JP2006169011A - Dielectric ceramic composition - Google Patents

Dielectric ceramic composition Download PDF

Info

Publication number
JP2006169011A
JP2006169011A JP2004360201A JP2004360201A JP2006169011A JP 2006169011 A JP2006169011 A JP 2006169011A JP 2004360201 A JP2004360201 A JP 2004360201A JP 2004360201 A JP2004360201 A JP 2004360201A JP 2006169011 A JP2006169011 A JP 2006169011A
Authority
JP
Japan
Prior art keywords
dielectric
ceramic composition
dielectric ceramic
formula
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004360201A
Other languages
Japanese (ja)
Other versions
JP4653471B2 (en
Inventor
Ichiro Terasaki
一郎 寺崎
Ko Kobayashi
航 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Waseda University
Original Assignee
Kyocera Corp
Waseda University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp, Waseda University filed Critical Kyocera Corp
Priority to JP2004360201A priority Critical patent/JP4653471B2/en
Publication of JP2006169011A publication Critical patent/JP2006169011A/en
Application granted granted Critical
Publication of JP4653471B2 publication Critical patent/JP4653471B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new dielectric ceramic composition containing no material having large environmental load such as Ba or Pb and having excellent dielectric constant characteristics as a dielectric material. <P>SOLUTION: The dielectric ceramic composition comprises a compound oxide of Ca, Cu and Ti and has a crystal structure in which a crystalline phase comprising CaCu<SB>3</SB>Ti<SB>4</SB>O<SB>12</SB>and a crystalline phase comprising CaTiO<SB>3</SB>are mixed. In the dielectric composition, when the compound oxide of Ca, Cu and Ti is expressed by formula (1):Ca<SB>4-3y</SB>Cu<SB>3y</SB>Ti<SB>4</SB>O<SB>12</SB>, it is preferable that (y) in the formula is 0.33≤y≤0.92. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば、積層セラミックコンデンサ用の誘電体材料等として用いられる誘電体磁器組成物に関するものである。   The present invention relates to a dielectric ceramic composition used as a dielectric material for a multilayer ceramic capacitor, for example.

従来、誘電体磁器組成物としては、例えば、チタン酸バリウム系組成物や鉛系複合ペロブスカイト系材料等の、強誘電体材料が用いられてきた。例えば、特許文献1には、チタン酸バリウム系の誘電体磁器組成物が、積層セラミックコンデンサ用の誘電体材料として広く用いられることが記載されていると共に、その改良として、特定の組成を有するBaTiO3と、La、Nd、Sm、Dy、Erのうち少なくとも1種の希土類酸化物とを所定の割合で含む主成分に、副成分として、MnOと、BaO−SrO−Li2O−SiO2系の酸化物ガラスとを含有させた非還元性誘電体磁器組成物が提案されている。 Conventionally, ferroelectric materials such as barium titanate-based compositions and lead-based composite perovskite-based materials have been used as dielectric ceramic compositions. For example, Patent Document 1 describes that a barium titanate-based dielectric ceramic composition is widely used as a dielectric material for a multilayer ceramic capacitor, and as an improvement thereof, BaTiO having a specific composition is disclosed. 3 and La, Nd, Sm, Dy, Er at least one kind of rare earth oxide in a predetermined ratio, as subcomponents, MnO and BaO—SrO—Li 2 O—SiO 2 system There has been proposed a non-reducing dielectric ceramic composition containing the above oxide glass.

また、特許文献2には、チタン酸バリウム系以外の誘電体材料として、鉛系複合ペロブスカイト系材料が、積層セラミックコンデンサ用の誘電体材料として広く用いられることが記載されていると共に、その改良として、Pb(Mg1/21/2)O3と、PbTiO3と、Pb(Ni1/3Nb2/3)O3とを所定の割合で含む誘電体材料が提案されている。
特許第2869900号公報(請求項1、第3欄第6行〜同欄第10行、第3欄第31行〜同欄第44行) 特開平7−320540号公報(請求項1、第0002欄、第0005欄、第0016欄〜第0018欄)
Patent Document 2 describes that lead-based composite perovskite materials are widely used as dielectric materials for multilayer ceramic capacitors as a dielectric material other than barium titanate-based materials. , Pb (Mg 1/2 W 1/2 ) O 3 , PbTiO 3 , and Pb (Ni 1/3 Nb 2/3 ) O 3 are proposed in a predetermined ratio.
Japanese Patent No. 2869900 (Claim 1, column 3, line 6 to column 10, line 10, column 3, line 31 to column 44) JP-A-7-320540 (Claim 1, columns 0002, 0005, columns 0016 to 0018)

しかし、近年、地球規模での環境保護運動が高まりを見せている中で、環境への負荷が大きいBaやPbを含まない、新たな誘電体磁器組成物の開発が望まれている。また、Ba、Pb等を含む誘電体磁器組成物は、その製造に際して、環境保護への配慮から、製造工程で発生する廃液を処理する処理設備等の、特殊な設備を必要とするため、製造コストの面でも、これらの物質を含まない誘電体磁器組成物の開発が求められている。   However, in recent years, the global environmental protection movement is increasing, and development of a new dielectric ceramic composition that does not contain Ba or Pb, which has a large environmental load, is desired. In addition, the dielectric ceramic composition containing Ba, Pb, etc. is manufactured because special equipment such as processing equipment for treating the waste liquid generated in the manufacturing process is required in consideration of environmental protection. In terms of cost, development of dielectric ceramic compositions that do not contain these substances is required.

