KR20020012878A - A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor - Google Patents

A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor Download PDF

Info

Publication number
KR20020012878A
KR20020012878A KR1020000046124A KR20000046124A KR20020012878A KR 20020012878 A KR20020012878 A KR 20020012878A KR 1020000046124 A KR1020000046124 A KR 1020000046124A KR 20000046124 A KR20000046124 A KR 20000046124A KR 20020012878 A KR20020012878 A KR 20020012878A
Authority
KR
South Korea
Prior art keywords
powder
raw material
additive
carbonate
baco
Prior art date
Application number
KR1020000046124A
Other languages
Korean (ko)
Inventor
허강헌
이재준
이상표
Original Assignee
이형도
삼성전기주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이형도, 삼성전기주식회사 filed Critical 이형도
Priority to KR1020000046124A priority Critical patent/KR20020012878A/en
Publication of KR20020012878A publication Critical patent/KR20020012878A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/90Electrical properties
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics

Abstract

PURPOSE: Provided is a powder preparation method for multilayer ceramic chip capacitors(MLCC) with excellent Y5V characteristics and reliability, which is characterized in that additives and/or sintering aids are added to powder synthesis process by solid state reaction unlike a conventional method adding additives to MLCC preparation process. CONSTITUTION: The multilayer ceramic capacitor powder, BaTiO3-based perovskite powder which has excellent F characteristics(Y5V), such as (Ba1-x-yCaxSry)m(Ti1-zZrz)O3, BCSTZ, and (Ba1-xCax)m(Ti1-zZrz)O3, BCTZ, is prepared by the following steps: mixing raw materials, BaCO3, CaCO3, SrCO3, TiO2 and ZrO2; primary calcining at 1100-1300deg.C; adding additives or/and sintering aids, where the additives are at least one compound(oxides, carbonates, nitrates, etc.) of element selected from La, Sm, Dy, Ho, Er, Yb, Mn, etc.; primary grinding; secondary calcining at 1100-1300deg.C; optionally adding additives or/and sintering aids; and secondary grinding to be 0.4-0.6micrometer of size.

Description

Y5V특성이 우수한 적층칩세라믹캐패시터용 파우더 제조방법{A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor}A method for preparing ceramic powders for Y5V type multilayer ceramic chip capacitor}

본 발명은 적층칩세라믹캐패시터(multi layer ceramic capacitor:이하, MLCC라 한다)용 파우더의 제조방법에 관한 것으로, 보다 상세히는, F특성(Y5V)이 우수한 MLCC 제조용 복합 페롭스카이트 파우더의 제조방법에 관한 것이다.The present invention relates to a method for producing a powder for a multilayer chip ceramic capacitor (hereinafter referred to as MLCC), and more particularly, to a method for producing a composite perovskite powder for producing MLCC having excellent F characteristics (Y5V). It is about.

최근 적층세라믹 캐패시터의 제조원가 절감을 위하여 내부전극을 Pd에서 Ni등의 base metal로 사용하기 위한 연구가 활발히 진행되어 오고 있다. 이들 base metal은 산화성 분위기에서 소성하면, 쉽게 산화되기 때문에 소성분위기를 환원성으로 유지시켜야 한다. 따라서, 환원성분위기 소성에서도 절연저항을 유지시키기 위한 내환원성 조성을 갖는 유전체가 개발되어 오고 있으며, 개발된 대부분의 Y5V용 유전체들은 (Ba1-xCax)m(Ti1-zZrz)O3(이하, BCTZ라 한다), (Ba1-x-yCaxSry)m(Ti1-zZrz)O3(이하, BCSTZ라 한다)등과 같은 다원소의 BaTiO3계 복합 페롭스카이트들이다.Recently, research has been actively conducted to use internal electrodes as base metals such as Ni in Pd in order to reduce manufacturing costs of multilayer ceramic capacitors. Since these base metals are easily oxidized when fired in an oxidizing atmosphere, the minor component must be kept reducing. Therefore, dielectrics having a reduction resistance composition have been developed to maintain insulation resistance even in reducing crisis firing. Most of the developed dielectrics for Y5V are (Ba 1-x Ca x ) m (Ti 1-z Zr z ) O 3 BaTiO 3 -based composite perovskites such as (hereinafter referred to as BCTZ) and (Ba 1-xy Ca x Sr y ) m (Ti 1-z Zr z ) O 3 (hereinafter referred to as BCSTZ).

F특성용 MLCC의 제조에 사용되는 내환원성 유전체는 다원소의 복합 페롭스카이트이며, MLCC의 제조를 위하여 이들에 첨가제와 소결조제가 혼합됨이 일반적이다. 즉, 소결시에는 이들 다원소의 복합 페롭스카이트에 또다른 첨가제들이 혼합되는데, 이들 첨가제들은 기지의 세라믹 파우더에 혼합되어 최종적인 유전체에 내환원성을 부여하고 절연저항을 증가시키며, 소결성을 증가시켜 소결온도를 낮추고 큐리온도를 조절하며 입성장을 조절하기도 한다. 따라서, MLCC의 제조에 있어서, 첨가제를 첨가해야 하지만, 첨가성분에 따라 그 특성이 좌우되는 전자세라믹스에 있어서는 첨가제의 균일한 혼합이 필수적이라 할 것이다.The reduction resistant dielectric used in the production of the F characteristic MLCC is a multi-component composite perovskite, and in order to manufacture the MLCC, an additive and a sintering aid are generally mixed. In other words, during sintering, other additives are mixed with the composite perovskite of these multi-elements, and these additives are mixed with a known ceramic powder to impart reduction resistance to the final dielectric, increase insulation resistance, and increase sinterability. It also lowers the sintering temperature, controls the Curie temperature, and also controls the grain growth. Therefore, in the production of MLCC, an additive must be added, but in electronic ceramics whose properties depend on the additive component, uniform mixing of the additive will be essential.

고상합성법으로 제조된 복합 페롭스카이트 세라믹 파우더에 첨가제를 혼합하여 MLCC를 제조하는 종래의 공정이 도 1에 나타나 있다.A conventional process of preparing an MLCC by mixing an additive with a composite perovskite ceramic powder prepared by the solid phase synthesis method is shown in FIG. 1.

