JPH04114919A - Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same - Google Patents

Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same

Info

Publication number
JPH04114919A
JPH04114919A JP22959990A JP22959990A JPH04114919A JP H04114919 A JPH04114919 A JP H04114919A JP 22959990 A JP22959990 A JP 22959990A JP 22959990 A JP22959990 A JP 22959990A JP H04114919 A JPH04114919 A JP H04114919A
Authority
JP
Japan
Prior art keywords
powder
dielectric ceramic
composite perovskite
compound
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22959990A
Other languages
Japanese (ja)
Other versions
JP2580374B2 (en
Inventor
Kiwa Okino
喜和 沖野
Masakazu Koga
昌和 古賀
Nobukuni Fukae
信邦 深江
Mutsumi Honda
本多 むつみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2229599A priority Critical patent/JP2580374B2/en
Publication of JPH04114919A publication Critical patent/JPH04114919A/en
Application granted granted Critical
Publication of JP2580374B2 publication Critical patent/JP2580374B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE:To obtain the title powder of fine, homogeneous composition by bringing the powder of a Zr compound, one of starting materials to a specified particle size to complete the solid phase reaction at lower temperatures in a short time. CONSTITUTION:A mixture of (A) powder of a compound of an element selected from Ba, Ca, Sr and Pb, (B) Zr compound powder and (C) powder of a compound of an element selected from Ti, Hf and Th with a mean particle size of the powder B of <=0.2mum is calcined into the objective powder of the generic formula ABO3 (A is an element selected from Ba, Ca, Sr and Pb; B is an element selected from Zr, Ti, Hf and Th). The present powder is capable of forming a dielectric porcelain layer of high dielectric constant with a dielectric porcelain layer as the basic component and plural electrodes holding said component, thus obtaining the other objective small-sized, large-capacity porcelain capacitor.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、固相反応を用いた複合ペロブスカイト型誘電
体磁器粉末の製造方法と、その粉末を誘電体磁器層の基
本成分とする磁器コンデンサに関するものである。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to a method for producing a composite perovskite dielectric ceramic powder using a solid phase reaction, and a ceramic capacitor using the powder as a basic component of a dielectric ceramic layer. It is related to.

[従来の技術] 固相反応を用いた複合ペロブスカイト型誘電体磁器粉末
の製造方法としては、例えばBa、Zr、Ti等の各化
合物粉を出発原料とし、これらを所定量ずつ秤量して均
一に混合し、この混合によって得られた混合物を100
0±100°C程度の温度で仮焼して各化合物粉の間で
固相反応を生じさせ、これによって複合ペロブスカイト
型誘電体磁器粉末を生成させる方法が知られている。
[Prior Art] A method for producing composite perovskite dielectric ceramic powder using a solid-phase reaction involves starting with powders of various compounds such as Ba, Zr, and Ti, weighing them in predetermined amounts, and uniformly distributing them. The mixture obtained by this mixing is
A known method is to cause a solid phase reaction between compound powders by calcining at a temperature of about 0±100° C., thereby producing a composite perovskite dielectric ceramic powder.

[発明が解決しようとする課題] ところで、複合ペロブスカイト型誘電体磁器粉末は、l
a器コンデンザを製造する場合に焼結温度を低下させる
という観点がらすると微細であることが望ましいし、ま
た磁器コンデンサの誘電率や耐電圧等の電気的特性を良
好ならしめるという観点からすると組成が均質であるこ
とが望ましい。
[Problem to be solved by the invention] By the way, the composite perovskite dielectric ceramic powder has l
When manufacturing A-type capacitors, it is desirable to have fine particles from the viewpoint of lowering the sintering temperature, and from the viewpoint of improving the electrical properties such as dielectric constant and withstand voltage of ceramic capacitors, it is desirable that the composition be fine. It is desirable that it be homogeneous.

しかし、上記従来の方法では、微細であることと、組成
が均質であることの両方を同時に満足する複合ペロブス
カイト型誘電体磁器粉末を得ることは困難であった。
However, with the above conventional methods, it is difficult to obtain a composite perovskite dielectric ceramic powder that satisfies both fineness and homogeneity of composition at the same time.

これは、複合ペロブスカイト型誘電体磁器粉末の組成を
均質にしようとして仮焼温度を高くすると、得られる粉
末の粒径が粗大化してしまい、また複合ペロブスカイト
型誘電体石器粉末を微細にしようとして仮焼温度を低く
すると、固相反応が円滑に進行せず、組成が不均質にな
ってしまうからである。
This is because if the calcination temperature is increased in an attempt to make the composition of composite perovskite dielectric ceramic powder homogeneous, the particle size of the resulting powder becomes coarse. This is because if the firing temperature is lowered, the solid phase reaction will not proceed smoothly and the composition will become inhomogeneous.

特に、ジルコン酸塩を含む複合ペロブスカイト型誘電体
磁器粉末を製造する場合、この傾向が顕著である。
This tendency is particularly noticeable when producing composite perovskite dielectric ceramic powder containing zirconate.

また、近年、電子機器の小型化、高集積化の進展に伴な
い、積層磁器コンデンサについても小型化・大容量化が
求められている。
Furthermore, in recent years, as electronic devices have become smaller and more highly integrated, there has been a demand for smaller and larger capacity multilayer ceramic capacitors.

