JP4321526B2 - Dielectric porcelain composition and electronic component using the same - Google Patents

Dielectric porcelain composition and electronic component using the same Download PDF

Info

Publication number
JP4321526B2
JP4321526B2 JP2005517625A JP2005517625A JP4321526B2 JP 4321526 B2 JP4321526 B2 JP 4321526B2 JP 2005517625 A JP2005517625 A JP 2005517625A JP 2005517625 A JP2005517625 A JP 2005517625A JP 4321526 B2 JP4321526 B2 JP 4321526B2
Authority
JP
Japan
Prior art keywords
dielectric ceramic
oxide
weight
dielectric
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005517625A
Other languages
Japanese (ja)
Other versions
JPWO2005075377A1 (en
Inventor
夕香子 高橋
敏和 竹田
信之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Publication of JPWO2005075377A1 publication Critical patent/JPWO2005075377A1/en
Application granted granted Critical
Publication of JP4321526B2 publication Critical patent/JP4321526B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • H01G4/1218Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates
    • H01G4/1227Ceramic dielectrics characterised by the ceramic dielectric material based on titanium oxides or titanates based on alkaline earth titanates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6582Hydrogen containing atmosphere
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6588Water vapor containing atmospheres
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Description

本発明は、Pbを含有しない誘電体磁器組成物、及びそれを用いた圧電アクチュエータ、圧電センサ、圧電ブザー、圧電フィルタなどの圧電セラミック電子部品や積層コンデンサなどの誘電体セラミック電子部品に関する。   The present invention relates to a dielectric ceramic composition containing no Pb, and a piezoelectric ceramic electronic component such as a piezoelectric actuator, a piezoelectric sensor, a piezoelectric buzzer and a piezoelectric filter using the dielectric ceramic composition, and a dielectric ceramic electronic component such as a multilayer capacitor.

チタン酸ジルコン酸鉛(Pb(Zr、Ti)O;以下「PZT」という。)やチタン酸鉛(PbTiO)などのPbを含有するペロブスカイト型酸化物は強誘電体であり、高い誘電率を有するため、コンデンサや圧電素子等の電子部品に幅広く利用されている。Perovskite oxides containing Pb such as lead zirconate titanate (Pb (Zr, Ti) O 3 ; hereinafter referred to as “PZT”) and lead titanate (PbTiO 3 ) are ferroelectrics and have a high dielectric constant. Therefore, it is widely used for electronic parts such as capacitors and piezoelectric elements.

しかしながら、これらPZTやチタン酸鉛を主成分とする圧電磁器は、Pbを含有しているため環境に対する影響が懸念されており、また、製造過程において、原材料として用いられる鉛化合物の蒸発に起因して製品の均一性低下を招くおそれがある。   However, these piezoelectric ceramics mainly composed of PZT and lead titanate contain Pb, so there is a concern about the influence on the environment, and also due to evaporation of lead compounds used as raw materials in the manufacturing process. This may lead to a decrease in product uniformity.

一方、非鉛系の強誘電体材料であるビスマス層状化合物を主成分とする圧電磁器も開発されているが、この種の圧電磁器は、電気機械結合係数が小さいため、広く実用に供されるに至っていない。このため、Pbを含有しない新規な組成の材料が求められており、種々提案されている。   On the other hand, a piezoelectric ceramic mainly composed of a bismuth layered compound, which is a lead-free ferroelectric material, has been developed. This type of piezoelectric ceramic is widely used because of its low electromechanical coupling coefficient. It has not reached. For this reason, a material having a novel composition not containing Pb has been demanded, and various proposals have been made.

例えば、特許文献1では、一般式ABOのペロブスカイト酸化物において、SnがAサイト、TiがBサイトを占めるSnTiOを主成分とする単純ペロブスカイト構造の強誘電体が開示されている。For example, Patent Document 1, the perovskite oxide of the general formula ABO 3, Sn ferroelectric simple perovskite structure mainly composed of A-site, SnTiO 3 of Ti occupy B sites is disclosed.

また、この特許文献1では、一般式ABOのペロブスカイト酸化物において、Ba、SnがAサイト、TiがBサイトを占める、(Ba、Sr)TiOとSnTiOとの固溶体である(Ba、Sr、Sn)TiOを主成分とする単純ペロブスカイト構造の強誘電体が示されている。すなわち、(Ba、Sr)TiOの(Ba、Sr)を一部をSnに置換した強誘電体が開示されている。Moreover, in this patent document 1, it is a solid solution of (Ba, Sr) TiO 3 and SnTiO 3 in which Ba and Sn occupy the A site and Ti occupy the B site in the perovskite oxide of the general formula ABO 3 (Ba, A ferroelectric material having a simple perovskite structure mainly composed of Sr, Sn) TiO 3 is shown. That is, a ferroelectric in which (Ba, Sr) of (Ba, Sr) TiO 3 is partially replaced with Sn is disclosed.

そして、特許文献1では、パルスレーザー堆積法(Pulse Laser Deposition;以下「PLD法」という。)により、SrTiO単結晶基板上にSnTiOや(Ba、Sr、Sn)TiOの誘電体薄膜を形成、これにより上記強誘電体を得ている。In Patent Document 1, a dielectric thin film of SnTiO 3 or (Ba, Sr, Sn) TiO 3 is formed on a SrTiO 3 single crystal substrate by pulse laser deposition (hereinafter referred to as “PLD method”). Formation, thereby obtaining the above ferroelectric.