즉, 도 1에 나타난 바와같이, 원료물질의 혼합과 하소, 그리고 분쇄에 따른 고상합성법으로 BCSTZ 파우더가 제조되며, 제조된 BCSTZ 파우더는 후속하는 Batch 공정에서 첨가제, 소결조제, binder, 가소제 및 solvent와 혼합된다. 그리고, Batch공정에서 나온 슬러리는 에이징공정을 거쳐 혼합한 다음 성형, 적층, 압축 및 최종 열처리 공정을 거쳐 MLCC 유전체를 제조되는 것이다.That is, as shown in Figure 1, BCSTZ powder is prepared by the solid phase synthesis method of mixing, calcining, and pulverizing the raw material, BCSTZ powder prepared in the subsequent batch process with additives, sintering aids, binders, plasticizers and solvents Are mixed. In addition, the slurry from the batch process is mixed through the aging process, and then produced through the molding, lamination, compression, and final heat treatment to manufacture the MLCC dielectric.

그러나, 상술한 Batch공정에서 각 첨가제들과 binder 및 solvent등을 혼합할 경우에 고상합성법의 특성상 각 원소들의 균일한 혼합이 어려우며, 이에 따라 최종 열처리후 이차상이 국부적으로 존재하거나 미반응물이 일부 남아 있는등 각 첨가제들의 불균일한 혼합에 따른 편석등이 발생하는 문제가 있어 우수한 유전 특성을 갖는 MLCC의 제조가 곤란하다는 문제가 있었다.However, when mixing the additives, binder and solvent in the batch process described above, it is difficult to uniformly mix the elements due to the characteristics of the solid phase synthesis method, so that the secondary phase is locally present after the final heat treatment or some unreacted material remains. There is a problem that segregation, etc. due to non-uniform mixing of each additive, such as the production of MLCC having excellent dielectric properties is difficult.

따라서, 본 발명은 상기 종래기술의 문제점을 해결하기 위한 것으로, Batch공정이전, 즉, 고상합성법으로 파우더를 합성하는 단계에서 첨가제 및 소결조제를 혼합하므로써 우수한 유전특성를 갖는 MLCC의 제조가 가능한 복합 페롭스카이트 파우더 제조방법을 제공함을 그 목적으로 한다.Accordingly, the present invention is to solve the problems of the prior art, before the batch process, that is, composite perovskite capable of producing an MLCC having excellent dielectric properties by mixing the additive and the sintering aid in the step of synthesizing the powder by a solid phase synthesis method It is an object of the present invention to provide a method for preparing powder powder.

도 1은 종래의 Y5V용 복합 페롭스카이트 파우더의 합성공정 및 이를 이용한 MLCC 제조공정도1 is a conventional synthetic process of Y5V composite perovskite powder and MLCC manufacturing process using the same

도 2는 본 발명에 따른 Y5V용 복합 페롭스카이트 파우더의 제조공정도Figure 2 is a manufacturing process of the composite perovskite powder for Y5V according to the present invention

도 3은 본 발명의 복합 페롭스카이트 파우더의 제조공정도의 일예와 MLCC 제조공정도Figure 3 is an example of the manufacturing process chart of the composite perovskite powder of the present invention and MLCC manufacturing process chart

도 4는 종래법으로 제조된 BCSTZ 복합 페롭스카트형 파우더의,4 is a BCSTZ composite perovskite powder prepared by the conventional method,

도 4(a)는 하소후 SEM조직사진,Figure 4 (a) is a SEM tissue photograph after calcination,

도 4(b)는 XRD,4 (b) shows XRD,

도 4(c)는 이 파우더를 이용하여 제조된 MLCC의 단면도Figure 4 (c) is a cross-sectional view of the MLCC prepared using this powder

도 5는 본 발명법으로 제조된 BCSTZ 복합 페롭스카이트형 파우더의 일예로,5 is an example of the BCSTZ composite perovskite powder prepared by the present invention method,

도 5(a)(b)(c)는 하소후 SEM조직사진,Figure 5 (a) (b) (c) is a SEM micrograph after calcination,

도 5(d)는 XRD,5 (d) shows XRD,

도 5(e)(f)(g)는 이 파우더를 이용하여 제조된 MLCC의 단면도5 (e) (f) (g) are cross-sectional views of MLCCs prepared using this powder.

따라서 본 발명은, 탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질을 혼합한후, 이를 1차 하소하는 단계; 상기 1차 하소에 의해 얻어진 파우더에 첨가제 및 소결조제를 혼합한후, 이를 1차 분쇄하는 단계; 및 상기 1차분쇄된 파우더를 2차하소처리한후, 이를 2차 분쇄하는 단계; 를포함하여 구성되는 Y5V특성이 우수한 복합 페롭스카이트 파우더 제조방법에 관한 것이다.Therefore, the present invention, after mixing the raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ), 1 Calcining the car; Mixing an additive and a sintering aid with the powder obtained by the first calcination, and then pulverizing the first; And secondly calcining the first milled powder and then second milling it. It relates to a composite perovskite powder manufacturing method having excellent Y5V characteristics, including.

또한, 본 발명은,탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질에 첨가제를 혼합한후, 이를 1차 하소하는 단계; 상기 1차 하소에 의해 얻어진 세라믹 파우더를 1차 분쇄한후, 이를 2차 하소하는 단계; 및 상기 2차 하소된 파우더에 소결조제를 혼합한후, 이를 2차 분쇄하는 단계;를 포함하여 구성된 Y5V특성이 우수한 복합 페롭스카이트 파우더 제조방법에 관한 것이다.In addition, the present invention, after the additive is mixed with a raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) First calcining it; First grinding the ceramic powder obtained by the first calcination, and then calcining it secondly; And a second grinding step of mixing the sintering aid with the secondary calcined powder, and then pulverizing the secondary. The present invention relates to a composite perovskite powder manufacturing method having excellent Y5V characteristics.

또한, 본 발명은,탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질에 첨가제 및 소결조제를 혼합한후 이를 하소하고; 그리고 상기 하소처리된 세라믹 파우더를 분쇄하는 것을 포함하여 구성됨을 특징으로 하는 Y5V특성이 우수한 복합 페롭스카이트 파우더제조방법에 관한 것이다.In addition, the present invention, an additive and a sintering aid to a raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) After mixing it is calcined; And it relates to a composite perovskite powder manufacturing method excellent in Y5V characteristics characterized in that it comprises a pulverized the calcined ceramic powder.

이하, 본 발명을 설명한다.Hereinafter, the present invention will be described.

먼저, 본 발명은 고상합성법으로 BCSTZ 파우더를 제조함에 있어서, 1,2차 분쇄공정에서 첨가제 및/또는 소결조제를 혼합함을 그 특징으로 한다.First, the present invention is characterized by mixing the additives and / or the sintering aid in the first and second grinding processes in producing BCSTZ powder by the solid phase synthesis method.