そして、最近、積層磁器コンデンサを小型化・大容量化
する方法の一つとして、誘電体グリーンシートを薄膜化
して誘電体層の積層数を増加させる方法が注目されてい
る。
Recently, as a method for downsizing and increasing the capacity of multilayer ceramic capacitors, a method of increasing the number of dielectric layers by thinning dielectric green sheets has been attracting attention.

しかし、誘電体グリーンシートを薄膜化して誘電体層の
積層数を増加させるには、複合ペロブスカイト型誘電体
磁器粉末を微細にする必要があり、しかも、複合ペロブ
スカイト型誘電体磁器粉末の組成を均質にして誘電体層
の絶縁抵抗を大きくする必要がある。
However, in order to make the dielectric green sheet thinner and increase the number of laminated dielectric layers, it is necessary to make the composite perovskite dielectric porcelain powder finer, and to make the composition of the composite perovskite dielectric porcelain powder homogeneous. Therefore, it is necessary to increase the insulation resistance of the dielectric layer.

ところが、上述したように、上記従来の方法では微細で
且つ組成の均質な複合ペロブスカイト型誘電体磁器粉末
を得ることが困難であり、従って、誘電体グリーンシー
トを薄膜化して誘電体層の積層数を増加させて、積層磁
器コンデンサを小型化・大容量化することは困難であっ
た。
However, as mentioned above, it is difficult to obtain fine composite perovskite dielectric ceramic powder with a homogeneous composition using the above conventional method. It has been difficult to miniaturize and increase the capacity of multilayer ceramic capacitors by increasing the number of capacitors.

そこで、本発明の目的は、微細で且つ均質な組成の複合
ペロブスカイト型誘電体UR器粉末を得ることのできる
複合ペロブスカイト型誘電体6ri、器粉末の製造方法
を提供することと、小型・大容量で且つ耐電圧の高い6
R器コンデンサを提供することにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a method for manufacturing a composite perovskite dielectric 6ri and a composite perovskite dielectric UR powder having a fine and homogeneous composition, and also to provide a method for manufacturing a composite perovskite dielectric 6ri and a ceramic powder having a small size and a large capacity. and high withstand voltage 6
The purpose of the present invention is to provide an R-type capacitor.

U課題を解決するための手段] 本発明に係る複合ペロブスカイト型誘電体磁器粉末の製
造方法は、Ba、Ca、Sr−及びPbがら選択された
1種又は2種以上の元素の化合物粉と、Zrの化合物粉
と、Ti、Hf及びThがら選択された1種又は2種以
上の元素の化合物粉とからなる混合物を仮焼して、−R
9式ABO3(但し、Aは、Ba、Ca、Sr及びPb
がら選択された1種又は2種以上の元素、Bは、Zrと
、Ti、Hf及びThから選択された1種又は2種以上
の元素)で表わされる複合ペロブスカイト型誘電体Ml
器粉末を製造する方法において、前記Zrの化合物粉の
平均粒径を0.2μm以下としたことを特徴とするもの
である。
Means for Solving Problem U] The method for producing a composite perovskite dielectric ceramic powder according to the present invention includes a compound powder of one or more elements selected from Ba, Ca, Sr-, and Pb; -R
Formula 9 ABO3 (where A is Ba, Ca, Sr and Pb
(B is one or more elements selected from Zr and one or more elements selected from Ti, Hf, and Th)
The method for producing a pottery powder is characterized in that the average particle size of the Zr compound powder is 0.2 μm or less.

ここで、出発原料の各化合物としては、酸化物、水酸化
物、炭酸塩又はその他の化合物を用いることができる。
Here, as each compound of the starting material, an oxide, hydroxide, carbonate or other compound can be used.

また、Zrの化合物としては1例えば Z r O2、Z r (OH) <等を用いることが
できる。
Further, as the Zr compound, for example, Z r O2, Z r (OH) <, etc. can be used.

これらの化合物はボールミル等で混合して混合物とする
が、この混合は乾式で行なってもよいし、また濃式で行
なってもよい。
These compounds are mixed in a ball mill or the like to form a mixture, and this mixing may be carried out in a dry or concentrated manner.

また、混合物の仮焼温度は900〜1100’Cの範囲
が好ましい。これは、この範囲で仮焼すれば、得られる
複合ペロブスカイト型誘電体磁器粉末が微細で且つ均質
なものになるが、900 ’C未満では同相反応が充分
に進まず、合成不充分のため、緻密な焼結体が得られず
、又、1000℃を越えると粒子が粗大化して、緻密な
焼結体が得られなくなるからである。
Moreover, the calcination temperature of the mixture is preferably in the range of 900 to 1100'C. This is because, if calcined within this range, the obtained composite perovskite dielectric ceramic powder will be fine and homogeneous, but below 900'C, the in-phase reaction will not proceed sufficiently, resulting in insufficient synthesis. This is because a dense sintered body cannot be obtained, and if the temperature exceeds 1000°C, the particles become coarse and a dense sintered body cannot be obtained.

仮焼時間については特に範囲を限定する必要はな(,1
〜2時間程度で充分である。
There is no need to limit the range of the calcination time (,1
~2 hours is sufficient.