すなわち、ペロブスカイト構造の生成の難易度は、一般にトレランスファクターにより評価されるが、通常のペロブスカイト型酸化物のトレランスファクターは0.8〜0.95(例えば、PbTiOは0.88、BaTiOは0.93)であるのに対し、SnTiOのトレランスファクターは0.79とやや小さく、しかもSnは通常4価で安定するため、SnTiOの合成は極めて困難と予想される。That is, the difficulty of generating the perovskite structure is generally evaluated by a tolerance factor, but the tolerance factor of a normal perovskite oxide is 0.8 to 0.95 (for example, PbTiO 3 is 0.88, BaTiO 3 is 0.93), but the tolerance factor of SnTiO 3 is slightly small, 0.79, and Sn is usually stable at a tetravalent level, so synthesis of SnTiO 3 is expected to be extremely difficult.

そこで、特許文献1ではエキシマレーザを使用した非平衡下でのPLD法により上記誘電体薄膜を形成し、これにより、比誘電率が約400で残留分極量が約50μC/cmのSnTiOや比誘電率が約500の(Ba、Sr、Sn)TiOの強誘電体薄膜を得ている。Therefore, in Patent Document 1, the above dielectric thin film is formed by the PLD method under non-equilibrium using an excimer laser, whereby SnTiO 3 having a relative dielectric constant of about 400 and a residual polarization of about 50 μC / cm 2 A (Ba, Sr, Sn) TiO 3 ferroelectric thin film having a relative dielectric constant of about 500 is obtained.

特開2003−146660号公報JP 2003-146660 A

しかしながら、特許文献1では、SrTiO単結晶基板上に、エキシマレーザを照射し、各1分子層のTiO層とSnO層とを交互に積層しているため、製造方法が非常に煩雑にならざるを得ず、しかも薄膜状では使用用途も限られてしまう。また、得られる比誘電率もSnTiOで400程度、(Ba、Sr、Sn)TiOで500程度と小さく、未だ不十分である。However, in Patent Document 1, since an excimer laser is irradiated on a SrTiO 3 single crystal substrate and each TiO 2 layer and SnO layer of one molecular layer are alternately stacked, the manufacturing method becomes very complicated. In addition, the use application is limited in a thin film form. Moreover, the relative dielectric constant obtained is as small as about 400 for SnTiO 3 and about 500 for (Ba, Sr, Sn) TiO 3 , which is still insufficient.

本発明はこのような事情に鑑みなされたものであって、鉛を含まない非鉛系であっても、相転移温度(キュリー点)、残留分極、及び比誘電率の高い誘電体磁器組成物を提供することを目的とし、さらにこの誘電体磁器組成物を用いた圧電セラミック電子部品や積層セラミック電子部品を提供することを目的とする。   The present invention has been made in view of such circumstances, and a dielectric ceramic composition having a high phase transition temperature (Curie point), remanent polarization, and high relative dielectric constant even if it is a lead-free lead-free system. Further, it is an object of the present invention to provide a piezoelectric ceramic electronic component and a multilayer ceramic electronic component using the dielectric ceramic composition.

本発明者らは上記目的を達成するために鋭意研究したところ、安定したペロブスカイト化合物(一般式ABO)であるBaTiOのBaの一部を所定範囲内で2価のSnと置換し、さらにAサイトとBサイトのモル比が所定範囲となるように配合することにより、相転移温度、残留分極、及び比誘電率の高い非鉛系の誘電体磁器組成物を得ることができるという知見を得た。The inventors of the present invention have intensively studied to achieve the above object, and as a result, a part of Ba of BaTiO 3 which is a stable perovskite compound (general formula ABO 3 ) is substituted with divalent Sn within a predetermined range, The knowledge that a lead-free dielectric ceramic composition having a high phase transition temperature, remanent polarization, and relative dielectric constant can be obtained by blending so that the molar ratio of the A site and the B site is within a predetermined range. Obtained.

本発明はこのような知見に基づきなされたものであって、本発明に係る誘電体磁器組成物は、組成式:(Ba1-xSnTiOで表されるペロブスカイト型化合物を主成分とし、x及びmが、0.01≦x≦0.3、0.9≦m≦1.1の範囲内にあり、かつ、前記(Ba1-xSn)で示されるBaサイトが、実質的にSrを含まないことを特徴としている。The present invention has been made on the basis of such knowledge, and the dielectric ceramic composition according to the present invention is mainly composed of a perovskite type compound represented by a composition formula: (Ba 1-x Sn x ) m TiO 3. The Ba site represented by (Ba 1-x Sn x ), wherein x and m are in the range of 0.01 ≦ x ≦ 0.3 and 0.9 ≦ m ≦ 1.1, , Which is substantially free of Sr.

また、本発明者らの更なる鋭意研究の結果、Mn酸化物及びSi酸化物のうちの少なくも一方を副成分として含有させることにより、低温焼結性が向上することが分かった。   In addition, as a result of further diligent research by the present inventors, it was found that low-temperature sinterability is improved by containing at least one of Mn oxide and Si oxide as a subcomponent.

すなわち、本発明の誘電体磁器組成物は、Mn酸化物及びSi酸化物のうちの少なくとも一方を副成分として含有することを特徴としている。   That is, the dielectric ceramic composition of the present invention is characterized by containing at least one of Mn oxide and Si oxide as a subcomponent.

また、Mn酸化物及びSi酸化物の含有量を主成分100重量部に対し総計で10重量部以下に制御することにより、誘電特性を維持しつつ低温焼成できることも分かった。   It has also been found that by controlling the content of Mn oxide and Si oxide to 10 parts by weight or less in total with respect to 100 parts by weight of the main component, low temperature firing can be performed while maintaining dielectric properties.

すなわち、本発明の誘電体磁器組成物は、Mn酸化物及びSi酸化物のうちの少なくとも一方が、前記主成分100重量部に対し、それぞれMnO及びSiOに換算し、総計で10重量部以下(0重量部を含まず)の範囲で含有されていることを特徴としている。That is, in the dielectric ceramic composition of the present invention, at least one of Mn oxide and Si oxide is converted to MnO 2 and SiO 2 with respect to 100 parts by weight of the main component, respectively, and 10 parts by weight in total. It is characterized by being contained in the following range (excluding 0 part by weight).