즉, 도 2(a),(b) 및(c)에 나타난 바와 같이, 먼저, 탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질을 균일하게 혼합할 것을 요한다.That is, as shown in Figures 2 (a), (b) and (c), first, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and It is necessary to uniformly mix the raw material consisting of zirconium oxide (ZrO 2 ).

이때, 본 발명에서 사용되는 원료물질은 제조되는 최종 파우더의 종류에 따라 달라질 수 있다. 즉, BCTZ((Ba1-xCax)m(Ti1-zZrz)O3)파우더의 경우 탄산바륨 (BaCO3), 탄산칼슘(CaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)을 원료물질로 사용할 수 있으며, BTZ(Ba(Ti1-zZrz)O3)파우더의 경우는 탄산바륨(BaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)을 원료물질로 사용할 수 있다.At this time, the raw material used in the present invention may vary depending on the type of the final powder to be produced. That is, for BCTZ ((Ba 1-x Ca x ) m (Ti 1-z Zr z ) O 3 ) powders, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) can be used as a raw material, and in the case of BTZ (Ba (Ti 1-z Zr z ) O 3 ) powder, barium carbonate (BaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) May be used as a raw material.

다음으로, 상기와 같이 혼합된 원료물질은 1차 하소처리되는데, 이때 하소온도범위를 1100~1300℃로 제한함이 바람직하다.Next, the raw material mixed as described above is subjected to the first calcination, wherein the calcination temperature range is preferably limited to 1100 ~ 1300 ℃.

1차하소처리된 세라믹 파우더는 다음으로 1차 분쇄처리된다. 이러한 분쇄는 ball mill등과 같은 분쇄기에서 이뤄지는데, 그 분쇄기 종류에 따라 그 분쇄조건 도 달라질 수 있다.The first calcined ceramic powder is then first milled. Such grinding is performed in a mill such as a ball mill, and the grinding conditions may vary depending on the type of mill.

한편, 본 발명에서는 상기 상기 1차 분쇄단계에서 첨가제와 소결조제를 혼합하여 줌이 바람직하다.On the other hand, in the present invention, it is preferable to mix the additive and the sintering aid in the first grinding step.

상기 첨가제는 La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W중 1종 또는 2종이상의 화합물임이 바람직하다. 또한, 상기 첨가제인 화합물은 산화물, 할로겐 화합물, 탄산화합물, 질화물, 황화물형태임이 바람직하다.The additive is preferably one or two or more compounds of La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W. In addition, the compound which is the additive is preferably in the form of oxides, halogen compounds, carbonate compounds, nitrides, sulfides.

상기와 같이, 1차 분쇄처리되어진 세라믹 파우더는 다시 2차 하소처리되는데, 그 바람직한 온도범위는 1100~1300℃로 제한함이 바람직하다.As described above, the ceramic powder subjected to the first pulverization treatment is again subjected to the second calcination treatment, and the preferable temperature range is preferably limited to 1100 to 1300 ° C.

그리고 2차 하소처리된 파우더는 2차 분쇄처리되므로써 복합 페롭스카이트 파우더가 제조되는데, 이때 파우더의 입도가 0.4~0.6㎛로 제한되도록 2차분쇄를 실시함이 바람직하다.And the secondary calcined powder is a composite perovskite powder is produced by the secondary grinding treatment, wherein the secondary grinding is preferably performed so that the particle size of the powder is limited to 0.4 ~ 0.6㎛.

한편 본 발명에서는, 제 1차 분쇄단계가 아니라 제 2차분쇄단계에서 상기 첨가제 및 소결조제를 세라믹 파우더에 혼합할 수도 있다.Meanwhile, in the present invention, the additive and the sintering aid may be mixed with the ceramic powder in the second grinding step instead of the first grinding step.

또한, 제 1차 분쇄단계에서는 첨가제만 혼합하고, 소결조제는 2차 분쇄단계에서 파우더에 혼합시킬 수도 있다.In addition, only the additives are mixed in the first grinding step, and the sintering aid may be mixed in the powder in the second grinding step.

또한, 본 발명은, 고상합성법으로 BCSTZ 파우더를 제조함에 있어서, 원료물질에 첨가제를 혼합하여 1차 하소처리하고, 분쇄공정에서 소결조제를 파우더에 혼합함을 그 특징으로 한다.In addition, the present invention is characterized in that, in the preparation of BCSTZ powder by the solid phase synthesis method, the additive is mixed with the raw material to the primary calcination treatment, and the sintering aid is mixed with the powder in the grinding step.

즉, 본 발명은 즉, 도 2(d),(e)에 나타난 바와 같이, 먼저, 탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질을 균일하게 혼합할 것을 요한다.That is, the present invention, as shown in Figure 2 (d), (e), first, barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) And it is required to uniformly mix the raw material consisting of zirconium oxide (ZrO 2 ).

이때, 상술한 바와 같이, 제조되는 파우더의 종류, 즉, BCTZ((Ba1-xCax)m(Ti1-zZrz)O3), BTZ(Ba(Ti1-zZrz)O3)에 따라 그 원료물질이 달라질 수 있다.At this time, as described above, the type of powder to be manufactured, that is, BCTZ ((Ba 1-x Ca x ) m (Ti 1-z Zr z ) O 3 ), BTZ (Ba (Ti 1-z Zr z ) O 3 ) The raw material may vary.

한편, 본 발명에서는 상기 원료물질에 첨가제와 혼합하여 줌이 바람직하다. 이때, 첨가제로는 La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W중 1종 또는 2종이상의 화합물임이 바람직하다. 또한, 상기 첨가제인 화합물은 산화물, 할로겐 화합물, 탄산화합물, 질화물, 황화물형태임이 바람직하다.Meanwhile, in the present invention, it is preferable to mix the raw material with an additive. At this time, the additive is preferably one or two or more compounds of La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W. In addition, the compound which is the additive is preferably in the form of oxides, halogen compounds, carbonate compounds, nitrides, sulfides.

첨가제가 혼합된 원료물질은 다음으로 1차 하소처리되는데, 이때 하소온도범위를 1100~1300℃로 제한함이 바람직하다.The raw material mixed with the additive is then first calcined, wherein the calcination temperature range is preferably limited to 1100 ~ 1300 ℃.

1차 하소처리된 세라믹 파우더는 다음으로 1차 분쇄처리되는데, 이때 소결조제를 파우더에 혼합하여 줌이 바람직하다.The first calcined ceramic powder is then subjected to a first pulverization treatment, in which the sintering aid is preferably mixed with the powder.