また、Zrの化合物粉の平均粒径を0.2LLm以下と
しているが、これは、Zrの化合物粉の平均粒径が0.
2um以下の場合は固相反応が円滑に進行し、得られる
複合ペロブスカイト型誘電体磁器粉末の組成が均質にな
るが、0.2μmより大きい場合は、同相反応が充分に
進まず、得られる複合ペロブスカイト型誘電体磁器粉末
の組成が不均質になるからである。
In addition, the average particle size of the Zr compound powder is set to 0.2 LLm or less;
If the diameter is 2 μm or less, the solid phase reaction will proceed smoothly and the composition of the obtained composite perovskite dielectric ceramic powder will be homogeneous, but if it is larger than 0.2 μm, the in-phase reaction will not proceed sufficiently and the resulting composite This is because the composition of the perovskite dielectric ceramic powder becomes non-uniform.

また、A元素およびZr以外のB元素の粒径は1.0L
Lm以下が好ましい。A元素およびZr以外のB元素の
粒径が1、OLLm以下の場合は、同相反応が充分に進
み、得られる複合ペロブスカイト型誘電体磁器粉末の組
成が均質になるが、粒径が1.0μmより大きい場合は
、固相反応が充分に進まず、得られる複合ペロブスカイ
ト型誘電体磁器粉末の組成が不均質になるからである。
In addition, the particle size of element A and element B other than Zr is 1.0L.
Lm or less is preferable. If the particle size of element A and element B other than Zr is 1.0 μm or less, the in-phase reaction will proceed sufficiently and the composition of the resulting composite perovskite dielectric ceramic powder will be homogeneous, but if the particle size is 1.0 μm. If it is larger, the solid phase reaction will not proceed sufficiently and the composition of the obtained composite perovskite dielectric ceramic powder will become non-uniform.

また、本発明に係る磁器コンデンサは、前記複合ペロブ
スカイト型誘電体磁器粉末を基本成分とする1又は2以
上の誘電体磁器層と、この誘電体磁器層を挟持している
少な(とも2以上の電極とを備えたことを特徴とするも
のである。
Furthermore, the ceramic capacitor according to the present invention includes one or more dielectric ceramic layers having the composite perovskite dielectric ceramic powder as a basic component, and one or more dielectric ceramic layers sandwiching the dielectric ceramic layer. The device is characterized by comprising an electrode.

ここで、誘電体磁器層は、基本成分に対して10wt%
未満の添加成分を添加して形成することができる。
Here, the dielectric ceramic layer contains 10 wt% of the basic component.
It can be formed by adding less than one additional component.

この添加成分としては、例えばNb、Si。Examples of this additional component include Nb and Si.

Mn、Al、Li、Ca又はBi等の酸化物、水酸化物
、炭酸塩またはその他の化合物を使用することができる
Oxides, hydroxides, carbonates or other compounds such as Mn, Al, Li, Ca or Bi can be used.

また、この添加成分の中には、本発明の目的を阻害しな
い範囲で微量の鉱化剤を添加し、焼結性を向上させても
よいし、また、必要に応じてその他の物質を添加しても
よい。
In addition, a trace amount of mineralizer may be added to these additive components to improve the sinterability within a range that does not impede the purpose of the present invention, and other substances may be added as necessary. You may.

なお、本発明は積層磁器コンデンサ以外の一09的な単
層の磁器コンデンサにも勿論適用可能である。
Note that the present invention is of course applicable to other single-layer ceramic capacitors other than multilayer ceramic capacitors.

[実施例コ まず、複合ペロブスカイト型誘電体磁器粉末がチタン酸
ジルコン酸バリウム B a (T i、 o、esZ ro、+5) 03
である場合の例について、実施例1及び比較例1を用い
て説明する。
[Example 1] First, the composite perovskite dielectric ceramic powder was made of barium zirconate titanate B a (T i, o, esZ ro, +5) 03
An example of the case will be described using Example 1 and Comparative Example 1.

実施例1 まず、第1表中の試料番号1の場合について説明する。Example 1 First, the case of sample number 1 in Table 1 will be explained.

配合lに示す化合物を各々秤量し、これらの化合物をボ
ールミル内に約2.52の水とともに入れ、約20時間
撹拌してこれらの化合物の混合物を得た。
The compounds shown in Formulation 1 were each weighed out, and these compounds were placed in a ball mill with about 2.5 g of water and stirred for about 20 hours to obtain a mixture of these compounds.

ここで、配合1の各化合物としては、純度99.0%以
上のものを使用した。また、配合1の各化合物の重量(
g)は、前述した複合ペロブスカイト誘電体磁器粉末の
一般式ABO3がBa (T i−a、geZro、+
s) o3 ・illとなるように計算して求めた。
Here, each compound in Formulation 1 had a purity of 99.0% or more. In addition, the weight of each compound in Formulation 1 (
g) The general formula ABO3 of the above-mentioned composite perovskite dielectric ceramic powder is Ba (T i-a, geZro, +
s) o3 ・ill.

次に、前記混合物をステンレスポット内に入れ、熱風式
乾燥器を用いて150℃で4時間乾燥し、乾燥した状態
の混合物を得た。
Next, the mixture was placed in a stainless steel pot and dried at 150° C. for 4 hours using a hot air dryer to obtain a dry mixture.

次に、この乾燥した状態の混合物を粉砕し、トンネル炉
を用い、大気中において約1100℃で2時間仮焼し、
上記組成式Fl)で表わされるチタン酸ジルコン酸バリ
ウムの粉末を得た。
Next, this dry mixture was pulverized and calcined in the atmosphere at about 1100°C for 2 hours using a tunnel furnace.
A powder of barium zirconate titanate represented by the above compositional formula Fl) was obtained.