また、本発明に係る電子部品は、上記誘電体磁器組成物で形成された素子本体と、該素子本体に設けられた導体とを有していることを特徴としている。   In addition, an electronic component according to the present invention is characterized by having an element body formed of the above dielectric ceramic composition and a conductor provided on the element body.

本発明に係る誘電体磁器組成物によれば、Baの一部がSnで置換されているので、相転移温度が約130℃以上となって高温側にシフトし、強誘電体としての特性を示す温度範囲を拡大できるという効果が得られる。   According to the dielectric ceramic composition of the present invention, since a part of Ba is replaced with Sn, the phase transition temperature becomes about 130 ° C. or more and shifts to the high temperature side, and the characteristics as a ferroelectric are obtained. The effect that the temperature range to show can be expanded is acquired.

また、残留分極が約20μC/cm以上と高く、強誘電体としての良好な特性が得られる。さらに、比誘電率を700より大きくすることができる。従って、Pbを含まない非鉛系の誘電体磁器組成物であっても、従来のPZTやチタン酸鉛と同等以上の圧電性及び誘電特性を得ることができる。Further, the remanent polarization is as high as about 20 μC / cm 2 or more, and good characteristics as a ferroelectric can be obtained. Furthermore, the relative dielectric constant can be made larger than 700. Therefore, even a lead-free dielectric ceramic composition containing no Pb can obtain piezoelectric and dielectric characteristics equal to or higher than those of conventional PZT and lead titanate.

また、Mn酸化物及びSi酸化物の少なくとも一方を副成分として含有することにより、低温焼結で所望の誘電体磁器組成物を得ることができる。   Moreover, a desired dielectric ceramic composition can be obtained by low-temperature sintering by containing at least one of Mn oxide and Si oxide as a subcomponent.

また、主成分100重量部に対し前記副成分を10重量部以下(0重量部を含まず)に制御することにより、誘電特性を維持しながら、焼結温度の低い誘電体磁器組成物を得ることができる。   Further, by controlling the subcomponent to 10 parts by weight or less (excluding 0 parts by weight) with respect to 100 parts by weight of the main component, a dielectric ceramic composition having a low sintering temperature is obtained while maintaining dielectric properties. be able to.

そして、このように本発明の誘電体磁器組成物は高い残留分極を有しているので、圧電アクチュエータ等の圧電セラミック電子部品の材料に好適に利用できる。また相転移温度が高温側にシフトしていることにより、強誘電体としての特性を示す温度範囲が拡大しているので、コンデンサ材料として好適に利用できる。   Since the dielectric ceramic composition of the present invention has a high remanent polarization, it can be suitably used as a material for a piezoelectric ceramic electronic component such as a piezoelectric actuator. Moreover, since the phase transition temperature is shifted to the high temperature side, the temperature range showing the characteristics as a ferroelectric substance is expanded, so that it can be suitably used as a capacitor material.

すなわち、本発明の電子部品は、上記誘電体磁器組成物で形成された素子本体と、該素子本体に設けられた導体とを有しているので、残留分極が高く圧電特性の良好な圧電アクチュエータ等の圧電セラミック電子部品や比誘電率の高い積層セラミックコンデンサ等の各種電子部品を得ることができる。   That is, since the electronic component of the present invention has an element body formed of the above dielectric ceramic composition and a conductor provided on the element body, the piezoelectric actuator has high remanent polarization and good piezoelectric characteristics. Various electronic components such as piezoelectric ceramic electronic components such as monolithic ceramic capacitors having a high relative dielectric constant can be obtained.

本発明に係る誘電体磁器組成物を使用して製造された電子部品としての圧電アクチュエータの一実施の形態(第1の実施の形態)を示す断面図である。It is sectional drawing which shows one Embodiment (1st Embodiment) of the piezoelectric actuator as an electronic component manufactured using the dielectric material ceramic composition which concerns on this invention. 本発明に係る誘電体磁器組成物を使用して製造された電子部品としての積層セラミックコンデンサの一実施の形態(第2の実施の形態)を示す断面図である。It is sectional drawing which shows one Embodiment (2nd Embodiment) of the multilayer ceramic capacitor as an electronic component manufactured using the dielectric material ceramic composition which concerns on this invention.

符号の説明Explanation of symbols

2a、2b 圧電体基板(素子本体)
3、4a、4b 電極(導体)
12 積層誘電体セラミック体(素子本体)
14a 第1の誘電体セラミック層
14b 第2の誘電体セラミック層
16 内部電極(導体)
18 外部電極(導体)
2a, 2b Piezoelectric substrate (element body)
3, 4a, 4b Electrode (conductor)
12 Multilayer dielectric ceramic body (element body)
14a First dielectric ceramic layer 14b Second dielectric ceramic layer 16 Internal electrode (conductor)
18 External electrode (conductor)

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

本発明の一実施の形態としての誘電体磁器組成物は、組成式:(Ba1-xSnTiOで表されるペロブスカイト型化合物を主成分とし、x及びmが、0.01≦x≦0.3、0.9≦m≦1.1の範囲内にあり、かつ、(Ba1-xSn)で示されるBaサイトが、実質的にSrを含まないように配合されている。The dielectric ceramic composition according to one embodiment of the present invention is mainly composed of a perovskite compound represented by a composition formula: (Ba 1-x Sn x ) m TiO 3 , and x and m are 0.01 ≦ x ≦ 0.3, 0.9 ≦ m ≦ 1.1, and the Ba site represented by (Ba 1-x Sn x ) is blended so as not to substantially contain Sr. ing.