그리고 상기와 같이, 1차 분쇄처리되어진 세라믹 파우더는 다시 2차 하소처리되는데, 그 바람직한 하소온도는 1100~1300℃이다.As described above, the ceramic powder subjected to the primary pulverization treatment is subjected to the second calcination treatment, and the preferred calcination temperature is 1100 to 1300 ° C.

그리고 2차 하소처리된 파우더는 2차 분쇄처리되므로써 복합 페롭스카이트 파우더가 제조되는데, 이때 파우더의 입도가 0.4~0.6㎛로 제한되도록 2차분쇄를 실시함이 바람직하다.And the secondary calcined powder is a composite perovskite powder is produced by the secondary grinding treatment, wherein the secondary grinding is preferably performed so that the particle size of the powder is limited to 0.4 ~ 0.6㎛.

한편, 본 발명에서는 상기 상기 1차 분쇄단계가 아니라 2차 분쇄공정에서 소결조제를 세라믹 파우더에 혼합할 수도 있다.Meanwhile, in the present invention, the sintering aid may be mixed with the ceramic powder in the second grinding step instead of the first grinding step.

또한, 본 발명은, 고상합성법으로 BCSTZ 파우더를 제조함에 있어서, 원료물질에 첨가제 및 소결조제 모두를 혼합시켜 하소처리함을 그 특징으로 한다.In addition, the present invention is characterized in that in the preparation of BCSTZ powder by the solid phase synthesis method, both an additive and a sintering aid are mixed with a raw material to be calcined.

즉, 본 발명은 도 2(f)에 나타난 바와 같이, 탄산바륨 (BaCO3), 탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질을 균일하게 혼합할 것을 요한다.That is, the present invention, as shown in Figure 2 (f), barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) It is necessary to uniformly mix the raw materials made up.

이때, 상술한 바와 같이, 이때, 상술한 바와 같이, 제조되는 파우더의 종류, 즉, BCTZ((Ba1-xCax)m(Ti1-zZrz)O3), BTZ(Ba(Ti1-zZrz)O3)에 따라 그 원료물질이 달라질 수 있다.In this case, as described above, at this time, as described above, the type of powder to be manufactured, that is, BCTZ ((Ba 1-x Ca x ) m (Ti 1-z Zr z ) O 3 ), BTZ (Ba (Ti (Ti 1-z Zr z ) O 3 ) The raw material may vary.

한편, 본 발명에서는 상기 원료물질의 혼합단계에서 첨가제 및 소결조제를 혼합하여 줌이 바람직하다. 이때, 첨가제로는 La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W중 1종 또는 2종이상의 화합물임이 바람직하다. 또한, 상기 첨가제인 화합물은 산화물, 할로겐 화합물, 탄산화합물, 질화물, 황화물형태임이 바람직하다.On the other hand, in the present invention, it is preferable to mix the additive and the sintering aid in the mixing step of the raw material. At this time, the additive is preferably one or two or more compounds of La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W. In addition, the compound which is the additive is preferably in the form of oxides, halogen compounds, carbonate compounds, nitrides, sulfides.

상기와 같이 첨가제 및 소결조제가 혼합된 원료물질은 하소처리되는데, 이때 그 하소온도를 1150~1200℃로 제한함이 바람직하다.As described above, the raw material mixed with the additive and the sintering aid is calcined, wherein the calcination temperature is preferably limited to 1150 to 1200 ° C.

하소된 세라믹 파우더는 분쇄공정을 거침으로써 복합 페롭 스카이트 파우더가 제조되는데, 이때 파우더의 입도가 0.4~0.6㎛로 제한되도록 분쇄를 실시함이 바람직하다.The calcined ceramic powder undergoes a grinding process to produce a composite perovskite powder, in which the grinding is preferably performed so that the particle size of the powder is limited to 0.4 to 0.6 μm.

도 3은 상기와 같은 공정을 이용하여 MLCC를 제조하는 본 발명의 공정의 일예를 나타내고 있는 그림으로서, 복합 페롭 스카이트 파우더를 합성하는 공정에서 첨가제 및 소결조제를 혼합시킴으로써 후속하는 Batch공정에서는 이들의 혼합을 요하지 않음을 알 수 있다.Figure 3 is an illustration showing an example of the process of the present invention for producing an MLCC using the process as described above, in the subsequent batch process by mixing the additives and sintering aid in the process of synthesizing composite perovskite powder It can be seen that no mixing is required.

이하, 실시예를 통하여 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail through examples.

(종래예 1)(Conventional example 1)

탄산바륨(BaCO3), 탄산칼슘(CaCO3), 탄산스트론튬(SrCO3), 산화티타늄(TiO2)및 산화지르코늄(ZrO2)을 (Ba0.843Ca0.07Sr0.09)(Ti0.84Zr0.16)O3이 되도록 정량한 후 이를 ball-mill로 혼합하였다. 이와 같이 혼합물은 도 1과 같이 통상의 조건으로 하소처리한후, 분쇄하여 BCSTZ 복합 페롭스카이트 파우더를 얻었다.Barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) (Ba 0.843 Ca 0.07 Sr 0.09 ) (Ti 0.84 Zr 0.16 ) O After quantification to 3 it was mixed with a ball-mill. As such, the mixture was calcined under normal conditions as shown in FIG. 1, and then ground to obtain BCSTZ composite perovskite powder.

상기와 같이 제조된 파우더를 다시 ball jar에 넣어 첨가제, 소결조제, binder, plasticizer 및 solvent를 가하여 Batch처리하였으며, 이로부터 얻어지는 슬러리로 부터 1240℃에서 MLCC를 제조하여 그 유전특성과 신뢰성을 측정하여 하기 표 1에 나타내었다.The powder prepared as described above was placed in a ball jar again, and then subjected to a batch treatment by adding an additive, a sintering aid, a binder, a plasticizer, and a solvent. Table 1 shows.

한편, 도 4(a)는 종래의 공정으로 제조된 BCSTZ 복합 페롭스카이트 파우더의 하소후 SEM조직사진이며, 도 4(b)는 종래의 공정으로 제조된 BCSTZ 복합 페롭스카이트 파우더에 대한 XRD, 그리고 도 4(c)는 제조된 MLCC의 단면사진이다.On the other hand, Figure 4 (a) is a SEM micrograph after calcination of the BCSTZ composite perovskite powder prepared by a conventional process, Figure 4 (b) is an XRD, BCSTZ composite perovskite powder prepared by a conventional process, 4 (c) is a cross-sectional photograph of the prepared MLCC.