本発明の目的は、環境への負荷が大きい物質を含まず、しかも、誘電体材料として良好な誘電率特性を有する新規な誘電体磁器組成物を提供することにある。   An object of the present invention is to provide a novel dielectric ceramic composition which does not contain a substance having a large environmental load and has a good dielectric constant characteristic as a dielectric material.

上記課題を解決するため、発明者は、式(1):
Ca4-3yCu3yTi412 (1)
〔式中、yはy≦1である。〕
で表されるCaとCuとTiの複酸化物について、各元素の組成比および結晶構造と、誘電率特性との関係について、解析を行った。
In order to solve the above problem, the inventor has the following formula (1):
Ca 4-3y Cu 3y Ti 4 O 12 (1)
[Wherein y is y ≦ 1. ]
For the double oxide of Ca, Cu, and Ti represented by the following formula, the relationship between the composition ratio and crystal structure of each element and the dielectric constant characteristics was analyzed.

その結果、上記複酸化物からなる結晶が、CaとCuとTiの複酸化物であるCaCu3Ti412からなる結晶相と、CaとTiの複酸化物であるCaTiO3からなる結晶相とが混在した結晶構造を呈するとき、その複雑な結晶構造に起因してか、式(1)の複酸化物が、基本的に、積層セラミックコンデンサ等の通常の使用環境下において常誘電体であるにも拘らず、形成される誘電体磁器組成物は、チタン酸バリウム系組成物や鉛系複合ペロブスカイト系材料などの強誘電体と同等の、そして、CaCu3Ti412とCaTiO3とが互いに固溶した固溶体結晶の状態を呈するものでは得られない、良好な誘電率特性、すなわち、高い比誘電率ε′と低い誘電損失tanδとを実現し得ることを見出した。 As a result, the crystal composed of the double oxide is composed of a crystal phase composed of CaCu 3 Ti 4 O 12 which is a complex oxide of Ca, Cu and Ti, and a crystal phase composed of CaTiO 3 which is a complex oxide of Ca and Ti. The mixed oxide of formula (1) is basically a paraelectric material in a normal use environment such as a multilayer ceramic capacitor, because of the complicated crystal structure. Nevertheless, the dielectric ceramic composition formed is equivalent to ferroelectrics such as barium titanate-based compositions and lead-based composite perovskite-based materials, and CaCu 3 Ti 4 O 12 and CaTiO 3 It has been found that good dielectric constant characteristics, that is, a high relative dielectric constant ε ′ and a low dielectric loss tan δ, which cannot be obtained by presenting solid solution crystal states in a solid solution, can be realized.

なお、上記2種の結晶相が混在した結晶構造とは、結晶粒(グレイン)中で、CaCu3Ti412とCaTiO3とが固溶体結晶を形成せずに、CaCu3Ti412の結晶構造が連続した領域(CaCu3Ti412からなる結晶相)と、CaTiO3の結晶構造が連続した領域(CaTiO3からなる結晶相)とを混在させた状態を呈する結晶構造を示す。 In addition, the crystal structure in which the two kinds of crystal phases are mixed is that CaCu 3 Ti 4 O 12 and CaTiO 3 do not form a solid solution crystal in a crystal grain (grain), and CaCu 3 Ti 4 O 12 and the crystal structure is continuous area (CaCu 3 Ti 4 O of 12 crystal phase), showing the crystal structure exhibiting a state where the crystal structure of CaTiO 3 is a mix of a continuous area (crystalline phase consisting of CaTiO 3).

また、上記の誘電体磁器組成物は、Ba、Pb等の、環境への負荷が大きい物質を含まないため、環境保護の流れに十分に対応できると共に、廃液の処理設備等を必要としないため、製造コストの低減の要求に十分に対応できることも明らかとなった。
したがって、請求項1記載の発明は、CaとCuとTiの複酸化物からなる誘電体磁器組成物であって、CaCu3Ti412からなる結晶相と、CaTiO3からなる結晶相とが混在した結晶構造を有することを特徴とする誘電体磁器組成物である。
In addition, since the above dielectric ceramic composition does not contain a material having a large environmental load such as Ba and Pb, it can sufficiently cope with the flow of environmental protection and does not require a waste liquid treatment facility. It has also become clear that it can fully meet the demands for reducing manufacturing costs.
Therefore, the invention described in claim 1 is a dielectric ceramic composition made of a double oxide of Ca, Cu and Ti, wherein the crystal phase made of CaCu 3 Ti 4 O 12 and the crystal phase made of CaTiO 3 It is a dielectric ceramic composition characterized by having a mixed crystal structure.