そして、誘電体磁器組成物が上記成分組成で構成されることにより、鉛を含有しなくとも、相転移温度、残留分極、及び比誘電率の高い誘電体磁器組成物を得ることができる。   And by comprising a dielectric ceramic composition with the said component composition, even if it does not contain lead, a dielectric ceramic composition with high phase transition temperature, remanent polarization, and a relative dielectric constant can be obtained.

ここで、xの範囲を0.01≦x≦0.3としたのは、Baの一部を2価のSnと置換することにより、相転移温度や残留分極を向上させることができるが、Snのモル比xが0.01未満の場合は、所期の作用効果を発揮することができないからであり、一方、モル比xが0.3を超えると焼結性が悪化するからである。   Here, the range of x is set to 0.01 ≦ x ≦ 0.3 because the phase transition temperature and remanent polarization can be improved by replacing a part of Ba with divalent Sn. This is because when the molar ratio x of Sn is less than 0.01, the desired effect cannot be exhibited, and when the molar ratio x exceeds 0.3, the sinterability deteriorates. .

また、mの範囲を0.9≦m≦1.1としたのは、Baサイトのモル比mが0.9未満になると、組成物が半導体化して好ましくなく、またモル比mが1.1を超えると、焼結性が悪化するからである。   The range of m is set to 0.9 ≦ m ≦ 1.1 because when the molar ratio m of the Ba site is less than 0.9, the composition becomes semiconductive, and the molar ratio m is 1. It is because sinterability will deteriorate when it exceeds 1.

また、Baサイトには、上述したように実質的にSrを含んでいない。ここで、「実質的にSrを含んでいない」とは、圧電特性や誘電特性等の電子部品の特性に影響を与えない範囲で、製造上不可避的に含有され得る不純物としての微量のSrまでをも除外するものではないことを意味しており、具体的には、SrOに換算して0.2重量%以下、望ましくは0.02重量%以下、より望ましくは0.002重量%以下が好ましい。   Further, the Ba site does not substantially contain Sr as described above. Here, “substantially does not contain Sr” means that up to a very small amount of Sr as an impurity that may be inevitably contained in the production within a range that does not affect the characteristics of the electronic component such as piezoelectric characteristics and dielectric characteristics Is not excluded, specifically, 0.2% by weight or less, preferably 0.02% by weight or less, more preferably 0.002% by weight or less in terms of SrO. preferable.

また、低温焼結を行う観点からは、上記主成分にMn酸化物及びSi酸化物のうちの少なくとも一方を副成分として含有させるのが好ましい。   From the viewpoint of performing low-temperature sintering, it is preferable that at least one of Mn oxide and Si oxide is contained as a subcomponent in the main component.

さらに、副成分の含有量は、主成分100重量部に対し、総計で10重量部以下(0重量部を含まず)とするのが好ましい。すなわち、Mn酸化物及びSi酸化物を総計で10重量部を超えて含有させても、誘電特性自体は実用上問題は生じないが、比誘電率が若干低下し、誘電損失も若干増加する傾向があるため、良好な誘電特性を維持しつつ低温焼結(例えば、1050℃以下)を行うためには、主成分100重量部に対し、総計で10重量部以下(0重量部を含まず)とするのが好ましい。   Further, the content of the subcomponents is preferably 10 parts by weight or less (not including 0 parts by weight) in total with respect to 100 parts by weight of the main component. That is, even if the total amount of Mn oxide and Si oxide exceeds 10 parts by weight, there is no practical problem in the dielectric properties themselves, but the relative permittivity tends to decrease slightly and the dielectric loss tends to increase slightly. Therefore, in order to perform low-temperature sintering (for example, 1050 ° C. or less) while maintaining good dielectric properties, a total of 10 parts by weight or less (excluding 0 parts by weight) with respect to 100 parts by weight of the main component It is preferable that

次に上記誘電体磁器組成物を使用して製造された電子部品について説明する。   Next, electronic parts manufactured using the dielectric ceramic composition will be described.

図1は上記誘電体磁器組成物を使用して製造された電子部品の一実施の形態としての圧電アクチュエータの断面図である。   FIG. 1 is a cross-sectional view of a piezoelectric actuator as an embodiment of an electronic component manufactured using the above dielectric ceramic composition.

この圧電アクチュエータ1は、積層される2つの圧電体基板2a、2bを含む。圧電体基板2a、2bは、いずれも上記誘電体磁器組成物で形成されている。圧電体基板2a、2bには、それぞれ、同じ厚み方向に分極処理が施されている。また、圧電体基板2aと圧電体基板2bとの間には、電極3が形成される。さらに、圧電体基板2aの上面には電極4aが形成され、圧電体基板2bの下面には電極4bが形成される。そして、電極3には第1の端子5が接続され、電極4a、4bには第2の端子6が接続される。この圧電アクチュエータ1では、第1の端子5及び第2の端子6に電圧が印加されることによって、圧電体基板2a、2bはその厚み方向に変位する。   The piezoelectric actuator 1 includes two piezoelectric substrates 2a and 2b that are stacked. The piezoelectric substrates 2a and 2b are both formed of the above dielectric ceramic composition. Each of the piezoelectric substrates 2a and 2b is polarized in the same thickness direction. An electrode 3 is formed between the piezoelectric substrate 2a and the piezoelectric substrate 2b. Furthermore, an electrode 4a is formed on the upper surface of the piezoelectric substrate 2a, and an electrode 4b is formed on the lower surface of the piezoelectric substrate 2b. The first terminal 5 is connected to the electrode 3, and the second terminal 6 is connected to the electrodes 4a and 4b. In the piezoelectric actuator 1, when a voltage is applied to the first terminal 5 and the second terminal 6, the piezoelectric substrates 2a and 2b are displaced in the thickness direction.