(실시예 1)(Example 1)

탄산바륨(BaCO3), 탄산칼슘(CaCO3), 탄산스트론튬(SrCO3), 산화티타늄(TiO2)및 산화지르코늄(ZrO2)을 (Ba0.843Ca0.07Sr0.09)(Ti0.84Zr0.16)O3이 되도록 정량한 후 이를 ball-mill로 20시간동안 혼합하였다. 이와 같이 혼합물은 건조된후 1100℃에서 1차 하소처리하였다.Barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) (Ba 0.843 Ca 0.07 Sr 0.09 ) (Ti 0.84 Zr 0.16 ) O After quantification to 3 it was mixed with a ball-mill for 20 hours. Thus, the mixture was dried and then first calcined at 1100 ° C.

1차 하소처리된 세라믹 파우더에 무게를 정확히 측정하여 첨가제 Y2O3+MnO2를 0.3중량%와 소결조제 SiO2를 0.2중량% 혼합시키후 다시 ball-mill에서 20시간동안 분쇄 및 혼합시켰다. 그리고, 첨가제가 혼합된 세라믹 파우더를 건조한후 1150℃에서 2차 하소처리하였으며, 다음으로 이를 그 입도가 0.4~0.6㎛가 되도록 분쇄처리하여 BCSTZ 복합 페롭스카이트 파우더를 제조하였다.The weight of the first calcined ceramic powder was accurately measured, and 0.3 wt% of the additive Y 2 O 3 + MnO 2 and 0.2 wt% of the sintering aid SiO 2 were mixed and then ground and mixed in a ball-mill for 20 hours. In addition, the ceramic powder mixed with the additive was dried and then calcined at 1150 ° C. for the second time, and then it was ground to a particle size of 0.4˜0.6 μm to prepare BCSTZ composite perovskite powder.

상기와 같이 제조된 파우더를 다시 ball jar에 넣어 binder, plasticizer 및 solvent를 가하고 다시 20시간동안 Batch처리하였으며, 이로부터 얻어지는 슬러리로 부터 1240℃에서 MLCC 샘플 ⓐ를 제조하여 그 유전특성과 신뢰성을 측정하여 하기 표 1에 나타내었다.The powder prepared as described above was put back into a ball jar, and then binder, plasticizer and solvent were added and batched again for 20 hours. MLCC sample ⓐ was prepared at 1240 ° C. from the slurry obtained therefrom, and the dielectric properties and reliability thereof were measured. It is shown in Table 1 below.

하기 표 1에 나타난 바와같이, 본 발명법에 의해 제조되는 BCSTZ 파우더를 이용하여 제조되는 MLCC 샘플 ⓐ가, 후속하는 Batch공정에서 첨가제 및 소결조제를 혼합하여 제조되는 종래법의 MLCC에 비하여 보다 우수한 유전특성을 나타냄을 알 수 있다.As shown in Table 1 below, the MLCC sample ⓐ produced using the BCSTZ powder prepared by the present invention method is better than the conventional MLCC prepared by mixing the additive and the sintering aid in the subsequent batch process. It can be seen that the characteristics.

한편, 도 5(a)는 상기 본 발명법에 의해 제조되는 BCSTZ 복합 페롭스카이트파우더의 하소후 SEM조직을, 도 5(d)는 XRD, 그리고 도 5(e)는 제조된 MLCC 샘플 ⓐ의 단면사진을 나타낸다.On the other hand, Figure 5 (a) is a SEM structure after calcination of the BCSTZ composite perovskite powder prepared by the present invention method, Figure 5 (d) XRD, Figure 5 (e) of the prepared MLCC sample ⓐ A cross-sectional photograph is shown.

상기 도 5(a)와 전술한 도 4(a)를 비교하면, 본 발명법으로 제조된 파우더가 종래법으로 제조된 파우더보다 파우더의 입도가 균일함을 알 수 있으며, 이에 따라 이들을 이용하여 같은 온도에서 MLCC를 제작할 경우라도 본 발명의 파우더를 이용하여 제조된 MLCC가 그렇지 않은 종래법으로 제조된 MLCC보다 우수한 유전특성과 신뢰성을 가짐을 알 수 있다.Comparing FIG. 5 (a) with FIG. 4 (a), it can be seen that the powder produced by the present invention method is more uniform in particle size than the powder produced by the conventional method. Even when the MLCC is produced at a temperature, it can be seen that the MLCC prepared using the powder of the present invention has superior dielectric properties and reliability than the MLCC prepared by the conventional method.

즉, 도 5(e)및 도 4(c)로부터 알 수 있는 바와 같이, 본 발명법에 의해 제조되는 파우더를 이용하여 MLCC를 제조한 경우, 그 제조된 MLCC의 단면에는 종래법에 비하여 3중점과 pore와 같은 grain boundary부가 현저히 작아져서 우수한 유전특성을 확보할 수 있는 것이다.That is, as can be seen from Figure 5 (e) and Figure 4 (c), when the MLCC is manufactured using the powder produced by the method of the present invention, the cross-section of the produced MLCC has a triple point compared to the conventional method Grain boundary parts such as and pores are significantly smaller, thus ensuring excellent dielectric properties.

이점은 또한, 본 발명법으로 제조된 파우더의 XRD가 종래법에 비해 보다 peak가 날카롭다는 사실을 나타내고 있는 도 5(d)및 도 4(b)로 부터도 확인될 수 있다.This can also be confirmed from Figs. 5 (d) and 4 (b), which show that the XRD of the powder produced by the present invention method is sharper than the conventional method.

(실시예 2)(Example 2)

탄산바륨(BaCO3), 탄산칼슘(CaCO3), 탄산스트론튬(SrCO3), 산화티타늄(TiO2)및 산화지르코늄(ZrO2)을 (Ba0.843Ca0.07Sr0.09)(Ti0.84Zr0.16)O3이 되도록 정량한 후 여기에 첨가제인 Y2O3와 MnO2를 0.3중량%첨가하여 ball-mill로 20시간동안 혼합하였다.Barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) (Ba 0.843 Ca 0.07 Sr 0.09 ) (Ti 0.84 Zr 0.16 ) O after the amount to be 3 to 0.3% by weight of this additive was added to the Y 2 O 3 and MnO 2 in a ball-mill and mixed for 20 hours.