また、発明者がさらに検討したところ、式(1)中のyを0.33≦y≦0.92とすれば、誘電体磁器組成物の誘電率特性を、さらに向上できることが判明した。したがって、請求項2記載の発明は、CaとCuとTiの複酸化物を、式(1):
Ca4-3yCu3yTi412 (1)
で表したとき、式中のyが0.33≦y≦0.92である請求項1記載の誘電体磁器組成物である。
Further, the inventors further studied and found that the dielectric constant characteristics of the dielectric ceramic composition can be further improved if y in the formula (1) is 0.33 ≦ y ≦ 0.92. Therefore, according to the second aspect of the present invention, a double oxide of Ca, Cu and Ti is represented by the formula (1):
Ca 4-3y Cu 3y Ti 4 O 12 (1)
The dielectric ceramic composition according to claim 1, wherein y in the formula is 0.33 ≦ y ≦ 0.92.

本発明の誘電体磁器組成物は、前記のように、CaとCuとTiの複酸化物からなる誘電体磁器組成物であって、CaCu3Ti412からなる結晶相と、CaTiO3からなる結晶相とが混在した結晶構造を有することを特徴とするものである。
式(1):
Ca4-3yCu3yTi412 (1)
で表されるCaとCuとTiの複酸化物において、その結晶構造を、上述した2種の結晶相が混在した構造とするためには、式(1)中のyをy≦0.96の範囲内に調整すればよい。yが0.96<y<1である場合には、その結晶構造が、CaCu3Ti412とCaTiO3とが互いに固溶した固溶体結晶の状態を呈し、さらに、y=1である場合には、CaCu3Ti412単体の結晶構造となるため、このいずれの場合にも、良好な誘電率特性が得られない。
As described above, the dielectric ceramic composition of the present invention is a dielectric ceramic composition composed of a double oxide of Ca, Cu, and Ti, comprising a crystal phase composed of CaCu 3 Ti 4 O 12 , and CaTiO 3. The crystal phase is characterized by having a mixed crystal phase.
Formula (1):
Ca 4-3y Cu 3y Ti 4 O 12 (1)
In the double oxide of Ca, Cu, and Ti represented by the following formula, in order to make the crystal structure a structure in which the two kinds of crystal phases are mixed, y in formula (1) is set to y ≦ 0.96. It may be adjusted within the range. When y is 0.96 <y <1, the crystal structure is in the form of a solid solution crystal in which CaCu 3 Ti 4 O 12 and CaTiO 3 are in solid solution with each other, and y = 1 In this case, since the crystal structure of CaCu 3 Ti 4 O 12 is simple, good dielectric constant characteristics cannot be obtained in either case.

式(1)中のyをy≦0.96の範囲内に調整するためには、例えばCaCO3等の、Caを含む化合物の粉末と、CuO等の、Cuを含む化合物の粉末と、TiO2等の、Tiを含む化合物の粉末とを出発原料として、仮焼、成形、焼成等の各工程を経て誘電体磁器組成物を製造する際に、上記各粉末の配合割合を調整すればよい。
これにより、製造される本発明の誘電体磁器組成物は、チタン酸バリウム系組成物や鉛系複合ペロブスカイト系材料などの強誘電体と同等の、良好な誘電率特性、すなわち、高い比誘電率ε′と低い誘電損失tanδとを有するものとなる。また、本発明の誘電体磁器組成物は、積層セラミックコンデンサ等の通常の使用環境下で常誘電体であるため、圧電現象によるノイズの発生を防止することができると共に、誘電率が時間と共に減少する割合が小さいため、良好なエージング特性を有するという利点もある。
In order to adjust y in the formula (1) within the range of y ≦ 0.96, for example, a powder of a compound containing Ca, such as CaCO 3 , a powder of a compound containing Cu, such as CuO, and TiO When a dielectric ceramic composition is manufactured through steps such as calcination, molding, firing, etc., using a powder of a compound containing Ti as 2 as a starting material, the blending ratio of each of the above powders may be adjusted. .
As a result, the dielectric ceramic composition of the present invention produced has good dielectric constant characteristics equivalent to ferroelectrics such as a barium titanate composition and a lead-based composite perovskite material, that is, a high relative dielectric constant. It has ε ′ and a low dielectric loss tan δ. In addition, since the dielectric ceramic composition of the present invention is a paraelectric material under a normal use environment such as a multilayer ceramic capacitor, it can prevent the generation of noise due to the piezoelectric phenomenon and the dielectric constant decreases with time. Since the ratio to do is small, there also exists an advantage that it has a favorable aging characteristic.