次に、このチタン酸ジルコン酸バリウム粉末の粒径を空
気透過法により測定したところ、1.2μmであった。
Next, the particle size of this barium zirconate titanate powder was measured by an air permeation method and was found to be 1.2 μm.

また、このチタン酸ジルコン酸バリウムの粉末をX線回
折装置にかけてそのX線回折パターンを求めたところ、
第1図に示すように、組成に変動が認められず均質であ
った。
In addition, when the powder of barium zirconate titanate was subjected to an X-ray diffraction device, its X-ray diffraction pattern was determined.
As shown in FIG. 1, the composition was homogeneous with no variation observed.

次に、このチタン酸ジルコン酸バリウムの粉末に配合2
の化合物を添加し、湿式混合して均一に分散させた後、
乾燥させて混合粉末を得た。
Next, add 2 to this barium zirconate titanate powder.
After adding the compound and uniformly dispersing it by wet mixing,
It was dried to obtain a mixed powder.

次に、この混合粉末にバインダーを添加して造粒し、圧
力1000 kg/cm2で成形して、直径10mm、
厚さ1mmの円板を作成し、これを1150″Cで2時
間焼成して円板状の誘電体磁器を得た。
Next, a binder is added to this mixed powder, granulated, and molded at a pressure of 1000 kg/cm2 to give a diameter of 10 mm.
A disk with a thickness of 1 mm was prepared and fired at 1150''C for 2 hours to obtain a disk-shaped dielectric porcelain.

次に、この焼成した円板状の誘電体磁器の両面に銀ペー
ストを塗布し、800 ’Cで30分間焼成して銀ペー
ストを電極に変成させ、磁器コンデンサを得た。
Next, silver paste was applied to both sides of the fired disc-shaped dielectric ceramic and fired at 800'C for 30 minutes to convert the silver paste into electrodes, thereby obtaining a ceramic capacitor.

次に、この磁器コンデンサの電気的特性を測定した。Next, the electrical characteristics of this ceramic capacitor were measured.

この磁器コンデンサの電気的特性は、第1表に示すよう
に、誘電率(ε)が16280、誘電損失(tanδ)
が1.9%、静電容量変化率(Tc)が−78〜−56
%、絶縁抵抗が1’、5XIO5MΩであった。
As shown in Table 1, the electrical characteristics of this ceramic capacitor include a dielectric constant (ε) of 16280 and a dielectric loss (tan δ).
is 1.9%, and the capacitance change rate (Tc) is -78 to -56.
%, and the insulation resistance was 1', 5XIO5MΩ.

なお、この磁器コンデンサの電気的特性は次の要領で測
定した。
The electrical characteristics of this ceramic capacitor were measured in the following manner.

(A+誘電率(ε)は、温度20 ’C1周波数1 k
Hz、電圧1 、 OVr−msの条件でこの磁器コン
デンサの静電容量を測定し、この静電容量と電極の対向
面積と誘電体磁器の厚さとから計算で求めた。
(A + dielectric constant (ε) is temperature 20 'C1 frequency 1 k
The capacitance of this ceramic capacitor was measured under the conditions of Hz, voltage 1, and OVr-ms, and calculated from this capacitance, the opposing area of the electrodes, and the thickness of the dielectric ceramic.

(B)誘電損失(tanδ)は、誘電率(ε)の場合と
同一の条件で求めた。
(B) Dielectric loss (tan δ) was determined under the same conditions as for dielectric constant (ε).

(C)静電容量変化率(Tc)は+20 ℃を基準とし
て一25℃〜+85℃の温度範囲で測定して求めた。
(C) Capacitance change rate (Tc) was determined by measuring in a temperature range of -25°C to +85°C with +20°C as a reference.

fD)絶縁抵抗は、温度20 ’Cにおいて、この磁器
コンデンサにDClooVを20sec間印加した後に
測定した。
fD) Insulation resistance was measured after applying DClooV to this ceramic capacitor for 20 seconds at a temperature of 20'C.

以上、試料番号1の場合について説明したが、試料番号
2,3についても、出発原料の酸化ジルコニウムを、試
料番号2では粒径0.20LLm、試料番号3では粒径
0.05LLmとした以外、試料番号1の場合と同様に
してチタン酸ジルコン酸バリウムの粉末を得た。
The case of sample number 1 has been explained above, but also for sample numbers 2 and 3, except that the particle size of the starting material zirconium oxide was 0.20 LLm in sample number 2 and 0.05 LLm in sample number 3. Powder of barium zirconate titanate was obtained in the same manner as in the case of sample number 1.

そして、このチタン酸ジルコン酸バリウムの粉末を用い
、試料番号1の場合と同様にして、磁器コンデンサを作
成し、その電気的特性を求めたところ、第1表に示す通
りとなった。
Then, using this barium zirconate titanate powder, a ceramic capacitor was prepared in the same manner as in the case of sample number 1, and its electrical characteristics were determined as shown in Table 1.

比較例1 次に、比較例として試料番号4〜6の場合について説明
する。
Comparative Example 1 Next, samples numbers 4 to 6 will be described as comparative examples.