이와 같이 혼합물은 건조한 후 1100℃에서 1차 하소처리하였으며, 이후 다시 무게를 측정하여 소결조제인 SiO2를 0.2중량% 첨가하여 ball-mill에서 20시간동안 분쇄 및 혼합시켰다. 그리고, 이러한 세라믹 파우더는 건조된후 1180℃에서 2차 하소처리하였으며, 다음으로 이를 그 입도가 0.4~0.6㎛가 되도록 분쇄처리하여 BCSTZ 복합 페롭스카이트 파우더를 제조하였다.As such, the mixture was first calcined at 1100 ° C. after drying, and then weighed again to add 0.2 wt% of SiO 2 , a sintering aid, to grind and mix in a ball-mill for 20 hours. The ceramic powder was dried and then calcined at 1180 ° C. for the second time. Next, the ceramic powder was ground to have a particle size of 0.4˜0.6 μm to prepare BCSTZ composite perovskite powder.

상기와 같이 제조된 파우더를 이용하여 실시예 1과 동일한 조건으로 MLCC 샘플 ⓑ를 제조하였으며, 제조된 MLCC 샘플ⓑ의 유전특성과 신뢰성을 측정하여 하기 표 1에 나타내었다.MLCC sample ⓑ was prepared under the same conditions as in Example 1 using the powder prepared as described above, and the dielectric properties and reliability of the prepared MLCC sample ⓑ were measured and shown in Table 1 below.

하기 표 1에 나타난 바와 같이, 첨가제 및 소결조제가 혼합되어 있는 BCSTZ파우더를 이용하는 본 발명법이, 후속하는 Batch공정에서 첨가제 및 소결조제를 혼합하는 종래법에 비하여 보다 우수한 유전특성을 갖는 MLCC제조가 가능함을 알 수 있다.As shown in Table 1 below, the present invention using the BCSTZ powder in which the additive and the sintering aid are mixed is more effective than the conventional method of mixing the additive and the sintering aid in the subsequent batch process. It can be seen that.

이는, 본 발명법에 의해 제조되는 BCSTZ 복합 페롭스카이트 파우더의 하소후 SEM조직을 나타내는 도 5(b), 상기 파우더를 이용하여 제조된 MLCC 샘플 ⓑ의 단면사진을 나타내는 도 5(f)로 부터 잘 설명될 수 있다.This is from Figure 5 (b) showing the SEM structure after calcination of the BCSTZ composite perovskite powder prepared by the present invention method, Figure 5 (f) showing a cross-sectional picture of the MLCC sample ⓑ prepared using the powder It can be explained well.

(실시예 3)(Example 3)

탄산바륨(BaCO3), 탄산칼슘(CaCO3), 탄산스트론튬(SrCO3), 산화티타늄(TiO2)및 산화지르코늄(ZrO2)을 (Ba0.843Ca0.07Sr0.09)(Ti0.84Zr0.16)O3이 되도록 정량한 후 여기에 첨가제인 Y2O3와 MnO2를 0.3중량%, 그리고 소결조제인 SiO2를 0.2중량% 첨가하여 ball-mill로 20시간동안 혼합하였다.Barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) (Ba 0.843 Ca 0.07 Sr 0.09 ) (Ti 0.84 Zr 0.16 ) O to then quantified so that the third 0.3 wt% of the additive of Y 2 O 3 and MnO 2 herein, and the ball-mill by adding a sintering aid of 0.2 wt% SiO 2 was mixed for 20 hours.

그리고 이와 같이 혼합물을 건조된 후 1180℃에서 하소처리하였으며, 이후 ball-mill에서 그 입도가 0.4~0.6㎛가 되도록 분쇄처리하여 BCSTZ 복합 페롭스카이트 파우더를 제조하였다.The mixture was dried and calcined at 1180 ° C., and then pulverized in a ball-mill to have a particle size of 0.4˜0.6 μm to prepare BCSTZ composite perovskite powder.

상기와 같이 제조된 파우더를 이용하여 실시예 1과 동일한 조건으로 MLCC 샘플 ⓒ를 제조하였으며, 제조된 MLCC 샘플ⓒ의 유전특성과 신뢰성을 측정하여 하기 표 1에 나타내었다.MLCC sample ⓒ was prepared under the same conditions as in Example 1 using the powder prepared as described above, and the dielectric properties and reliability of the prepared MLCC sample ⓒ were measured and shown in Table 1 below.

하기 표 1에 나타난 바와 같이, 첨가제 및 소결조제가 혼합되어 있는 BCSTZ파우더를 이용하는 본 발명법이, 후속하는 Batch공정에서 첨가제 및 소결조제를 혼합하는 종래법에 비하여 보다 우수한 유전특성을 갖는 MLCC제조가 가능함을 알 수 있다.As shown in Table 1 below, the present invention using the BCSTZ powder in which the additive and the sintering aid are mixed is more effective than the conventional method of mixing the additive and the sintering aid in the subsequent batch process. It can be seen that.

이러한 종래법과 구별되는 본 발명의 특징은, 본 발명법에 의해 제조되는 BCSTZ 복합 페롭스카이트 파우더의 하소후 SEM조직을 나타내는 도 5(c), 상기 파우더를 이용하여 제조된 MLCC 샘플 ⓒ의 단면사진을 나타내는 도 5(g)로 부터 잘 설명될 수 있다.Characteristic of the present invention, which is distinguished from the conventional method, is a cross-sectional photograph of the MLCC sample © prepared using the powder of FIG. 5 (c) showing the SEM structure after calcination of the BCSTZ composite perovskite powder prepared by the present method. This can be well explained from Fig. 5 (g).

종래법Conventional Law 본 발명법Invention method 샘플 ⓐSample ⓐ 샘플 ⓑSample ⓑ 샘플 ⓒSample ⓒ 시험전고장Examination Failure 00 00 00 1One c/nc / n 40/4040/40 11/4011/40 15/4015/40 27/3927/39 초기고장Early failure 66 1One 1One 1One 시험시간Exam time 51.051.0 51.051.0 51.051.0 51.051.0 총시험시간Total test time 282.7282.7 1882.71882.7 1761.01761.0 1604.71604.7 AFAF 2.85E + 062.85E + 06 2.85E + 062.85E + 06 2.85E +062.85E +06 2.85E + 062.85E + 06 고장율(λ,Fit)Failure rate (λ, Fit) 45.945.9 2.02.0 3.03.0 5.95.9

상술한 바와 같이, 본 발명은 고상법으로 복합 페롭스카이트 파우더를 합성하는 공정중에서 첨가제 및/또는 소결조제를 혼합하여 파우더를 제공함으로써, 후속하는 MLCC제조공정에서 첨가제등을 혼합할 필요가 없으므로 우수한 유전특성 및 신뢰성을 갖는 MLCC의 제조에 유용하다.As described above, the present invention provides a powder by mixing an additive and / or a sintering aid in the process of synthesizing the composite perovskite powder by the solid phase method, thereby eliminating the need to mix additives and the like in a subsequent MLCC manufacturing process. It is useful for the production of MLCCs having dielectric properties and reliability.