なお、本発明の誘電体磁器組成物の誘電率特性をさらに向上するためには、式(1)中のyが0.33≦y≦0.92の範囲内、特に0.5≦y≦0.8の範囲内となるように、原料としての各化合物の粉末の配合割合を調整するのが好ましい。yが上記の範囲未満では、比誘電率ε′が低くなりすぎ、逆に、上記の範囲を超える場合には、誘電損失tanδが高くなりすぎるため、このいずれの場合にも、誘電率特性が低下するおそれがある。これに対し、式(1)中のyを上記の範囲内とすれば、比誘電率ε′をできるだけ高くすると共に、誘電損失tanδをできるだけ低くして、より一層、良好な誘電率特性を得ることが可能となる。   In order to further improve the dielectric constant characteristics of the dielectric ceramic composition of the present invention, y in the formula (1) is within the range of 0.33 ≦ y ≦ 0.92, particularly 0.5 ≦ y ≦. It is preferable to adjust the blending ratio of the powder of each compound as a raw material so as to be within the range of 0.8. If y is less than the above range, the relative dielectric constant ε ′ becomes too low. Conversely, if y exceeds the above range, the dielectric loss tan δ becomes too high. May decrease. On the other hand, if y in the formula (1) is within the above range, the relative dielectric constant ε ′ is made as high as possible and the dielectric loss tan δ is made as low as possible to obtain even better dielectric constant characteristics. It becomes possible.

本発明の誘電体磁器組成物は、前記のように、Ca、CuおよびTiを含む化合物の粉末を所定の配合割合で混合し、次いで、得られた混合粉末を、例えば、大気中で、900〜1100℃程度の温度で仮焼し、得られた仮焼物を、ポリビニルブチラール、ポリビニルアルコール等のバインダ樹脂と混合して、所定の形状に成形した後、得られた成形物を、例えば、大気中で、900〜1100℃の温度で焼成することによって製造される。   As described above, in the dielectric ceramic composition of the present invention, the powder of the compound containing Ca, Cu and Ti is mixed at a predetermined blending ratio, and then the obtained mixed powder is mixed with, for example, 900 in the atmosphere. After calcining at a temperature of about ˜1100 ° C., the obtained calcined product is mixed with a binder resin such as polyvinyl butyral and polyvinyl alcohol, and molded into a predetermined shape. It is manufactured by baking at a temperature of 900 to 1100 ° C.

本発明の誘電体磁器組成物を積層セラミックコンデンサに適用する場合には、上記仮焼物を、バインダ樹脂と共に有機溶媒に混合して誘電体層用のペーストを調製し、このペーストを、内部電極層のもとになるペーストと交互に印刷して積層するか、または、仮焼物を、バインダ樹脂と混合してシート(セラミックグリーンシート)を形成し、このシートと、内部電極層のもとになるペーストとを交互に積層した後、積層物を同時に焼成すればよい。焼成後、端子電極を接続することで、誘電体層と内部電極層とが交互に積層された積層セラミックコンデンサが製造される。   When the dielectric ceramic composition of the present invention is applied to a multilayer ceramic capacitor, the calcined product is mixed with an organic solvent together with a binder resin to prepare a dielectric layer paste, which is used as an internal electrode layer. It is printed and laminated alternately with the base paste, or the calcined material is mixed with a binder resin to form a sheet (ceramic green sheet), which becomes the basis of this sheet and the internal electrode layer After alternately laminating the paste, the laminate may be fired simultaneously. After firing, a terminal electrode is connected to manufacture a multilayer ceramic capacitor in which dielectric layers and internal electrode layers are alternately stacked.

なお、本発明の誘電体磁器組成物は、上記積層セラミックコンデンサ以外にも、例えば、LCフィルタ、カプラ、モジュール部品用基板等にも適用することができる。
本発明の誘電体磁器組成物には、前記2種の結晶相が混在した構造が形成されるのを阻害したり、それによって誘電率特性を低下させたりしない範囲で、各種金属の酸化物、複酸化物等の副成分を含有させることもできる。そのような副成分としては、例えば、SrTiO3、TiO2、MgTiO3、La23、Bi23等が挙げられる。
In addition, the dielectric ceramic composition of the present invention can be applied to, for example, LC filters, couplers, module component substrates, etc. in addition to the multilayer ceramic capacitor.
In the dielectric ceramic composition of the present invention, various metal oxides may be used as long as the structure in which the two kinds of crystal phases are mixed is not obstructed or the dielectric constant characteristics are not lowered thereby. Subcomponents such as double oxides can also be included. Examples of such subcomponents include SrTiO 3 , TiO 2 , MgTiO 3 , La 2 O 3 , Bi 2 O 3 and the like.