この圧電アクチュエータ1において圧電体基板2a、2bが上記誘電体磁器組成物を用いて作製されているので、残留分極が高く圧電特性の良好な圧電アクチュエータを得ることができる。   In the piezoelectric actuator 1, since the piezoelectric substrates 2a and 2b are manufactured using the dielectric ceramic composition, a piezoelectric actuator having high remanent polarization and good piezoelectric characteristics can be obtained.

また、図2は電子部品の他の実施の形態としての積層セラミックコンデンサの断面図を示している。   FIG. 2 is a cross-sectional view of a multilayer ceramic capacitor as another embodiment of the electronic component.

この積層セラミックコンデンサ10は、上記誘電体磁器組成物で形成された積層誘電体セラミック体12を備えている。積層誘電体セラミック体12は、複数枚の第1の誘電体セラミック層14a及び2枚の第2の誘電体セラミック層14bを積層することによって形成される。これらの誘電体セラミック層14a,14bは、内部電極16を介在して積層される。また、積層誘電体セラミック体12の両端面には、外部電極18,第1のメッキ被膜20a及び第2のメッキ被膜20bがこの順に形成される。第1のメッキ被膜20aとしては、ニッケル、銅などが用いられ、第2のメッキ被膜20bとしては、はんだ、錫などが用いられる。   The multilayer ceramic capacitor 10 includes a multilayer dielectric ceramic body 12 formed of the above dielectric ceramic composition. The laminated dielectric ceramic body 12 is formed by laminating a plurality of first dielectric ceramic layers 14a and two second dielectric ceramic layers 14b. These dielectric ceramic layers 14a and 14b are laminated with the internal electrode 16 interposed therebetween. Further, the external electrode 18, the first plating film 20a, and the second plating film 20b are formed in this order on both end faces of the multilayer dielectric ceramic body 12. Nickel, copper or the like is used as the first plating film 20a, and solder, tin or the like is used as the second plating film 20b.

この積層セラミックコンデンサ10において積層誘電体セラミック体12が上記誘電体磁器組成物を用いて作製されているので、比誘電率が高く良好な誘電特性を有する積層セラミックコンデンサを得ることができる。   In this multilayer ceramic capacitor 10, since the multilayer dielectric ceramic body 12 is produced using the dielectric ceramic composition, a multilayer ceramic capacitor having a high relative dielectric constant and good dielectric characteristics can be obtained.

尚、本発明は上記実施の形態に限定されるものではない。上記実施の形態では、電子部品として圧電アクチュエータ、積層セラミックコンデンサを挙げたが、例えば圧電センサ、圧電ブザー、圧電フィルタ等の各種電子部品にも適用できるのはいうまでもない。   The present invention is not limited to the above embodiment. In the above embodiment, the piezoelectric actuator and the multilayer ceramic capacitor are exemplified as the electronic component. However, it is needless to say that the present invention can be applied to various electronic components such as a piezoelectric sensor, a piezoelectric buzzer, and a piezoelectric filter.

次に、本発明の実施例を具体的に説明する。   Next, examples of the present invention will be specifically described.

まず、表1に示すような組成式(Ba1-xSnTiOの組成物が得られるように、BaCO、SnO、TiOの各粉末を調合し、調合原料を得た。この調合原料を電気炉により、N還元雰囲気中約500℃〜1000℃で2時間仮焼し、仮焼物を得た。この仮焼物を粉砕機により粉砕し、粉砕物を得た。次に、この粉砕物100重量部に対しポリビニルアルコール10重量部を混合し、これを乾燥させて混合物を得た。この混合物を一軸プレス(圧力9.8×10MPa)で直径約12mm、厚み約2.5mmに成形し、円板状の成形体を得た。この成形体を表1に示す温度で、H−N−HOガス(酸素分圧約10-12MPa〜10-16MPa)の還元雰囲気中にて焼成し、誘電体磁器を得た。そしてその後、Ag電極ペーストを誘電体磁器の端面に塗付し、約800℃で焼き付けて電極を形成し、試料番号1〜13の測定試料(コンデンサ)を作製した。First, each powder of BaCO 3 , SnO, and TiO 2 was prepared so that a composition of the composition formula (Ba 1-x Sn x ) m TiO 3 as shown in Table 1 was obtained to obtain a preparation raw material. This blended raw material was calcined in an N 2 reducing atmosphere at about 500 ° C. to 1000 ° C. for 2 hours to obtain a calcined product. The calcined product was pulverized by a pulverizer to obtain a pulverized product. Next, 10 parts by weight of polyvinyl alcohol was mixed with 100 parts by weight of the pulverized product and dried to obtain a mixture. This mixture was molded into a diameter of about 12 mm and a thickness of about 2.5 mm with a uniaxial press (pressure 9.8 × 10 2 MPa) to obtain a disk-shaped molded body. This compact was fired at a temperature shown in Table 1 in a reducing atmosphere of H 2 —N 2 —H 2 O gas (oxygen partial pressure of about 10 −12 MPa to 10 −16 MPa) to obtain a dielectric ceramic. . Thereafter, an Ag electrode paste was applied to the end face of the dielectric ceramic, and baked at about 800 ° C. to form electrodes, and measurement samples (capacitors) of sample numbers 1 to 13 were produced.

このようにして得た測定試料について、LCRメーター(ヒューレットパッカード社製、タイプ4284)により常温(25℃)、測定周波数1kHzにおける、比誘電率(εr)、誘電損失(tanδ)を測定した。相転移温度は、インピーダンスアナライザーによる測定システムにより、−55℃〜450℃の温度範囲で上記の測定試料について測定した。また、残留分極は、ソーヤ・タワー回路を用いた測定装置により、25℃において測定した。   With respect to the measurement sample thus obtained, the relative dielectric constant (εr) and dielectric loss (tan δ) at room temperature (25 ° C.) and measurement frequency of 1 kHz were measured with an LCR meter (manufactured by Hewlett-Packard, type 4284). The phase transition temperature was measured for the measurement sample in the temperature range of −55 ° C. to 450 ° C. by a measurement system using an impedance analyzer. The remanent polarization was measured at 25 ° C. with a measuring device using a Soya tower circuit.