Claims (24)

탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질을 혼합한후, 이를 1차 하소하는 단계;Mixing a raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ), and then calcining the first material; 상기 1차 하소에 의해 얻어진 파우더에 첨가제 및 소결조제를 혼합한후, 이를 1차 분쇄하는 단계; 및Mixing an additive and a sintering aid with the powder obtained by the first calcination, and then pulverizing the first; And 상기 1차분쇄된 파우더를 2차하소처리한후, 이를 2차 분쇄하는 단계;를 포함하여 구성됨을 특징으로 하는 Y5V특성이 우수한 복합 페롭스카이트 파우더 제조방법After the secondary calcination of the first milled powder, the second milling step; Y5V characteristics excellent composite perovskite powder manufacturing method comprising a; 제 1항에 있어서, 상기 1차 하소온도와 2차 하소온도는 1100~1300℃임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 1, wherein the primary calcination temperature and the secondary calcination temperature is a composite perovskite powder manufacturing method characterized in that 1100 ~ 1300 ℃ 제 1항에 있어서, 상기 2차분쇄는 파우더의 입도가 0.4~0.6㎛가 되도록 수행됨을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 1, wherein the secondary grinding is a composite perovskite powder production method characterized in that the particle size of the powder is performed 0.4 ~ 0.6㎛ 제 1항에 있어서, 상기 첨가제는 La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W중 1종 또는 2종이상의 화합물임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 1, wherein the additive is one or two or more compounds of La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W Manufacturing method of composite perovskite powder 제 4항에 있어서, 상기 첨가제는 산화물, 할로겐 화합물, 탄산화합물, 질화물, 황화물형태의 화합물임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 4, wherein the additive is an oxide, a halogen compound, a carbonate compound, a nitride, or a sulfide-type compound. 제 1항에 있어서, 상기 원료물질 대신에 탄산바륨 (BaCO3), 탄산칼슘(CaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)으로 이루어진 원료물질을 이용함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The composite ferep of claim 1, wherein a raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) is used instead of the raw material. How to make sky powder 제 1항에 있어서, 상기 원료물질 대신에 탄산바륨(BaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)으로 이루어짐을 원료물질을 이용함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 1, wherein the raw material is made of barium carbonate (BaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) instead of the raw material. 제 1항 또는 2항에 있어서, 상기 첨가제와 소결조제는 2차분쇄단계에서 파우더에 혼합됨을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 1 or 2, wherein the additive and the sintering aid are mixed with the powder in the secondary grinding step. 제 1항 또는 2항에 있어서, 상기 첨가제는 1차분쇄단계에서 혼합시키고, 소결조제는 2차분쇄단계에서 혼합함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 1 or 2, wherein the additive is mixed in the first milling step, and the sintering aid is mixed in the second milling step. 탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질에 첨가제를 혼합한후, 이를 1차 하소하는 단계;After the additive is mixed with a raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ), step; 상기 1차 하소에 의해 얻어진 세라믹 파우더를 1차 분쇄한후, 이를 2차 하소하는 단계; 및First grinding the ceramic powder obtained by the first calcination, and then calcining it secondly; And 상기 2차 하소된 파우더에 소결조제를 혼합한후, 이를 2차 분쇄하는 단계;를 포함하여 구성됨을 특징으로 하는 Y5V특성이 우수한 복합 페롭스카이트 파우더 제조방법After mixing the sintering aid in the secondary calcined powder, the secondary grinding step; Y5V characteristics excellent composite perovskite powder manufacturing method comprising a 제 10항에 있어서, 상기 1차 하소온도와 2차 하소온도는 1100~1300℃임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 10, wherein the primary calcination temperature and secondary calcination temperature is 1100 ~ 1300 ℃ characterized in that the composite perovskite powder manufacturing method 제 10항에 있어서, 상기 2차분쇄는 파우더의 입도가 0.4~0.6㎛가 되도록 수행됨을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 10, wherein the secondary grinding is performed so that the particle size of the powder is 0.4 to 0.6 μm. 제 10항에 있어서, 상기 첨가제는 La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W중 1종 또는 2종이상의 화합물임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 10, wherein the additive is one or two or more compounds of La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W Manufacturing method of composite perovskite powder 제 13항에 있어서, 상기 첨가제는 산화물, 할로겐 화합물, 탄산화합물, 질화물, 황화물형태의 화합물임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 13, wherein the additive is an oxide, a halogen compound, a carbonate compound, a nitride, or a sulfide-type compound. 제 10항에 있어서, 상기 원료물질 대신에 탄산바륨 (BaCO3), 탄산칼슘(CaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)으로 이루어진 원료물질을 이용함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The composite ferep of claim 10, wherein a raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) is used instead of the raw material. How to make sky powder 제 10항에 있어서, 상기 원료물질 대신에 탄산바륨(BaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)으로 이루어짐을 원료물질을 이용함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 10, wherein the raw material is made of barium carbonate (BaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) instead of the raw material. 제 10항 또는 11항에 있어서, 상기 소결조제를 1차 분쇄단계에서 혼합함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법12. The method for producing a composite perovskite powder according to claim 10 or 11, wherein the sintering aid is mixed in the first grinding step. 탄산바륨(BaCO3),탄산칼슘(CaCO3),탄산스트론튬 (SrCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)로 이루어진 원료물질에 첨가제 및 소결조제를 혼합한후 이를 하소하고; 그리고 상기 하소처리된 세라믹 파우더를 분쇄하는 것;을 포함하여 구성됨을 특징으로 하는 Y5V특성이 우수한 복합 페롭스카이트 파우더 제조방법After mixing the additive and sintering aid to the raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), strontium carbonate (SrCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) ; And pulverizing the calcined ceramic powder; a composite perovskite powder manufacturing method having excellent Y5V characteristics, including 제 18항에 있어서, 상기 하소온도는 1150~1200℃임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법19. The method of claim 18, wherein the calcination temperature is 1150 ~ 1200 ℃. 제 18항에 있어서, 상기 분쇄는 파우더의 입도가 0.4~0.6㎛가 되도록 수행됨을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method of claim 18, wherein the pulverization is performed so that the particle size of the powder is 0.4 ~ 0.6㎛. 제 18항에 있어서, 상기 첨가제는 La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W중 1종 또는 2종이상의 화합물임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법The method according to claim 18, wherein the additive is one or two or more compounds of La, Sm, Dy, Ho, Er, Yb, Mn, Y, Cr, Mg, Ni, Nd, Nb, V, W Manufacturing method of composite perovskite powder 제 21항에 있어서, 상기 첨가제는 산화물, 할로겐 화합물, 탄산화합물, 질화물, 황화물형태의 화합물임을 특징으로 하는 복합 페롭스카이트 파우더 제조방법22. The method of claim 21, wherein the additive is an oxide, a halogen compound, a carbonate compound, a nitride, or a sulfide compound. 제 18항에 있어서, 상기 원료물질 대신에 탄산바륨 (BaCO3), 탄산칼슘(CaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)으로 이루어진 원료물질을 이용함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법19. The composite ferep of claim 18, wherein a raw material consisting of barium carbonate (BaCO 3 ), calcium carbonate (CaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) is used instead of the raw material. How to make sky powder 제 18항에 있어서, 상기 원료물질 대신에 탄산바륨(BaCO3), 산화티타늄(TiO2) 및 산화지르코늄(ZrO2)으로 이루어짐을 원료물질을 이용함을 특징으로 하는 복합 페롭스카이트 파우더 제조방법19. The method of claim 18, wherein the raw material is formed of barium carbonate (BaCO 3 ), titanium oxide (TiO 2 ) and zirconium oxide (ZrO 2 ) instead of the raw material.
KR1020000046124A 2000-08-09 2000-08-09 A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor KR20020012878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020000046124A KR20020012878A (en) 2000-08-09 2000-08-09 A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020000046124A KR20020012878A (en) 2000-08-09 2000-08-09 A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor

Publications (1)

Publication Number Publication Date
KR20020012878A true KR20020012878A (en) 2002-02-20

Family

ID=19682456

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000046124A KR20020012878A (en) 2000-08-09 2000-08-09 A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor

Country Status (1)

Country Link
KR (1) KR20020012878A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100585114B1 (en) * 2003-12-05 2006-05-30 삼성전자주식회사 Capacitor having a high dielectric layer of BTS or BTZ in a semiconductor device, and fabrication method thereof
CN102351533A (en) * 2011-07-15 2012-02-15 桂林电子科技大学 Calcium barium zirconate titanate based leadless piezoelectric ceramics with low temperature sintering and high piezoelectric properties and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442855A (en) * 1990-06-08 1992-02-13 Sumitomo Metal Ind Ltd Porcelain composition and its production
JPH06224006A (en) * 1993-01-26 1994-08-12 Tdk Corp Voltage dependent nonlinear resistor
KR20000009936A (en) * 1998-07-29 2000-02-15 박호군 Method for manufacturing disc-type and chip-type ceramic varistors
KR100345166B1 (en) * 2000-08-05 2002-07-24 주식회사 칩팩코리아 Wafer level stack package and method of fabricating the same
KR100375518B1 (en) * 1999-04-16 2003-03-10 닛본 덴기 가부시끼가이샤 Liquid crystal display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0442855A (en) * 1990-06-08 1992-02-13 Sumitomo Metal Ind Ltd Porcelain composition and its production
JPH06224006A (en) * 1993-01-26 1994-08-12 Tdk Corp Voltage dependent nonlinear resistor
KR20000009936A (en) * 1998-07-29 2000-02-15 박호군 Method for manufacturing disc-type and chip-type ceramic varistors
KR100375518B1 (en) * 1999-04-16 2003-03-10 닛본 덴기 가부시끼가이샤 Liquid crystal display
KR100345166B1 (en) * 2000-08-05 2002-07-24 주식회사 칩팩코리아 Wafer level stack package and method of fabricating the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100585114B1 (en) * 2003-12-05 2006-05-30 삼성전자주식회사 Capacitor having a high dielectric layer of BTS or BTZ in a semiconductor device, and fabrication method thereof
US7179704B2 (en) 2003-12-05 2007-02-20 Samsung Electronics Co., Ltd. Methods of forming capacitors with high dielectric layers and capacitors so formed
CN102351533A (en) * 2011-07-15 2012-02-15 桂林电子科技大学 Calcium barium zirconate titanate based leadless piezoelectric ceramics with low temperature sintering and high piezoelectric properties and preparation method thereof

Similar Documents

Publication Publication Date Title
KR101083553B1 (en) Dielectric ceramic, ceramic electronic component, and laminated ceramic capacitor
US6617273B2 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
JP3835254B2 (en) Method for producing barium titanate powder
KR19990075846A (en) Dielectric composition for ceramic capacitor and method of manufacturing same
CA1098303A (en) Method of producing a dielectric with perowskite structure
KR100466073B1 (en) Dielectric Composition Having Improved Homogeneity And Insulation Resistance, Preparing Method Thereof And Multilayer Ceramic Condenser Using The Same
KR100475348B1 (en) Method for making lead zirconate titanate-based ceramic powder, piezoelectric ceramic and method for making same, and piezoelectric ceramic element
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
JP4730796B2 (en) Method for producing dielectric ceramic raw material powder and dielectric ceramic composition
KR20100094388A (en) Precursor powder for sintering used for preparing dielectric material and process for preparing the same
JP4349007B2 (en) Multilayer electronic components
JPH0825795B2 (en) Non-reducing dielectric ceramic composition
KR20020012878A (en) A method for preparing ceramic powders for Y5V type multilayer ceramic Chip Capacitor
KR100875288B1 (en) Dielectric composition for MLC with excellent Y5V properties and manufacturing method thereof
JP2006169011A (en) Dielectric ceramic composition
KR100355933B1 (en) A method for preparing Barium Titanate powders for X7R type multilayer ceramic Chip Capacitor
JP3752812B2 (en) Method for producing barium titanate
KR100568287B1 (en) A Method for preparing dielectric compositions for Y5V type multilayer ceramic Chip Capacitors
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JP2580374B2 (en) Method for producing composite perovskite type dielectric porcelain powder
KR100355932B1 (en) A method for preparing Barium Titanate powders for the multilayer ceramic Chip Capacitor
US10519066B2 (en) Dielectric porcelain composition, method for producing dielectric porcelain composition, and multilayer ceramic electronic component
JP2531548B2 (en) Porcelain composition for temperature compensation
KR20230099465A (en) Lead-free dielectric ceramic composition with stable high-temperature dielectric properties and manufacturing method thereof
KR100251137B1 (en) Dielectric ceramic composition having non-reductive property

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application