以下に、本発明を、実施例に基づいて説明するが、本発明の構成は、これらの実施例に限定されるものではない。
実施例1(結晶構造の解析):
CaCO3、CuOおよびTiO2の粉末(いずれも純度99.9%以上)を、焼成後の誘電体磁器組成物における、式(1)中のyがy=1またはy=0.67となるように配合割合を調整した状態で配合し、乳鉢を用いて混合して2種の混合粉末を作製した。
Hereinafter, the present invention will be described based on examples, but the configuration of the present invention is not limited to these examples.
Example 1 (Analysis of crystal structure):
In a dielectric ceramic composition after firing a powder of CaCO 3 , CuO and TiO 2 (all having a purity of 99.9% or more), y in formula (1) becomes y = 1 or y = 0.67. Thus, the mixture was blended with the blending ratio adjusted, and mixed using a mortar to prepare two kinds of mixed powders.

次に、この2種の混合粉末を、それぞれ別個に、大気中で、1050℃×12時間、仮焼して仮焼物を得、この仮焼物を乳鉢ですりつぶすと共に、ポリビニルブチラールを加えて混合して造粒粉末を作製した後、この造粒粉末を、直径10mmφの円板状の成形体を得るための金型内に充てんし、円板の厚み方向に50MPaの圧をかけて圧縮成形して、直径10mmφの円板状の成形体を作製した。そして、得られた成形体を、大気中で、1090℃×24時間、焼成して円板状の誘電体磁器組成物を製造した。   Next, the two kinds of mixed powders are separately calcined in the atmosphere at 1050 ° C. for 12 hours to obtain a calcined product, and this calcined product is ground in a mortar and polyvinyl butyral is added and mixed. After the granulated powder is prepared, the granulated powder is filled in a mold for obtaining a disk-shaped molded body having a diameter of 10 mmφ, and compression-molded by applying a pressure of 50 MPa in the thickness direction of the disk. Thus, a disk-shaped molded body having a diameter of 10 mmφ was produced. And the obtained molded object was baked in air | atmosphere for 1090 degreeC * 24 hours, and manufactured the disk-shaped dielectric ceramic composition.

製造した誘電体磁器組成物について、CuKαをX線源として、回折計を用いて、測定範囲2θ=20〜100°の条件で、X線回折測定を行った。測定結果としての回折スペクトルを図1に示す。
図1のうち、上段は、式(1)中のyがy=1である、式(1-1):
CaCu3Ti412 (1-1)
で表される誘電体磁器組成物の回折スペクトルを示す。図の回折スペクトル中に現れている各ピーク(符号Aを付している、Aの後のカッコ内は、そのピークが示す結晶面方位を表している)は、いずれもCaCu3Ti412に由来するものである。したがって、このものは、先に説明したように、CaCu3Ti412単体の結晶構造を呈することがわかる。
The produced dielectric ceramic composition was subjected to X-ray diffraction measurement using CuKα as an X-ray source and using a diffractometer in a measurement range of 2θ = 20 to 100 °. A diffraction spectrum as a measurement result is shown in FIG.
In FIG. 1, the upper row shows the formula (1-1) in which y in the formula (1) is y = 1:
CaCu 3 Ti 4 O 12 (1-1)
The diffraction spectrum of the dielectric ceramic composition represented by Each peak appearing in the diffraction spectrum of the figure (labeled A, the parenthesis after A represents the crystal plane orientation indicated by the peak) is all CaCu 3 Ti 4 O 12. It is derived from. Therefore, as described above, it can be seen that this exhibits a crystal structure of CaCu 3 Ti 4 O 12 alone.

一方、図1の下段は、yがy=0.67である、式(1-2):
Ca2Cu2Ti412 (1-2)
で表される誘電体磁器組成物の回折スペクトルを示す。このものは、上段の回折スペクトル中に現れているAのピークが全て現れていると共に、CaTiO3に由来する、図中に符号Bを付したピーク(Bの後のカッコ内は、前記と同様に、そのピークが示す結晶面方位を表している)が現れている。しかし、CaCu3Ti412とCaTiO3とが固溶した固溶体結晶に由来するピークは現れていない。これらのことから、式(1)中のyがy≦0.96であれば、その結晶構造を、CaCu3Ti412からなる結晶相と、CaTiO3からなる結晶相とが混在した結晶構造にできることが判った。
On the other hand, in the lower part of FIG. 1, y is y = 0.67, formula (1-2):
Ca 2 Cu 2 Ti 4 O 12 (1-2)
The diffraction spectrum of the dielectric ceramic composition represented by In this sample, all peaks of A appearing in the upper diffraction spectrum appear, and peaks derived from CaTiO 3 and denoted by B in the figure (the parentheses after B are the same as above) Represents the crystal plane orientation indicated by the peak). However, a peak derived from a solid solution crystal in which CaCu 3 Ti 4 O 12 and CaTiO 3 are dissolved does not appear. Therefore, if y in the formula (1) is y ≦ 0.96, the crystal structure is a crystal in which a crystal phase composed of CaCu 3 Ti 4 O 12 and a crystal phase composed of CaTiO 3 are mixed. It turns out that it can be structured.

