcined powder (calcined powder B) of 0.5 to 5 μm.

やはり、同様に、B ao、t S re、! T i
 Os組成になるように、B a COs 、S r 
CotおよびTiO□の各粉末を配合し良く混合した混
合物を、アルミナルツボ中で、温度1100℃で仮焼成
して仮焼成物を得た。この仮焼成物を、ナイロンポット
とナイロンコーティング鋼球を用いた湿式粉砕により粉
末化し、0.5〜5μmの仮焼粉末(仮焼粉末C)を作
成した。
Again, similarly, B ao, t S re,! Ti
B a COs , S r
A mixture of Cot and TiO□ powders and well mixed was calcined in an alumina crucible at a temperature of 1100° C. to obtain a calcined product. This calcined product was pulverized by wet pulverization using a nylon pot and a nylon-coated steel ball to create a calcined powder (calcined powder C) of 0.5 to 5 μm.

各仮焼粉末A、B、Cをそれぞれ成形焼結(1350°
C)して誘電特性を調べてみると、仮焼粉末Aのキュリ
ー温度は80°C1仮焼粉宋Bのキュリー温度は50゛
C1仮焼粉末Cのキュリー温度は20℃であった。
Each of the calcined powders A, B, and C is molded and sintered (1350°
C) When the dielectric properties were investigated, the Curie temperature of calcined powder A was 80°C, the Curie temperature of calcined powder SONG B was 50°C, and the Curie temperature of calcined powder C was 20°C.

一方、蒸留水にZrog微粒子(住友セメント@製 粒
子径0. OO7〜0.01μm)を混練(固形分3%
)しスラリー状としたものを準備した。
On the other hand, Zrog fine particles (manufactured by Sumitomo Cement @ particle size 0.007~0.01 μm) were mixed in distilled water (solid content 3%).
) and prepared a slurry.

各仮焼粉末A、B、Cを等モルづつ秤量し、ライカイ機
で、先のZrO□微粒子を含むスラリーを少しずつ滴下
しながらかく拌し、ZrO□ (焼成の際の粉末同士の
結合を弱める物質)を仮焼粉末表面に付着させ原料粉末
を作成した。
Weigh equal moles of each of the calcined powders A, B, and C, and stir the slurry containing the ZrO□ fine particles little by little using a Likai machine. A raw material powder was created by attaching a weakening substance) to the surface of the calcined powder.

スラリの滴下量は、乾燥後のZrO,微粉末付着量が仮
焼粉末100重量部に対し0.1重量部になるようにし
た。
The amount of the slurry dropped was such that the amount of ZrO fine powder deposited after drying was 0.1 part by weight per 100 parts by weight of the calcined powder.

この原料粉末を100℃で乾燥させた後、ライカイ機で
一旦粉砕してから、Zr Ozルツボ中で1350℃、
3時間の本焼成を行い、冷却して焼成物を得た。この焼
成物をボッl−ミルで粉砕して無機誘電体粉末を得た。
After drying this raw material powder at 100°C, it was once pulverized using a Raikai machine, and then pulverized at 1350°C in a ZrOz crucible.
Main firing was performed for 3 hours, and a fired product was obtained by cooling. This fired product was ground in a bollard mill to obtain an inorganic dielectric powder.

この粉末の粒径は約2μmであり、粉砕に要した時間は
16.5時間であった。
The particle size of this powder was approximately 2 μm, and the time required for pulverization was 16.5 hours.

このようにして得た粉末25容量部とPPO樹脂75容
量部の混合物を作り、両面に35μmの厚みの銅薄が積
層されたかたちとなるように金型にセットし、230℃
の温度で加圧成形し、圧力をかけたまま室温まで冷却す
るようにして複合基板を得た。
A mixture of 25 parts by volume of the powder thus obtained and 75 parts by volume of PPO resin was made, set in a mold so that a 35 μm thick copper thin layer was laminated on both sides, and heated to 230°C.
A composite substrate was obtained by pressure molding at a temperature of 100 mL and cooling to room temperature while applying pressure.

一実施例2− 焼成物の作成を以下のようにした他は、実施例1と同様
にして複合基板を得た。
Example 2 - A composite substrate was obtained in the same manner as in Example 1, except that the fired product was created as follows.

仮焼粉末A、0.5モル、仮焼粉末B、0.3モル、仮
焼粉末C5042モルの割合とした他は実施例1と同様
である。
The procedure was the same as in Example 1 except that the ratios were 0.5 mol of calcined powder A, 0.3 mol of calcined powder B, and 5042 mol of calcined powder C.

一実施例3− 焼成物の作成を以下のようにした他は、実施例2と同様
にして複合基板を得た。
Example 3 - A composite substrate was obtained in the same manner as in Example 2, except that the fired product was created as follows.

7、rotのスラリーの代わりに、Zrアルコキシド系
コーテイング材(高純度化学(41製 Zrコーテイン
グ材)8%溶液をイソプロピルアルコールで1%溶液に
希釈したものを準備し、ビー力に入れた仮焼粉末A、B
、Cに注いで粉末を十分に濡らしてから濾過して余分な
コーテイング液を除去分離した。つまり、Zrコーテイ
ング材(焼成の際の粉末同士の結合を弱める物質)で仮
焼粉末表面をコーティングした原料粉末を作成したので
ある。
7. Instead of the rot slurry, prepare an 8% solution of Zr alkoxide coating material (Zr coating material made by Kojundo Kagaku (manufactured by 41) diluted with isopropyl alcohol to a 1% solution, and calcined it in a beer force. Powder A, B
, C to sufficiently wet the powder, and then filtered to remove and separate the excess coating liquid. In other words, a raw material powder was created in which the surface of the calcined powder was coated with a Zr coating material (a substance that weakens the bond between powders during firing).

一実施例4一 実施例1で得た仮焼粉末A、B、Cそれぞれを個別にZ
r0zスラリーを用いZr0z微粉末付着処理を行い3
種類の原料粉末を作成した。ZrO!微粉末付着処理は
第1実施例と同じようにした。
Example 4 Each of the calcined powders A, B, and C obtained in Example 1 was
Zr0z fine powder adhesion treatment using r0z slurry 3
Various types of raw material powders were created. ZrO! The fine powder adhesion treatment was the same as in the first example.

ついで、3種類の原料粉末毎の焼成物を実施例1と同様
の方法で得て、やはり、個別に粉砕してキュリー温度の
異なる3種類の無機誘電体粉末を作成した。
Next, fired products of each of the three types of raw material powders were obtained in the same manner as in Example 1, and individually pulverized to create three types of inorganic dielectric powders having different Curie temperatures.

得られた各粉末を等モルづつ混合した混合粉末を用い、
第1実施例と同様の方法で複合基板を得た。
Using a mixed powder obtained by mixing equimolar amounts of each of the obtained powders,
A composite substrate was obtained in the same manner as in the first example.

一実施例5− PPO樹脂の代わりに4フツ化エチレン(フッ素樹脂)
の25μm粉末を用い、350°Cで直圧成形した以外
は、実施例1と同様にして複合基板を得た。
Example 5 - Tetrafluoroethylene (fluororesin) instead of PPO resin
A composite substrate was obtained in the same manner as in Example 1, except that the 25 μm powder was used and direct pressure molding was performed at 350°C.

一実施例6− PPO樹脂の代わりに4フツ化エチレン(フッ素系樹脂
)の25μm粉末を用い、350℃で直圧成形した以外
は、実施例2と同様にして複合基板を得た。
Example 6 - A composite substrate was obtained in the same manner as in Example 2, except that 25 μm powder of tetrafluoroethylene (fluorine resin) was used instead of PPO resin and direct pressure molding was performed at 350°C.

一実施例7− PPO樹脂の代わりに4フツ化エチレン(フッ素系樹脂
)の25μm粉末を用い、350℃で直圧成形した以外
は、実施例3と同様にして複合基板を得た。
Example 7 A composite substrate was obtained in the same manner as in Example 3, except that 25 μm powder of tetrafluoroethylene (fluorine resin) was used instead of PPO resin and direct pressure molding was performed at 350°C.

一実施例8− PPO樹脂の代わりに4フン化エチレン(フッ素系樹脂
)の25μm粉末を用い、350℃で直圧成形した以外
は、実施例4と同様にして複合基板を得た。
Example 8 - A composite substrate was obtained in the same manner as in Example 4, except that 25 μm powder of tetrafluoroethylene (fluorine resin) was used instead of PPO resin and direct pressure molding was performed at 350°C.

一比較例1一 実施例1で得た仮焼粉末Cを単独で用いる(仮焼粉末A
、Bは使用せず)とともに、Zr0z微粉末付着処理を
行わないようにした他は実施例1と同様にして複合基板
を得た。なお、焼成物の粉砕に要した時間は約37.5
時間であった。
Comparative Example 1 Calcined powder C obtained in Example 1 is used alone (Calcined powder A
, B was not used), and a composite substrate was obtained in the same manner as in Example 1, except that the Zr0z fine powder adhesion treatment was not performed. The time required to crush the fired product was approximately 37.5
It was time.

−比較例2− PPO樹脂の代わりに4フン化エチレン(フッ素系樹脂
)の25μm粉末を用い、350°Cで直圧成形した以
外は、比較例1と同様にして複合基板を得た。
- Comparative Example 2 - A composite substrate was obtained in the same manner as Comparative Example 1, except that 25 μm powder of tetrafluoroethylene (fluorine resin) was used instead of PPO resin and direct pressure molding was performed at 350°C.

実施例1〜8および比較例1.2の複合基板について、
−20〜80 ’Cでの比誘電率εr変化割合(IMH
z)を測定した。IMHzとIGIlzにおける比誘電
率εrと誘電損失tanδも測定した。測定結果を第1
表に示す。
Regarding the composite substrates of Examples 1 to 8 and Comparative Example 1.2,
Change rate of relative permittivity εr at -20 to 80'C (IMH
z) was measured. The relative permittivity εr and dielectric loss tanδ at IMHz and IGIlz were also measured. Measurement results first
Shown in the table.

実施例1では、焼成物粉砕時間が16.5時間であり、
比較例1の粉砕時間の37,5時間の半分に過ぎない。
In Example 1, the firing time was 16.5 hours,
This is only half of the grinding time of Comparative Example 1, which was 37.5 hours.

粉砕時間が大幅に短縮されていることが分かる。第1表
にみるように、実施例では、いずれもキュリー温度の異
なる複数の無機誘電体粉末を用いており、比誘電率の温
度変化が約3〜6%程度と、比較例の20%に比べて極
めて小さい。特に、キュリー温度の異なる複数の仮焼粉
末を混合して焼成物を得るようにした実施例1の温度変
化は、無機誘電体粉末を得たのちキュリー温度の異なる
粉末を混合するようにした他は同じ条件とした実施例4
の温度変化の半分である。なお、複合基板においては、
無機誘電体粉末には樹脂による圧縮応力がかかっている
ため、比誘電率や誘電損失の対周波数特性も誘電体粉末
自体がもつ特性よりも幾分向上している。
It can be seen that the grinding time is significantly shortened. As shown in Table 1, in the examples, multiple inorganic dielectric powders with different Curie temperatures were used, and the temperature change in relative permittivity was about 3 to 6%, which was 20% of the comparative example. extremely small in comparison. In particular, the temperature change in Example 1, in which a fired product was obtained by mixing a plurality of calcined powders with different Curie temperatures, was different from that in which powders with different Curie temperatures were mixed after obtaining an inorganic dielectric powder. Example 4 with the same conditions
half of the temperature change. In addition, in the composite board,
Since the inorganic dielectric powder is subjected to compressive stress due to the resin, the relative permittivity and dielectric loss versus frequency characteristics are also somewhat improved compared to the characteristics of the dielectric powder itself.

この発明は、上記実施例に限らない。粉末組成が上記例
示以外の組成であってもよいことはいうまでもない。
This invention is not limited to the above embodiments. It goes without saying that the powder composition may have a composition other than those exemplified above.

焼成物の粉砕に振動ミルやジェットミルを用いるように
してもよい。
A vibration mill or a jet mill may be used to grind the fired product.

複合基板の樹脂が不飽和ポリエステル樹脂やエポキシ樹
脂等であってもよい。ただ、不飽和ポリエステル樹脂を
用いた複合基板では、誘電損失が大きくなる傾向がある
The resin of the composite substrate may be unsaturated polyester resin, epoxy resin, or the like. However, composite substrates using unsaturated polyester resin tend to have large dielectric loss.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の無機誘電体粉末製造用焼
成物の製法では、焼成物における粉末同士の結合が弱い
ため、粉砕に要する時間が短くなり、粉末製造時間が短
くコストが下がる。
As described above, in the method for producing a fired product for producing inorganic dielectric powder according to the present invention, since the bond between the powders in the fired product is weak, the time required for pulverization is shortened, and the powder production time is shortened and costs are reduced.

また、実施例の複合基板の場合にキュリー温度の異なる
複数の粉末を併用するようにすると、比誘電率の対温度
変化を改善することができる。
Further, in the case of the composite substrate of the example, if a plurality of powders having different Curie temperatures are used together, the change in relative dielectric constant with respect to temperature can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ、この発明の製法で用
いる原料粉末を模式的にあられす断面図である。 1・・・仮焼粉末  2.3・・・焼成の際の粉末同士
の結合を弱める物質 代理人 弁理士  松 本 武 彦
FIG. 1 and FIG. 2 are respectively schematic cross-sectional views of raw material powder used in the manufacturing method of the present invention. 1... Calcined powder 2.3... Substance agent that weakens the bond between powders during firing Patent attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】[Claims] 1 原料粉末を焼成して無機誘電体粉末製造に用いられ
る焼成物を得るにあたり、前記原料粉末として、焼成の
際の粉末同士の結合を弱める物質を表面に予め付着させ
た粉末を用いるようにすることを特徴とする無機誘電体
粉末製造用焼成物の製法。
1. When firing a raw material powder to obtain a fired product used in the production of inorganic dielectric powder, the raw material powder is a powder on which a substance that weakens the bond between the powders during firing is attached in advance to the surface. A method for producing a fired product for producing inorganic dielectric powder, characterized by:
JP63128639A 1988-05-26 1988-05-26 Production of sintered material for producing inorganic dielectric powder Pending JPH01298053A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63128639A JPH01298053A (en) 1988-05-26 1988-05-26 Production of sintered material for producing inorganic dielectric powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63128639A JPH01298053A (en) 1988-05-26 1988-05-26 Production of sintered material for producing inorganic dielectric powder

Publications (1)

Publication Number Publication Date
JPH01298053A true JPH01298053A (en) 1989-12-01

Family

ID=14989794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63128639A Pending JPH01298053A (en) 1988-05-26 1988-05-26 Production of sintered material for producing inorganic dielectric powder

Country Status (1)

Country Link
JP (1) JPH01298053A (en)

Similar Documents

Publication Publication Date Title
EP0826649B1 (en) Methods of making ferroelectric ceramic-polymer composites for voltage-variable dielectric tuning and structures using same
JP2003521566A (en) Composite article comprising a powder filler and a polymer matrix and a method for forming such a composite article
JP2002355544A (en) Method of producing spherical ceramic powder, spherical ceramic powder, and composite material
CN109928753A (en) A kind of low-k silicon substrate microwave dielectric ceramic materials and preparation method thereof
WO2020209039A1 (en) Dielectric inorganic composition
JPH01298053A (en) Production of sintered material for producing inorganic dielectric powder
JP3624405B2 (en) Glass ceramic dielectric material
JP2007048703A (en) Composite dielectric material and prepreg using this, metal foil coated object, molding body, composite dielectric substrate, and multilayer substrate
JP3016001B2 (en) High frequency dielectric material
JP4828692B2 (en) Method for producing dielectric powder
JPH01317154A (en) Production of calcined substance for producing inorganic dielectric powder
JPH01317153A (en) Production of calcined substance for producing inorganic dielectric powder
JP4419889B2 (en) Dielectric porcelain composition
JP2006344407A (en) Composite dielectric material, prepreg using the same, metal foil painted object, molded compact, composite dielectric base board, multi-layered base board, and manufacturing method of composite dielectric material
JP2004221603A (en) Coupler
JP5566183B2 (en) Dielectric powder and sintered body and capacitor using the same
US20240067571A1 (en) Manufacturing composite electroceramics using waste electroceramics
JPH02225358A (en) Complex dielectric material
JPH01298004A (en) Production of calcined material for producing inorganic dielectric powder
FI129541B (en) Manufacturing composite electroceramics
JPH0426004A (en) Composite dielectric
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same
JPH04133386A (en) Board for printed circuit
JP2004285105A (en) Resin mixture with high dielectric constant
JP2006265078A (en) Dielectric ceramic composition and composite dielectric material using it