試料番号4の場合、出発原料の酸化ジルコニウムとして
粒径0.5μmのものを使用した以外は試料番号1と同
様にしてチタン酸ジルコン酸バリウムの粉末を得た。
In the case of sample number 4, barium zirconate titanate powder was obtained in the same manner as sample number 1, except that zirconium oxide having a particle size of 0.5 μm was used as the starting material.

このチタン酸ジルコン酸バリウムの粉末の粒径を空気透
過法により測定したところ、1.4μmであった。
The particle size of this barium zirconate titanate powder was measured by an air permeation method and was found to be 1.4 μm.

また、このチタン酸ジルコン酸バリウムの粉末をX 4
3回折装置にかけてX線回折パターンを求めたところ、
第2図に示すように、組成に変動が認  q められる不均質なものであった。
In addition, this barium zirconate titanate powder was
When the X-ray diffraction pattern was obtained using a 3-diffractometer,
As shown in Figure 2, it was heterogeneous with variations in composition.

次に、このチタン酸ジルコン酸バリウムの粉末を用い、
試料番号1の場合と同様にして磁器コンデンサを作成し
、この磁器コンデンサの電気的特性を測定したところ、
第1表に示す通りとなった。
Next, using this barium zirconate titanate powder,
A ceramic capacitor was made in the same manner as in the case of sample number 1, and the electrical characteristics of this ceramic capacitor were measured.
The results are as shown in Table 1.

また、試料番号5.6の場合、出発原料の酸化ジルコニ
ウムとして、試料番号5では粒径0.3LLmのものを
、試料番号6では粒径1、OLLmのものを使用した以
外は試料番号4の場合と同様にしてチタン酸ジルコン酸
バリウムの粉末を得た。
In addition, in the case of sample number 5.6, as the starting material zirconium oxide, sample number 5 used a particle size of 0.3LLm, and sample number 6 used a particle size of 1, OLLm. Powder of barium zirconate titanate was obtained in the same manner as in the above case.

そして、このチタン酸ジルコン酸バリウムの粉末を用い
、試料番号1の場合と同様にして磁器コンデンサを作成
し、この磁器コンデンサの電気的特性を測定したところ
、第1表に示す通りとなった。
Using this barium zirconate titanate powder, a ceramic capacitor was prepared in the same manner as in Sample No. 1, and the electrical characteristics of this ceramic capacitor were measured, and the results were as shown in Table 1.

次に、複合ペロブスカイト型誘電体磁器粉末が(B a
 o、 soCa o、 +oS r o、 to)=
(T i o、s5Z r O,+6)  03である
場合について、実施例2及び比較例2を用いて説明する
Next, composite perovskite dielectric ceramic powder (B a
o, soCa o, +oS r o, to) =
(T io, s5Z r O, +6) The case of 03 will be explained using Example 2 and Comparative Example 2.

実施例2 まず、第1表中の試料番号7の場合について説明する。Example 2 First, the case of sample number 7 in Table 1 will be explained.

配合3に示す化合物を各々秤量し、これらの化合物をボ
ールミル内に約2.5f2の水とともに入れ、約20時
間撹拌混合して混合物を得た。
The compounds shown in Formulation 3 were each weighed, placed in a ball mill together with about 2.5 f2 of water, and stirred and mixed for about 20 hours to obtain a mixture.

ここで使用した配合1の各化合物は、 純度99.0%以上のものである。また、配合1の各化
合物の重i(g)は、前述した複合ペロブスカイト誘電
体磁器粉末の一般式ABO,が(B a o、 soc
 a o、 +oS r o、 to)(T 1 o、
 aiZ r o、 +s) 03・・・(2)となる
ように計算して求めた値である。
Each compound of Formulation 1 used here has a purity of 99.0% or more. In addition, the weight i (g) of each compound in Formulation 1 is determined by the general formula ABO, (B a o, soc
a o, +oS r o, to) (T 1 o,
aiZ r o, +s) 03...This is a value calculated to be (2).

次に、前記混合物をステンレスポット内に入れ、熱風式
乾燥器を用い、150℃で4時間乾燥し、この乾燥した
混合物を粉砕して粉砕物を得た。
Next, the mixture was placed in a stainless steel pot and dried at 150° C. for 4 hours using a hot air dryer, and the dried mixture was pulverized to obtain a pulverized product.

次に、この粉砕物をトンネル炉を用い、大気中において
950℃で2時間仮焼して固相反応を生じさせ、上記組
成式(2)で表わされる複合ペロブスカイト型誘電体磁
器の粉末を得た。
Next, this pulverized material was calcined in the atmosphere at 950°C for 2 hours using a tunnel furnace to cause a solid phase reaction, thereby obtaining a composite perovskite dielectric ceramic powder represented by the above compositional formula (2). Ta.

次に、この複合ペロブスカイト型誘電体磁器粉末の粒径
を空気透過法により測定したところ、1.1μmであっ
た。
Next, the particle size of this composite perovskite type dielectric ceramic powder was measured by an air permeation method and was found to be 1.1 μm.

また、この複合ペロブスカイト型誘電体磁器の粉末をX
線回折装置にかけてそのX線回折パターンを求めたとこ
ろ、組成に変動が認められない均質なものであった。
In addition, this composite perovskite dielectric ceramic powder was
When the X-ray diffraction pattern was determined using a ray diffraction device, it was found to be homogeneous with no fluctuation in composition.