実施例2(組成比と誘電率特性との関係の検討):
CaCO3、CuOおよびTiO2の粉末(いずれも純度99.9%以上)を、焼成後の誘電体磁器組成物における、式(1)中のyが、図2中にプロットされた各点に対応する値となるように配合割合を調整した状態で配合し、乳鉢を用いて混合して11種の混合粉末を作製し、この11種の混合粉末を用いて、それぞれ実施例1と同様にして、円板状の誘電体磁器組成物を製造した。
Example 2 (Examination of relationship between composition ratio and dielectric constant characteristics):
CaCO 3 , CuO, and TiO 2 powders (all having a purity of 99.9% or more), and y in the expression (1) in the dielectric ceramic composition after firing are plotted at each point plotted in FIG. It mixes in the state which adjusted the mixture ratio so that it may become a corresponding value, mixes using a mortar, produces 11 types of mixed powders, and uses each of these 11 types of mixed powders similarly to Example 1. Thus, a disk-shaped dielectric ceramic composition was manufactured.

そして、製造した円板状の誘電体磁器組成物の両面に、それぞれAgペースト〔デュポン(株)製の4922N〕を塗布し、乾燥させて電極を形成した後、液体ヘリウムクライオスタット中にセットして、その温度を300Kに維持しながら、LCRメータ〔アジレント・テクノロジーズ・インク社製の4284AプレシジョンLCRメータ〕を用いて、AC4端子法によって測定した結果から、平行板コンデンサとしてみなした際の、比誘電率ε′と誘電損失tanδとを算出して、誘電率特性を評価した。測定周波数は100kHzとした。結果を、図2に示す。   Then, an Ag paste (4922N manufactured by DuPont Co., Ltd.) was applied to both sides of the manufactured disc-shaped dielectric ceramic composition, dried to form electrodes, and then set in a liquid helium cryostat. , While maintaining the temperature at 300 K, using a LCR meter (4284A Precision LCR meter manufactured by Agilent Technologies, Inc.), measured by the AC4 terminal method, the relative dielectric when considered as a parallel plate capacitor The dielectric constant characteristics were evaluated by calculating the rate ε ′ and the dielectric loss tan δ. The measurement frequency was 100 kHz. The results are shown in FIG.

図より、yの値を大きくするほど、比誘電率ε′を高くできるものの、誘電損失tanδも高くなり、逆に、yの値を小さくするほど、誘電損失tanδを低くできるものの、比誘電率ε′も低くなる傾向にあることがわかった。また、yを0.33≦y≦0.92の範囲内にすれば、比誘電率ε′を500以上、誘電損失tanδを0.1(10%)以下の範囲内に維持して、さらに良好な誘電率特性が得られること、yを0.5≦y≦0.8の範囲内にすれば、比誘電率ε′を1000以上、誘電損失tanδを0.08(8%)以下に維持して、より一層、良好な誘電率特性が得られることが確認された。   As can be seen from the figure, the larger the value of y, the higher the relative dielectric constant ε ′, but the higher the dielectric loss tan δ. Conversely, the smaller the value of y, the lower the dielectric loss tan δ, but the relative dielectric constant. It was found that ε ′ also tends to be low. Further, if y is in the range of 0.33 ≦ y ≦ 0.92, the relative dielectric constant ε ′ is maintained in the range of 500 or more and the dielectric loss tan δ in the range of 0.1 (10%) or less If good dielectric constant characteristics can be obtained, and y is in the range of 0.5 ≦ y ≦ 0.8, the relative dielectric constant ε ′ is 1000 or more and the dielectric loss tan δ is 0.08 (8%) or less. It was confirmed that better dielectric constant characteristics can be obtained while maintaining the above.

実施例3(誘電率特性の温度、および周波数依存性の検討):
CaCO3、CuOおよびTiO2の粉末(いずれも純度99.99%)を、焼成後の誘電体磁器組成物における、式(1)中のyが、y=0.67となるように配合割合を調整した状態で配合し、乳鉢を用いて混合して混合粉末を作製し、この混合粉末を用いて、実施例1と同様にして、円板状の誘電体磁器組成物を製造した。
Example 3 (Examination of temperature and frequency dependence of dielectric constant characteristics):
Mixing ratio of CaCO 3 , CuO and TiO 2 powders (all with a purity of 99.99%) so that y in the formula (1) in the dielectric ceramic composition after firing becomes y = 0.67 Were mixed using a mortar and mixed to prepare a mixed powder. Using this mixed powder, a disk-shaped dielectric ceramic composition was produced in the same manner as in Example 1.