その結果を表1に示す。表1中、本発明範囲外の組成には*を付した。尚、同様の円板状の成形体を空気中で焼成したが、Snの一部が酸化し、SnOとなり焼結できなかった。
The results are shown in Table 1. In Table 1, * is attached | subjected to the composition outside the range of this invention. Although a similar disk-shaped molded body was fired in the air, a portion of Sn is oxidized, were unable SnO 2 next sintering.

表1より、Baの一部をSnで置換した試料番号2〜7、10〜12は。相転移温度が130℃〜230℃の温度範囲で高温側にシフトしていることが分かった。一方、従来のチタン酸バリウムである試料番号1では、相転移温度が120℃と本発明の誘電体磁器組成物より低い。また、Snは通常4価で安定であるためTiサイトで置換が生じ易く、一般的にTiサイトがSnで置換されると相転移温度が低温側にシフトすることが知られている。しかし、本発明では相転移温度が高温側にシフトしているので、Baの一部が2価のSnで置換されたペロブスカイト型化合物の(Ba、Sn)TiOが合成されていることが分かる。From Table 1, sample numbers 2 to 7 and 10 to 12 in which a part of Ba was replaced with Sn. It was found that the phase transition temperature shifted to the high temperature side in the temperature range of 130 ° C to 230 ° C. On the other hand, Sample No. 1, which is a conventional barium titanate, has a phase transition temperature of 120 ° C., which is lower than that of the dielectric ceramic composition of the present invention. In addition, since Sn is usually tetravalent and stable, substitution at the Ti site is likely to occur, and it is generally known that when the Ti site is substituted with Sn, the phase transition temperature shifts to a lower temperature side. However, in the present invention, since the phase transition temperature is shifted to a higher temperature side, it is understood that (Ba, Sn) TiO 3 , which is a perovskite type compound in which a part of Ba is substituted with divalent Sn, is synthesized. .

また、試料番号2〜7、10〜12では残留分極が21.0〜32.9μC/cmと大きく、したがって残留分極が向上することから、強誘電体としての良好な特性が得られることが分かった。Further, in the sample numbers 2 to 7 and 10 to 12, the remanent polarization is as large as 21.0 to 32.9 μC / cm 2, and therefore the remanent polarization is improved, so that good characteristics as a ferroelectric can be obtained. I understood.

さらに、試料番号2〜7、10〜12は、比誘電率が708〜1362と高く、高比誘電率を有する誘電体磁器組成物の作製が可能であることができることが分かった。   Furthermore, it was found that Sample Nos. 2 to 7 and 10 to 12 had a high relative dielectric constant of 708 to 1362, and it was possible to produce a dielectric ceramic composition having a high relative dielectric constant.

BaTiOの場合、通常、Baの一部をSrで置換すると比誘電率が向上するが、本発明の誘電体磁器組成物では、Baサイトが実質的にSrを含んでいないにも拘らず、Srを含む場合よりも比誘電率を向上させることができることが分かった。すなわち、Srを添加せずに、Baの一部をSnで置換することにより比誘電率及び相転移温度の両方を向上させることが可能となる。In the case of BaTiO 3, the relative dielectric constant is usually improved by substituting part of Ba with Sr. However, in the dielectric ceramic composition of the present invention, although the Ba site does not substantially contain Sr, It was found that the relative dielectric constant can be improved as compared with the case of containing Sr. That is, it is possible to improve both the relative permittivity and the phase transition temperature by replacing part of Ba with Sn without adding Sr.

以上より、(Ba、Sn)TiOは、BaTiOにPbを添加した場合と同様に、相転移温度を高温側へシフトさせる効果があることが確認された。この効果により、従来のBaTiOより強誘電体としての使用可能温度範囲を広げることができる。From the above, it was confirmed that (Ba, Sn) TiO 3 has an effect of shifting the phase transition temperature to the high temperature side, as in the case of adding Pb to BaTiO 3 . Due to this effect, the usable temperature range as a ferroelectric can be expanded as compared with the conventional BaTiO 3 .

尚、試料番号8は、xが0.400であり、0.3を超えているため、1300℃まで昇温しても焼結せず、また、試料番号9はxが0.100であり、0.9未満であるので組成物が半導体化した。また、試料番号13は、mが1.200であり、1.1を超えているため、1300℃まで昇温しても焼結しなかった。   In Sample No. 8, x is 0.400 and exceeds 0.3, so it does not sinter even if the temperature is raised to 1300 ° C. In Sample No. 9, x is 0.100. Therefore, the composition became semiconducting because it was less than 0.9. Sample No. 13 had m of 1.200 and exceeded 1.1, so it was not sintered even when the temperature was raised to 1300 ° C.

〔実施例1〕と同様に、表2に示すような組成式(Ba1-xSnTiOの組成物が得られるように、BaCO、SnO、TiOの各粉末を調合し、調合原料を得た。この調合原料を電気炉により、N還元雰囲気中、約500℃〜1000℃で、2時間仮焼を行い、主成分としての仮焼物を得た。Similarly to [Example 1], each powder of BaCO 3 , SnO, and TiO 2 was prepared so that a composition of the composition formula (Ba 1-x Sn x ) m TiO 3 as shown in Table 2 was obtained. , The compound raw material was obtained. This blended raw material was calcined in an N 2 reducing atmosphere at about 500 ° C. to 1000 ° C. for 2 hours to obtain a calcined product as a main component.

この主成分100重量部に対し、MnO又はSiOに換算して表2に示すような含有量を有するように副成分としてのMnCO及びSiOの各粉末を調合し、調合済み仮焼物を得た。With respect to 100 parts by weight of the main component, each powder of MnCO 3 and SiO 2 as subcomponents is prepared so as to have a content as shown in Table 2 in terms of MnO 2 or SiO 2 , and a preliminarily prepared calcined product Got.

次に、副成分が添加された調合済み仮焼物を粉砕機により粉砕し、粉砕物を得た。この粉砕物100重量部に対しポリビニルアルコール10重量部を混合し、これを乾燥させ混合物を得た。この混合物を一軸プレス(圧力9.8×10MPa)で直径約12mm、厚み約2.5mmに成形し、円板状の成形体を得た。この成形体を表2に示す温度で、H−N−HOガス(酸素分圧約10-12MPa〜10-16MPa)の還元雰囲気中にて焼成し、誘電体磁器を得た。その後、Ag電極ペーストを誘電体磁器の端面に塗付し、約800℃で焼き付けて電極を形成し、試料番号14〜23の測定試料(コンデンサ)を作製した。Next, the prepared calcined product to which the subcomponent was added was pulverized by a pulverizer to obtain a pulverized product. 10 parts by weight of polyvinyl alcohol was mixed with 100 parts by weight of the pulverized product and dried to obtain a mixture. This mixture was molded into a diameter of about 12 mm and a thickness of about 2.5 mm with a uniaxial press (pressure 9.8 × 10 2 MPa) to obtain a disk-shaped molded body. The compact was fired at a temperature shown in Table 2 in a reducing atmosphere of H 2 —N 2 —H 2 O gas (oxygen partial pressure of about 10 −12 MPa to 10 −16 MPa) to obtain a dielectric ceramic. . Thereafter, an Ag electrode paste was applied to the end face of the dielectric porcelain and baked at about 800 ° C. to form electrodes, and measurement samples (capacitors) of sample numbers 14 to 23 were produced.

このようにして得た測定試料について、〔実施例1〕と同様の測定条件にて、比誘電率、誘電損失、相転移温度、残留分極を測定した。その結果を表2に示す。
With respect to the measurement sample thus obtained, the relative permittivity, dielectric loss, phase transition temperature, and remanent polarization were measured under the same measurement conditions as in [Example 1]. The results are shown in Table 2.

表2において、試料番号14、15は、主成分100重量部に対し、Mn酸化物をMnOに換算して3〜10重量部下含有しているので、これを含有していない〔実施例1〕の試料番号3と比較すると、焼成温度を1050℃にまで低下させることができることが分かった。In Table 2, since the sample numbers 14 and 15 contain 3 to 10 parts by weight of the Mn oxide in terms of MnO 2 with respect to 100 parts by weight of the main component, they do not contain this [Example 1 ], It was found that the firing temperature can be lowered to 1050 ° C.

試料番号17、18、19は、主成分100重量部に対し、Si酸化物をSiOに換算して3〜10重量部含有しているので、これを含有していない〔実施例1〕の試料番号3、4と比較すると、焼成温度1050℃に低下させることができたることが分かった。Sample Nos. 17, 18, and 19 contain 3 to 10 parts by weight of Si oxide in terms of SiO 2 with respect to 100 parts by weight of the main component. Compared with sample numbers 3 and 4, it was found that the firing temperature could be lowered to 1050 ° C.

試料番号21、22では、Mn酸化物及びSi酸化物を総計で0.4〜5重量部含有しており、上記同様、焼成温度を低下させることができた。   In Sample Nos. 21 and 22, the total amount of Mn oxide and Si oxide was 0.4 to 5 parts by weight, and the firing temperature could be lowered as described above.

また、上記試料番号14、15、17〜19、21、22の試料は、Mn酸化物やSi酸化物を添加させない場合と略同等の比誘電率が得られていることも分かった。
尚、試料番号16、20、23に示すように、Mn酸化物及びSi酸化物の合計量が10重量部を超えた場合は、比誘電率や誘電損失が他の試料と比べて若干劣ることから、比誘電率や誘電損失等の誘電特性を維持しながら焼成温度を低下させるためには、Mn酸化物及び/又はSi酸化物の含有量は、総計で10重量部以下が望ましいことが確認された。
It was also found that the samples Nos. 14, 15, 17-19, 21, and 22 had a dielectric constant substantially equivalent to that obtained when no Mn oxide or Si oxide was added.
As shown in sample numbers 16, 20, and 23, when the total amount of Mn oxide and Si oxide exceeds 10 parts by weight, the relative permittivity and dielectric loss are slightly inferior to those of other samples. Therefore, in order to lower the firing temperature while maintaining dielectric properties such as dielectric constant and dielectric loss, it is confirmed that the total content of Mn oxide and / or Si oxide is preferably 10 parts by weight or less. It was done.

Claims (4)

組成式:(Ba1-xSnTiOで表されるペロブスカイト型化合物を主成分とし、
xおよびmが、
0.01≦x≦0.3、
0.9≦m≦1.1、
の範囲内にあり、
かつ、前記(Ba1-xSn)で示されるBaサイトが、実質的にSrを含まないことを特徴とする誘電体磁器組成物。
The main component is a perovskite type compound represented by a composition formula: (Ba 1-x Sn x ) m TiO 3 ,
x and m are
0.01 ≦ x ≦ 0.3,
0.9 ≦ m ≦ 1.1,
In the range of
And, Ba site represented by (Ba 1-x Sn x) is, the dielectric ceramic composition characterized by containing substantially no Sr.
Mn酸化物及びSi酸化物のうちの少なくとも一方を副成分として含有することを特徴とする請求項1記載の誘電体磁器組成物。  2. The dielectric ceramic composition according to claim 1, wherein at least one of Mn oxide and Si oxide is contained as a subcomponent. Mn酸化物及びSi酸化物のうちの少なくとも一方が、前記主成分100重量部に対し、それぞれMnO及びSiOに換算し、総計で10重量部以下(0重量部を含まず)の範囲で含有されていることを特徴とする請求項1又は請求項2記載の誘電体磁器組成物。At least one of the Mn oxide and the Si oxide is converted to MnO 2 and SiO 2 with respect to 100 parts by weight of the main component, respectively, and in the range of 10 parts by weight or less (not including 0 parts by weight) in total. The dielectric ceramic composition according to claim 1 or 2, wherein the dielectric ceramic composition is contained. 請求項1乃至請求項3のいずれかに記載の誘電体磁器組成物で形成された素子本体と、該素子本体に設けられた導体とを有していることを特徴とする電子部品。  An electronic component comprising an element body formed of the dielectric ceramic composition according to claim 1 and a conductor provided on the element body.
JP2005517625A 2004-02-10 2004-12-01 Dielectric porcelain composition and electronic component using the same Active JP4321526B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004033781 2004-02-10
JP2004033781 2004-02-10
PCT/JP2004/017862 WO2005075377A1 (en) 2004-02-10 2004-12-01 Dielectric ceramic composition and electronic component utilizing the same

Publications (2)

Publication Number Publication Date
JPWO2005075377A1 JPWO2005075377A1 (en) 2008-01-10
JP4321526B2 true JP4321526B2 (en) 2009-08-26

Family

ID=34836144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005517625A Active JP4321526B2 (en) 2004-02-10 2004-12-01 Dielectric porcelain composition and electronic component using the same

Country Status (2)

Country Link
JP (1) JP4321526B2 (en)
WO (1) WO2005075377A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5131595B2 (en) * 2006-07-07 2013-01-30 株式会社村田製作所 Dielectric ceramic, ceramic electronic component, and multilayer ceramic capacitor
DE112007002865B4 (en) 2006-12-05 2018-03-01 Murata Manufacturing Co., Ltd. Dielectric ceramic and multilayer ceramic capacitor using the same
JP5360886B2 (en) * 2009-03-13 2013-12-04 Necトーキン株式会社 Piezoelectric ceramics and manufacturing method thereof
JP2015135958A (en) 2013-12-18 2015-07-27 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic apparatus
JP2015134707A (en) * 2013-12-18 2015-07-27 キヤノン株式会社 Piezoelectric material, piezoelectric element, and electronic apparatus
JP2017109904A (en) 2015-12-17 2017-06-22 株式会社村田製作所 Perovskite-type porcelain composition, blended composition containing perovskite-type porcelain composition, manufacturing method of perovskite-type porcelain composition and manufacturing method of laminate ceramic capacitor
KR102184560B1 (en) * 2015-12-28 2020-12-01 삼성전기주식회사 Dielectric ceramic composition and multilayer ceramic capacitor comprising the same
JP6766702B2 (en) * 2017-03-09 2020-10-14 Tdk株式会社 Dielectric element
US11819702B2 (en) * 2020-03-04 2023-11-21 North Carolina State University Perovskite materials and methods of making and use thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0340962A (en) * 1989-05-02 1991-02-21 Japan Metals & Chem Co Ltd Dielectric porcelain composition
JPH0589724A (en) * 1991-09-26 1993-04-09 Murata Mfg Co Ltd Manufacture of dielectric porcelain composition
JP3562085B2 (en) * 1995-12-28 2004-09-08 松下電器産業株式会社 Dielectric ceramic composition, capacitor using the same, and method for producing dielectric ceramic composition
JPH1025157A (en) * 1996-07-08 1998-01-27 Murata Mfg Co Ltd Dielectric ceramic composition and multilayer capacitor

Also Published As

Publication number Publication date
JPWO2005075377A1 (en) 2008-01-10
WO2005075377A1 (en) 2005-08-18

Similar Documents

Publication Publication Date Title
JP5131595B2 (en) Dielectric ceramic, ceramic electronic component, and multilayer ceramic capacitor
KR100278416B1 (en) Dielectric Ceramic, Method for Producing the Same, Laminated Ceramic Electronic Element, and Method for Producing the Same
JP4623005B2 (en) Composition for thin film capacitor, high dielectric constant insulating film, thin film capacitor, thin film multilayer capacitor, and method for manufacturing thin film capacitor
JP5641668B2 (en) Ferroelectric ceramic materials with low sintering temperature
JP2006188414A (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JPH11292625A (en) Production of piezoelectric ceramic
JP2004059335A (en) Piezoelectric ceramic composition and piezoelectric element
JP5194370B2 (en) Electronic component, dielectric ceramic composition and method for producing the same
JP4432969B2 (en) Piezoelectric ceramic composition and piezoelectric element
JP4321526B2 (en) Dielectric porcelain composition and electronic component using the same
US6734127B2 (en) Ceramic materials for capacitors with a high dielectric constant and a low capacitance change with temperature
JP5392603B2 (en) Method for manufacturing piezoelectric ceramic electronic component
JP2011042529A (en) Method for manufacturing dielectric ceramic composition
JP4653471B2 (en) Dielectric porcelain composition
US8129889B2 (en) Piezoelectric ceramic compositions and piezoelectric elements
JP4432280B2 (en) Piezoelectric ceramic
US6878307B2 (en) Low temperature firable PZT compositions and piezoelectric ceramic devices using the same
JP4804709B2 (en) PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP5206673B2 (en) Piezoelectric ceramic composition and piezoelectric component
JP2006193415A (en) Piezoelectric ceramic and piezoelectric element
JPH0987014A (en) Production of high dielectric constant porcelain composition
CN116092828A (en) Dielectric composition and electronic component
JP2005219992A (en) Piezoelectric ceramic composition and piezoelectric element
JP2007084419A (en) Electronic component, dielectric ceramic composition and method of manufacturing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090512

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090525

R150 Certificate of patent or registration of utility model

Ref document number: 4321526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120612

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130612

Year of fee payment: 4