次に、この複合ペロブスカイト型誘電体磁器の粉末に配
合4の化合物を添加し、湿式混合した後に乾燥して混合
粉末を得た。
Next, the compound of formulation 4 was added to this composite perovskite type dielectric ceramic powder, wet-mixed, and then dried to obtain a mixed powder.

次に、前記混合粉末を試料番号1の場合と同様にして磁
器コンデンサを作成し、その電気的特性を測定したとこ
ろ、第2表に示す通りとなった。
Next, a ceramic capacitor was prepared using the mixed powder in the same manner as in Sample No. 1, and its electrical characteristics were measured, and the results were as shown in Table 2.

以上、試料番号7の場合について述べたが、試料番号8
,9についても、出発原料の酸化ジルコニウムを、試料
番号8では粒径0.20μmのものを、試料番号9では
粒径0.05u、mのものを使用した以外は試料番号7
と同様にして複合ペロブスカイト型誘電体磁器の粉末を
得た。
The case of sample number 7 has been described above, but sample number 8
, 9, except that sample number 8 used zirconium oxide with a particle size of 0.20 μm and sample number 9 used particle size of 0.05 u, m.
Composite perovskite dielectric ceramic powder was obtained in the same manner as above.

そして、この複合ペロブスカイト型誘電体磁器の粉末を
用い、試料番号1の場合と同様にして磁器コンデンサを
作成し、この磁器コンデンサの電気的特性を測定したと
ころ、第1表に示す通りとなった。
Then, using this composite perovskite dielectric ceramic powder, a ceramic capacitor was created in the same manner as in the case of sample number 1, and the electrical characteristics of this ceramic capacitor were measured, and the results were as shown in Table 1. .

比較例2 次に、比較例2として試料番号10〜12の場合につい
て説明する。
Comparative Example 2 Next, as Comparative Example 2, the cases of sample numbers 10 to 12 will be described.

試料番号10の場合、出発原料の酸化ジルコニウムとし
て粒径0.5μmのものを使用した以外は、試料番号7
の場合と同様にして複合ペロブスカイト型誘電体磁器の
粉末を得た。
In the case of sample number 10, sample number 7
Composite perovskite dielectric ceramic powder was obtained in the same manner as in the case of .

この複合ペロブスカイト型誘電体磁器粉末の粒径を空気
透過法により測定したところ、1.1μmであった。
The particle size of this composite perovskite dielectric ceramic powder was measured by an air permeation method and was found to be 1.1 μm.

また、この複合ペロブスカイト型誘電体磁器の粉末をX
線回折装置にかけてX線回折パターンを求めたところ、
組成に変動が認められる不均質なものであった。
In addition, this composite perovskite dielectric ceramic powder was
When the X-ray diffraction pattern was obtained using a ray diffraction device,
It was heterogeneous with fluctuations in composition.

次に、この複合ペロブスカイト型誘電体磁器の粉末を用
い、試料番号1の場合と同様にして磁器コンデンサを作
成し、この磁器コンデンサの電気的特性を測定したとこ
ろ、第1表に示す通りとなった。
Next, a ceramic capacitor was made using this composite perovskite dielectric ceramic powder in the same manner as in the case of sample number 1, and the electrical characteristics of this ceramic capacitor were measured, as shown in Table 1. Ta.

また、試料番号11.12の場合、出発原料の酸化ジル
コニウムとして、試料番号11では0.3μmのものを
、試料番号12では粒径1.0μmのものを使用した以
外、試料番号7の場合と同様にして複合ペロブスカイト
型誘電体磁器の粉末を得た。
In addition, in the case of sample number 11.12, the starting material zirconium oxide is different from the case of sample number 7, except that sample number 11 uses a particle size of 0.3 μm and sample number 12 uses a particle size of 1.0 μm. Composite perovskite dielectric ceramic powder was obtained in the same manner.

そして、この複合ペロブスカイト型誘電体磁器の粉末を
用い、試料番号1の場合と同様にして磁器コンデンサを
作成し、この磁器コンデンサの電気的特性を測定したと
ころ、第1表に示す通りとなった。
Then, using this composite perovskite dielectric ceramic powder, a ceramic capacitor was created in the same manner as in the case of sample number 1, and the electrical characteristics of this ceramic capacitor were measured, and the results were as shown in Table 1. .

第1表 2Ω X印が付された試料は比較例 以上説明したように、出発原料の酸化ジルコニウムとし
て、粒径が0.2μm以下のものを使用した場合、微細
で且つ組成が均質な複合ペロブスカイト型誘電体磁器粉
末を得ることができることがわかる。
As explained above, the samples marked with 2Ω in Table 1 are comparative examples, and when a particle size of 0.2 μm or less is used as the starting material zirconium oxide, the sample is a composite perovskite that is fine and homogeneous in composition. It can be seen that type dielectric porcelain powder can be obtained.

また、第1表に示すように、この粉末を基本成分とした
誘電体磁器は、誘電率や絶縁抵抗等の電気的特性が著し
く改善されることがわかる。
Furthermore, as shown in Table 1, it can be seen that dielectric ceramics containing this powder as a basic component have significantly improved electrical properties such as dielectric constant and insulation resistance.

これに対し、出発原料の酸化ジルコニウムとして、粒径
が0.2μmより大きなものを使用した場合、得られた
複合へロブスカイト型誘電体磁器粉末の組成が不均質に
なることがわかる。
On the other hand, it can be seen that when a starting material of zirconium oxide having a particle size larger than 0.2 μm is used, the composition of the obtained composite herovskite dielectric ceramic powder becomes non-uniform.

また、第1表に示すように、この粉末を基本成分とした
誘電体磁器は、誘電率や絶縁抵抗等の電気的特性が悪く
なることがわかる。
Furthermore, as shown in Table 1, it can be seen that dielectric ceramics containing this powder as a basic component have poor electrical properties such as dielectric constant and insulation resistance.

[発明の効果] 本発明によれば、出発原料の1つである酸化ジルコニウ
ム粉末の平均粒径を0.2μm以下としたので、同相反
応を比較的低温且つ短時間に終了させることができ、従
って、得られる粉末の粒径が粗大化せず、微細な粒度分
布を持つ複合ペロブスカイト型誘電体磁器粉末を得るこ
とができる。
[Effects of the Invention] According to the present invention, since the average particle size of the zirconium oxide powder, which is one of the starting materials, is set to 0.2 μm or less, the in-phase reaction can be completed at a relatively low temperature and in a short time. Therefore, the particle size of the obtained powder does not become coarse, and a composite perovskite dielectric ceramic powder having a fine particle size distribution can be obtained.

そして、本発明によれば、固相反応を比較的低温且つ短
時間に終了させることができるので、複合ペロブスカイ
ト型誘電体磁器粉末を低コストで製造することができる
According to the present invention, the solid phase reaction can be completed at a relatively low temperature and in a short time, so that a composite perovskite dielectric ceramic powder can be manufactured at low cost.

また、本発明によれば、出発原料の1つである酸化ジル
コニウム粉末の平均粒径を0.2μm以下としたので、
同相反応が円滑に進み、均質な組成の複合ペロブスカイ
ト型誘電体磁器粉末、すなわち誘電率の高い、しかも絶
縁抵抗の大きい複合ペロブスカイト型誘電体磁器粉末を
得ることができる。
Further, according to the present invention, since the average particle size of the zirconium oxide powder, which is one of the starting materials, is 0.2 μm or less,
The in-phase reaction proceeds smoothly, and it is possible to obtain a composite perovskite dielectric ceramic powder with a homogeneous composition, that is, a composite perovskite dielectric ceramic powder with a high dielectric constant and high insulation resistance.

また、本発明によれば、誘電率の高い複合ペロブスカイ
ト型誘電体磁器粉末を得ることができるので、誘電率の
高い誘電体磁器層を形成することができ、従って、小型
大容量の磁器コンデンサを製造することができる。
Furthermore, according to the present invention, it is possible to obtain a composite perovskite type dielectric ceramic powder with a high dielectric constant, so it is possible to form a dielectric ceramic layer with a high dielectric constant. can be manufactured.

また、本発明によれば、絶縁抵抗の大きい複合ペロブス
カイト型誘電体磁器粉末を得ることができるので、絶縁
抵抗の大きい誘電体磁器層を形成することができ、従っ
て、誘電体磁器層の積層密度を高めて小型大容量の磁器
コンデンサを製造することができる。
Furthermore, according to the present invention, it is possible to obtain a composite perovskite dielectric ceramic powder with high insulation resistance, so it is possible to form a dielectric ceramic layer with high insulation resistance, and therefore, the lamination density of the dielectric ceramic layer is It is possible to manufacture small, large-capacity porcelain capacitors by increasing the

また、本発明によれば、微細な粒度分布を持つ複合ペロ
ブスカイト型誘電体磁器粉末を得ることができるので、
誘電体磁器層を従来より低温で焼結させることができ、
従って、磁器コンデンサを低コストで製造することがで
きる。
Furthermore, according to the present invention, it is possible to obtain a composite perovskite dielectric ceramic powder having a fine particle size distribution.
The dielectric ceramic layer can be sintered at a lower temperature than before,
Therefore, a ceramic capacitor can be manufactured at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は試料番号1(実施例1)に係る複合ペロブスカ
イト型誘電体磁器粉末のX線回折パターンを示す図、第
2図は試料番号4(比較例1)に係る複合ペロブスカイ
ト型誘電体磁器粉末のX線回折パターンを示す図である
。 代理人 弁理士 窪 1)法 明
Figure 1 shows the X-ray diffraction pattern of the composite perovskite dielectric porcelain powder according to sample number 1 (Example 1), and Figure 2 shows the composite perovskite dielectric porcelain powder according to sample number 4 (comparative example 1). It is a figure which shows the X-ray diffraction pattern of powder. Agent Patent Attorney Kubo 1) Akira Hou

Claims (2)

【特許請求の範囲】[Claims] 1.Ba,Ca,Sr及びPbから選択された1種又は
2種以上の元素の化合物粉と、Zrの化合物粉と、Ti
,Hf及びThから選択された1種又は2種以上の元素
の化合物粉とからなる混合物を仮焼して、一般式ABO
_3 (但し、Aは、Ba,Ca,Sr及びPbから選択され
た1種又は2種以上の元素、Bは、Zrと、Ti,Hf
及びThから選択された1種又は2種以上の元素) で表わされる複合ペロブスカイト型誘電体磁器粉末を製
造する方法において、 前記Zrの化合物粉の平均粒径を0.2μm以下とした
ことを特徴とする複合ペロブスカイト型誘電体磁器粉末
の製造方法。
1. Compound powder of one or more elements selected from Ba, Ca, Sr and Pb, compound powder of Zr, and Ti
, Hf, and a compound powder of one or more elements selected from Th.
_3 (However, A is one or more elements selected from Ba, Ca, Sr and Pb, B is Zr, Ti, Hf
and Th) A method for producing a composite perovskite dielectric ceramic powder represented by A method for producing a composite perovskite dielectric ceramic powder.
2.請求項1記載の複合ペロブスカイト型 誘電体磁器粉末を基本成分とする1又は2以上の誘電体
磁器層と、この誘電体磁器層を挟持している少なくとも
2以上の電極とを備えたことを特徴とする磁器コンデン
サ。
2. It is characterized by comprising one or more dielectric ceramic layers whose basic component is the composite perovskite dielectric ceramic powder according to claim 1, and at least two or more electrodes sandwiching the dielectric ceramic layers. porcelain capacitor.
JP2229599A 1990-08-31 1990-08-31 Method for producing composite perovskite type dielectric porcelain powder Expired - Lifetime JP2580374B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2229599A JP2580374B2 (en) 1990-08-31 1990-08-31 Method for producing composite perovskite type dielectric porcelain powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2229599A JP2580374B2 (en) 1990-08-31 1990-08-31 Method for producing composite perovskite type dielectric porcelain powder

Publications (2)

Publication Number Publication Date
JPH04114919A true JPH04114919A (en) 1992-04-15
JP2580374B2 JP2580374B2 (en) 1997-02-12

Family

ID=16894708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2229599A Expired - Lifetime JP2580374B2 (en) 1990-08-31 1990-08-31 Method for producing composite perovskite type dielectric porcelain powder

Country Status (1)

Country Link
JP (1) JP2580374B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807426A1 (en) * 2000-04-07 2001-10-12 Murata Manufacturing Co NON-REDUCING DIELECTRIC CERAMIC, MONOLITHIC CERAMIC CAPACITOR USING IT AND MANUFACTURING PROCESS OF NON-REDUCING DIELECTRIC CERAMIC
WO2003087012A1 (en) * 2002-04-16 2003-10-23 Murata Manufacturing Co., Ltd. Nonreducing dielectric ceramic, its production method, and multilayer ceramic capacitor
JP2008195604A (en) * 2007-01-18 2008-08-28 Otsuka Chemical Co Ltd Method for producing compound metal titanate, dielectric resin composition and electronic parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055900A (en) * 1973-09-17 1975-05-16
JPH0365515A (en) * 1989-07-31 1991-03-20 Tosoh Corp Production of powdery lead-containing oxide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5055900A (en) * 1973-09-17 1975-05-16
JPH0365515A (en) * 1989-07-31 1991-03-20 Tosoh Corp Production of powdery lead-containing oxide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2807426A1 (en) * 2000-04-07 2001-10-12 Murata Manufacturing Co NON-REDUCING DIELECTRIC CERAMIC, MONOLITHIC CERAMIC CAPACITOR USING IT AND MANUFACTURING PROCESS OF NON-REDUCING DIELECTRIC CERAMIC
WO2003087012A1 (en) * 2002-04-16 2003-10-23 Murata Manufacturing Co., Ltd. Nonreducing dielectric ceramic, its production method, and multilayer ceramic capacitor
US7498285B2 (en) 2002-04-16 2009-03-03 Murata Manufacturing Co., Ltd. Nonreducing dielectric ceramic, and manufacturing method and monolithic ceramic capacitor of the same
JP2008195604A (en) * 2007-01-18 2008-08-28 Otsuka Chemical Co Ltd Method for producing compound metal titanate, dielectric resin composition and electronic parts

Also Published As

Publication number Publication date
JP2580374B2 (en) 1997-02-12

Similar Documents

Publication Publication Date Title
JPH05217426A (en) Non-reducing dielectric ceramic composition
KR20020096978A (en) Barium titanate powder, method for manufacturing and evaluating the same, dielectric ceramic, and monolithic ceramic capacitor
KR100546993B1 (en) Method for producing dielectric ceramic material powder, dielectric ceramic and monolithic ceramic capacitor
JPH10310469A (en) Production of powdery starting material for dielectric ceramic and dielectric ceramic composition
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same
JPS6128619B2 (en)
JP3752812B2 (en) Method for producing barium titanate
WO2006035576A1 (en) Ceramic capacitor and method for manufacturing same
JPS6366008B2 (en)
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
CN108530068B (en) Barium-calcium co-doped substituted La2NiO4Giant dielectric ceramic and preparation method thereof
KR20020048101A (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor
JPH0571538B2 (en)
JPH07114824A (en) Dielectric ceramic composition
JPH068204B2 (en) Method for manufacturing dielectric porcelain
KR100355932B1 (en) A method for preparing Barium Titanate powders for the multilayer ceramic Chip Capacitor
JP2023069307A (en) Dielectric composition and electronic component
KR20020012878A (en) A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor
JPS6211444B2 (en)
JPH0987014A (en) Production of high dielectric constant porcelain composition
JPH027166B2 (en)
JPH0264060A (en) Dielectric ceramics and production thereof
JPH08180734A (en) Dielectric porcelain compound and its manufacture
JPH05213666A (en) Dielectric porcelain composition and its production
JPS6135144B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091121

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101121

Year of fee payment: 14

EXPY Cancellation because of completion of term