そして、製造した円板状の誘電体磁器組成物の両面に、それぞれAgペースト〔デュポン(株)製の4922N〕を塗布し、乾燥させて電極を形成した後、液体ヘリウムクライオスタット中にセットして、その温度を4.2〜300Kの間で変化させながら、LCRメータ〔アジレント・テクノロジーズ・インク社製の4284AプレシジョンLCRメータ〕を用いて、AC4端子法によって測定した結果から、平行板コンデンサとしてみなした際の、比誘電率ε′と誘電損失tanδとを算出して、誘電率特性を評価した。測定周波数は100Hz、1kHz、10kHz、100kHz、および1MHzとした。結果を、図3に示す。   Then, an Ag paste (4922N manufactured by DuPont Co., Ltd.) was applied to both sides of the manufactured disc-shaped dielectric ceramic composition, dried to form electrodes, and then set in a liquid helium cryostat. From the result measured by the AC4 terminal method using an LCR meter (4284A Precision LCR meter manufactured by Agilent Technologies, Inc.) while changing the temperature between 4.2 and 300 K, it is regarded as a parallel plate capacitor. The relative dielectric constant ε ′ and the dielectric loss tan δ were calculated, and the dielectric constant characteristics were evaluated. The measurement frequency was 100 Hz, 1 kHz, 10 kHz, 100 kHz, and 1 MHz. The results are shown in FIG.

図より、式(1)中のyをy=0.67とした誘電体磁器組成物は、特に、200〜300K(−73〜27℃)という、積層セラミックコンデンサ等の通常の使用環境下で、また、100Hz〜100kHzという広い周波数範囲で、1800以上という高い比誘電率ε′と、0.1以下という低い誘電損失tanδとを示すと共に、これらの値が温度によって殆ど変化しない、安定した誘電率特性を示すことがわかった。また、温度218〜300K(−55〜27℃)、周波数1kHzでの、温度変化による比誘電率の変化量は+1.0%であり、アメリカ電子機械工業会(EIA)規格におけるX5R特性、およびX7R特性のうち、室温における特性を満足することも確認された。   From the figure, the dielectric ceramic composition in which y in the formula (1) is y = 0.67 is particularly in a normal use environment such as a multilayer ceramic capacitor of 200 to 300 K (−73 to 27 ° C.). In addition, in a wide frequency range of 100 Hz to 100 kHz, a high dielectric constant ε ′ of 1800 or more and a low dielectric loss tan δ of 0.1 or less and stable dielectrics whose values hardly change with temperature. It was found to show rate characteristics. In addition, the change in relative dielectric constant due to temperature change at a temperature of 218 to 300 K (−55 to 27 ° C.) and a frequency of 1 kHz is + 1.0%, and the X5R characteristics in the American Electronic Machinery Association (EIA) standard, and Of the X7R characteristics, it was also confirmed that the characteristics at room temperature were satisfied.

実施例1で製造した、式(1)中のyが異なる2種の誘電体磁器組成物をX線回折測定した結果を示す、回折スペクトル図である。It is a diffraction spectrum figure which shows the result of having carried out the X-ray-diffraction measurement of the 2 types of dielectric ceramic composition from which y in Formula (1) manufactured in Example 1 differs. 実施例2で製造した、式(1)中のyが異なる誘電体磁器組成物における、上記yと、比誘電率ε′および誘電損失tanδとの関係を示すグラフである。4 is a graph showing the relationship between y, relative permittivity ε ′, and dielectric loss tan δ in dielectric ceramic compositions produced in Example 2 with different y in the formula (1). 実施例3で製造した誘電体磁器組成物における、比誘電率ε′および誘電損失tanδの、温度および周波数依存性を示すグラフである。6 is a graph showing temperature and frequency dependence of relative permittivity ε ′ and dielectric loss tan δ in the dielectric ceramic composition manufactured in Example 3.

Claims (2)

CaとCuとTiの複酸化物からなる誘電体磁器組成物であって、CaCu3Ti412からなる結晶相と、CaTiO3からなる結晶相とが混在した結晶構造を有することを特徴とする誘電体磁器組成物。 A dielectric ceramic composition composed of a double oxide of Ca, Cu and Ti, characterized by having a crystal structure in which a crystal phase composed of CaCu 3 Ti 4 O 12 and a crystal phase composed of CaTiO 3 are mixed. A dielectric ceramic composition. CaとCuとTiの複酸化物を、式(1):
Ca4-3yCu3yTi412 (1)
で表したとき、式中のyが0.33≦y≦0.92である請求項1記載の誘電体磁器組成物。

A double oxide of Ca, Cu and Ti is expressed by the formula (1):
Ca 4-3y Cu 3y Ti 4 O 12 (1)
The dielectric ceramic composition according to claim 1, wherein y in the formula is 0.33 ≦ y ≦ 0.92.

JP2004360201A 2004-12-13 2004-12-13 Dielectric porcelain composition Expired - Fee Related JP4653471B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004360201A JP4653471B2 (en) 2004-12-13 2004-12-13 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360201A JP4653471B2 (en) 2004-12-13 2004-12-13 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JP2006169011A true JP2006169011A (en) 2006-06-29
JP4653471B2 JP4653471B2 (en) 2011-03-16

Family

ID=36670157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004360201A Expired - Fee Related JP4653471B2 (en) 2004-12-13 2004-12-13 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP4653471B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143758A (en) * 2006-12-13 2008-06-26 Sumitomo Chemical Co Ltd Dielectric material
WO2008136461A1 (en) * 2007-04-27 2008-11-13 Nec Corporation Wide band capacity element
JP2010514210A (en) * 2006-12-21 2010-04-30 カーディアック ペースメイカーズ, インコーポレイテッド Solid State Pulse Therapy Capacitor
JP2010285336A (en) * 2009-06-12 2010-12-24 Seoul National Univ Research & Development Business Foundation Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same
JP2011184251A (en) * 2010-03-10 2011-09-22 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
CN102432062A (en) * 2011-09-26 2012-05-02 常州大学 Preparation method of perovskite-like varistor ceramic material CaCu3Ti4O12 with high dielectric constant
CN103933990A (en) * 2014-04-12 2014-07-23 中国科学院新疆理化技术研究所 Preparation method of CaCu3Ti4O12 in icoshexahedron structure
CN106699166A (en) * 2016-12-07 2017-05-24 西安理工大学 Lithium-sodium codoped giant dielectric ceramic and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6010042527, D. Capsoni, "Role of doping and CuO segregation in improving the giant permittivity of CaCu3Ti4O12", Journal of Solid State Chemistry, 20041111, 177, 4494−4500 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008143758A (en) * 2006-12-13 2008-06-26 Sumitomo Chemical Co Ltd Dielectric material
JP2010514210A (en) * 2006-12-21 2010-04-30 カーディアック ペースメイカーズ, インコーポレイテッド Solid State Pulse Therapy Capacitor
US8229554B2 (en) 2006-12-21 2012-07-24 Cardiac Pacemakers, Inc. Method and apparatus for solid state pulse therapy capacitor
WO2008136461A1 (en) * 2007-04-27 2008-11-13 Nec Corporation Wide band capacity element
JP2010285336A (en) * 2009-06-12 2010-12-24 Seoul National Univ Research & Development Business Foundation Sintered material for dielectric substance and method for producing the same, and sintered material for dielectric substance which has core-shell fine structure and method for producing the same
JP2011184251A (en) * 2010-03-10 2011-09-22 Murata Mfg Co Ltd Dielectric ceramic and laminated ceramic capacitor
CN102432062A (en) * 2011-09-26 2012-05-02 常州大学 Preparation method of perovskite-like varistor ceramic material CaCu3Ti4O12 with high dielectric constant
CN103933990A (en) * 2014-04-12 2014-07-23 中国科学院新疆理化技术研究所 Preparation method of CaCu3Ti4O12 in icoshexahedron structure
CN106699166A (en) * 2016-12-07 2017-05-24 西安理工大学 Lithium-sodium codoped giant dielectric ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP4653471B2 (en) 2011-03-16

Similar Documents

Publication Publication Date Title
US6617273B2 (en) Non-reducing dielectric ceramic, monolithic ceramic capacitor using the same, and method for making non-reducing dielectric ceramic
KR102268500B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR102270661B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
EP3191427B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
KR101929695B1 (en) Dielectric composition, dielectric element, electronic component and laminated electronic component
JP2008174413A (en) Dielectric porcelain composition and electronic component
JP4653471B2 (en) Dielectric porcelain composition
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
US8748329B2 (en) Dielectric ceramic composition and laminated ceramic electronic component
JP4321526B2 (en) Dielectric porcelain composition and electronic component using the same
JP3183675B2 (en) Ceramic dielectric material, multilayer ceramic capacitor, and method for preventing deterioration of multilayer ceramic capacitor over time
JP4710574B2 (en) Dielectric porcelain composition and electronic component
JP3814401B2 (en) Dielectric porcelain and multilayer ceramic capacitor
JP3435039B2 (en) Dielectric ceramics and multilayer ceramic capacitors
JPH04188504A (en) Dielectric porcelain composition
JP2007153710A (en) Dielectric porcelain composition and electronic component
JP2694975B2 (en) Method for producing high dielectric constant porcelain composition
CN116092828A (en) Dielectric composition and electronic component
JPH04351804A (en) Dielectric porcelain composite, and ceramic capacitor and thick film capacitor using said composite
JP2000072547A (en) Dielectric substance ceramic composition and lamination type ceramic capacitor
JP2000185971A (en) Dielectric ceramic and multilayer ceramic capacitor
JPH02221153A (en) Dielectric porcelain composition
JPH07101659B2 (en) Dielectric ceramic composition and multilayer capacitor element
JPH08180734A (en) Dielectric porcelain compound and its manufacture
JPH11278924A (en) Dielectric porcelain composition and multilayer porcelain capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101217

R150 Certificate of patent or registration of utility model

Ref document number: 4653471

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees