JP4804709B2 - PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same - Google Patents

PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same Download PDF

Info

Publication number
JP4804709B2
JP4804709B2 JP2003193772A JP2003193772A JP4804709B2 JP 4804709 B2 JP4804709 B2 JP 4804709B2 JP 2003193772 A JP2003193772 A JP 2003193772A JP 2003193772 A JP2003193772 A JP 2003193772A JP 4804709 B2 JP4804709 B2 JP 4804709B2
Authority
JP
Japan
Prior art keywords
piezoelectric ceramic
piezoelectric
sintering
present
ceramic composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003193772A
Other languages
Japanese (ja)
Other versions
JP2004051476A (en
Inventor
キム ヨン,ミン
ポノマレブ ヨウリ
Original Assignee
ドンギル テクノロジー カンパニー リミティッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ドンギル テクノロジー カンパニー リミティッド filed Critical ドンギル テクノロジー カンパニー リミティッド
Publication of JP2004051476A publication Critical patent/JP2004051476A/en
Application granted granted Critical
Publication of JP4804709B2 publication Critical patent/JP4804709B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • C04B35/493Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT containing also other lead compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/40Piezoelectric or electrostrictive devices with electrical input and electrical output, e.g. functioning as transformers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/50Piezoelectric or electrostrictive devices having a stacked or multilayer structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead based oxides
    • H10N30/8554Lead zirconium titanate based
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2311/00Metals, their alloys or their compounds
    • B32B2311/02Noble metals
    • B32B2311/08Silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • C04B2235/3267MnO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/346Titania or titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/408Noble metals, e.g. palladium, platina or silver

Description

【0001】
【発明の属する技術分野】
本発明は、低温焼結可能なPZTセラミック組成物とそれを用いた圧電セラミック装置に係り、より詳しくは、1050℃以下の低温で焼結でき、ひいては940℃の低温でもAg電極と共に同時に焼結できる低損失圧電セラミック物質とそれを用いた圧電セラミック装置に関する。
【0002】
【従来の技術】
圧電トランスや圧電アクチュエータのような多層圧電サラミック装置の出願が最近増加している。しかし、Pb(Zr,Ti)O(lead ziroconate titanate,以下、「PZT」と称す)物質からなる既存の多層圧電セラミック装置では、PZT物質の高い焼結温度のため白金(Pt)、パラジウム(Pd)又は銀(Ag)−パラジウム(Pd)ペーストを共に同時に焼結する必要があった。このような内部電極の高コストのため、多層圧電気装置の幅広い使用が制限された。従って、低温で特にAgの融点である962℃以下で焼結可能なPZT物質を開発しようとする多様な努力がなさてれきた。
【0003】
圧電セラミックトランスのように連続的に駆動される応用において、高効率を達成するために、高い圧電定数(dij,piezo modulus)、高い電気械結合係数k(electro−mechanical coupling coefficient)、高い誘電定数(dielectric constant)を有する低損失硬質圧電セラミック物質が求められた。しかし、硬質圧電セラミックの圧電特性を悪化させずに焼結温度を低下させるのにはいろいろと困難なことがあった。
【0004】
液相焼結によって低温で緻密化(densification)を加速させるために、低融点を有するガラス・フリット(glass frit)を単に添加することでPZT物質の焼結温度を低下させることができる。しかし、この方法は圧電定数(piezoelectric parameter)を低下させるという問題点がある。
【0005】
米国特許出願No.5792379は、900℃以下の焼結温度を有し、内部電極物質として、Agと同時に焼結できるPZTセラミック組成物に関するものである。B、Bi、MeO及びCuOからなる焼結助剤(ここでMeとはCa,Sr,Ba及びZnからなる群の中から選ばれた一つの金属である)を用いることによって焼結温度を低下させる。しかし、焼結温度が低下すると、0.60以上のK(電気機械結合係数)を有する硬質圧電セラミックに比べて、Kが最高0.55以下に減少する。
【0006】
米国特許出願No.5433917は、CuOの共融混合物とアルカリ土金属の酸化物とを用いて、約1,000℃の低い焼結温度を有するPZT組成物に関するものである。しかし、誘電定数(dielectric constant)及び誘電損失(dielectric loss)を除いた他の詳細な圧電定数(piezoelectric parameter)に関する報告はない。またGui et、alにも、B、Bi、CdOを少量使用してPZTの焼結温度を低下させる方法が説明されている。しかし、両先行技術における焼結温度はAg電極と同時に焼結するのには依然として高いという問題点がある。
【0007】
このような先行技術では低融点を有するガラス・フリット(glass frit)が焼結助剤として使用されるが、ガラス・フリットにおいて全ての元素、例えばホウ素は焼結中にPZTマトリックス(matrix)のペロブスカイト結晶格子構造で置換されない。しかし、焼結の後、これらが結晶粒界(grain boudary)を沿ってガラス相に残り、これは圧電気的特性を悪化させる問題点になる。
【0008】
【特許文献】
米国特許出願No.5792379
【特許文献】
米国特許出願No.5433917
【0009】
【発明が解決しようとする課題】
本発明は、かかる問題点を解消するためになされたもので、その目的は、低い誘電損失(dielectric loss)と高い圧電定数(piezoelectric parameter)とを有し、低温焼結可能な圧電セラミック組成物を提供することにある。
【0010】
本発明の他の目的は、Agの融点である962℃以下で純Agと同時に焼結できる低温焼結圧電セラミック組成物を提供することにある。
【0011】
本発明のまた他の目的は、本発明に係る圧電セラミック組成物を用いて多層圧電セラミックトランス、多層圧電セラミックアクチュエータなどのように連続駆動を行うのに適した圧電セラミック装置を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明は、[(Pb1−m−nーpSrBaCd)(ZrTi1−x1−k(BiMn]O(式中、モル比m,n,p,x,a,b及びkは、0.00≦m<0.15、0.00≦n<0.15、0.00<m+n<0.21、0.00<p<0.04、0.50≦x<0.56、0.00<a≦1.00、0.00<b≦1.00、0.00<k<0.04である)セラミックを含む圧電セラミック組成物を提供する。
【0013】
【発明の実施の形態】
以下、本発明をさらに詳細に説明する。
本発明に係る圧電セラミック組成物は、必須成分として[(Pb1−m−nーpSrBaCd)(ZrTi1−x1−k(BiMn]O(モル比m,n,p,x,a,b及びkは、0.00≦m<0.15、0.00≦n<0.15、0.00<m+n<0.21、0.00<p<0.04、0.50≦x<0.56、0.00<a≦1.00、0.00<b≦1.00、0.00<k<0.04である。)セラミックを含む。前記セラミックは、PZT(lead zirconate titanate)の固溶体(solid solution)をストロンチウム、バリウム、カドミウム、ビスマスおよびマンガンイオンと共に合金したものである。圧電定数(piezoelectric parameter)を悪化させずに焼結温度を低下させるために、反応性の高いCdとBiを添加する。Zr4+または、Ti4+をBi3+に置換する。異原子価のイオン(aliovalent ion)の置換による電荷の均衡(chargeneutrality)は、焼結する間に拡散過程(diffusion process)を増加させる酸素原子空孔(oxygen vacancy)の生成によって維持され、従って焼結温度を効果的に低下させるようになる。このような物質システムにおいてPb2+をCd2+に置換し、Cd2+の高い活性度は焼結過程で拡散過程を加速化しながら、焼結温度を効果的に低下させる。Cd量のpは0<p<0.04であることが好ましい。Cd量がこの範囲から外れると、電気機械結合係数K(electromechanical coupling coefficient)と圧電定数d33(piezo modulus)とが非実用レベル(nonpractical level)に至るまで減少し、好ましくない。
【0014】
Biは、BiMnに表現されるMnと共に添加される。Mnは、機械的品質係数Q(mechanical quality factor)を増加させるとともに、焼結体(sintered element)の結晶粒子の大きさを制御するために添加される。BiとMnの相対的の量であるa又はbは0<a又はb≦1の範囲であることが好ましく、3a+4b=4を満足することがさらに好ましい。
【0015】
例えば、それぞれa=1、2/3、1/2又は1/3であり、b=1/4、1/2、5/8又は3/4である。前記条件で万一Zr4+とTi4+をBi3+またMn4+に置換した場合、マトリックス(matrix)1モル当たりk(a/4)モル量のBi3+またMn4+イオンが過剰になる。よって、PZTマトリックス(matrix)に置換されていない過量のBi3+またMn4+イオンは、焼結する間に液相を形成し、緻密化に役に立つ。BiMnの最大量(k)は0<k<0.04であることが好ましい。このような範囲から外れると、K及びd33は急激に減少し、好ましくない。また、kはk=pを満足することが好ましい。
【0016】
誘電定数(dielectric constant)を増加し、同時に圧電定数(piezoelectric parameter)に対して明らかに逆効果なしに緻密化を向上させるために、SrまたはBaを添加する。Pbを置換できるSrまたはBaの最大量は、単独添加時、PZTにおいて約15モル%である。しかし、一緒に添加するときは、Sr+Baその最大量は18〜20モル%まで拡張することができる。これによりさらに高い誘電定数(dielectric constant)を得ることができる。しかも、混合置換の場合、同一の原子比で添加すると、単独置換に比べてより良い焼結特性を示す。Sr又はBaの量(m又はn)は、0.0<m又はn <0.15そして0<m+n<0.21であることが好ましい。このような範囲から外れると、焼結温度は非常に高くなり、好ましくない。
【0017】
本発明に係る圧電セラミック組成物は、 焼結性又は機械的品質係数(mechaanical quality factor)を向上させるために、0.001〜1重量%のBiをさらに含むことが好ましい。
【0018】
本発明に係る圧電セラミック組成物は、LiF又はMgFをさらに含む。フッ素(F)は、高電場で圧電特性を向上させかつ誘電定数(dielectric constant)を増加させることから、このようなフッ素化合物が含まれると、高い機械適応力または高電場での高い圧電特性が改善され、好ましい。フッ素化合物であるLiF又はMgFの量は0.001〜1重量%である。
【0019】
本発明に係る圧電セラミック組成物は、焼結性又は機械的品質係数(mechanical quality factor)を向上させるために、0.001〜0.50重量%のMnOをさらに含むことが好ましい。
【0020】
本発明は、また前記圧電セラミック組成物を1075℃以下で焼結して得た圧電セラミックを含んで構成される圧電セラミック装置を提供する。
【0021】
本発明は、また前記圧電セラミック組成物をAg内部電極と共に960℃以下で同時焼結を行って得た圧電セラミック層を含んで構成される多層圧電セラミック装置を提供する。
【0022】
本発明は、また前記圧電セラミック組成物をAg−Pd内部電極と共に同時焼結を行って得た圧電セラミック層を含んで構成される多層圧電セラミック装置を提供する。前記Pdの量は前記Ag及びPdの100重量%に対して0.001〜20重量%であることが好ましい。
【0023】
本発明は、また前記圧電セラミック組成物をAg内部電極と共に960℃以下で同時焼結を行って得た圧電セラミック層を含んで構成され、多層部分と単層部分とを含む圧電セラミック装置を提供する。
【0024】
本発明は、また前記圧電セラミック組成物をAg−Pd内部電極と共に1050℃以下で同時焼結を行って得た圧電セラミック層を含んで構成され、多層部分と単層部分とを含む圧電セラミック装置を提供する。前記Pdの量は、前記Ag及びPdの100重量%に対して0.001〜20重量%であることが好ましい。
【0025】
本発明は、圧電セラミック組成物とそれを用いた圧電セラミックトランスに関する次の実施例により容易に理解されるであろう。ただし、これら実施例はもっぱら本発明を説明するためのものであって、本発明の範囲を限定するものではない。
【0026】
【実施例1】
圧電セラミック組成物
PbO、ZrO、TiO、SrCO、BaCO、CdO、Bi、MnOとLiFまたMgFを出発原料として使用する。出発原料を表1に記載の量比で秤量した後、脱イオン水を添加してアトリションミル(attrition mill)を用いて2時間湿式混合を行い、そのスラリーを真空濾過する。濾過したものを120℃のオーブンで乾燥し、700〜875℃で2時間か焼(calcine)する。得られたか焼物を再びアトリションミルを用いて平均粒径が約0.8μmとなるまで微粉砕を行う。微粉砕によって得られたスラリーを乾燥し、乾燥粉末に10%のPVA(Poly Vinyl Alcohol)を少量(約2重量%)加えて造粒する。得られた造粒粉末である直径25mm、厚さ約2.5mmのグーリンディスク(未焼成のディスクを意味する。以下同様)(green disk)を、1000kg/cmの圧力をかけて成形して成型物を得る。前記グーリンディスク(green disk)を920〜1000℃で2時間焼結する。焼結したディスクの両表面にAgペーストを印刷し、700〜770℃で15分間焼き付ける。電極を形成したディスクを120〜140℃のシリコンオイル槽で15分間3〜4kV/mm電圧を印加して分極処理を行う。誘電定数(dielectric constant)と誘電損失係数(dielectric loss tangent)とは、1Vrmsの入力レベル、1kHzでLCR meterを用いて測定する。圧電定数d33はBerlincour d33 meterを用いて測定する。平面結合係数(planar coupling coefficient)と機械品質係数Qm(mechanical qualityfactor)とは、共振周波数f(resonant frequency)、反共振周波数f(antiresonant frequency)、LCR meterで測定した電気容量C及びインピーダンスアナライザー(Impedance/Gain−Phase analyser)で測定した共振インピーダンスZ(resonant impedance)から次の式によって計算される。
【0027】
1/k=0.395f/(f-f)+0.574
=1/2πf(1-(f/f
【0028】
表1に記載された*付きの組成物、並びにサンプル♯6、♯8および♯13〜15の組成物は比較用サンプルであり、本発明の範囲を外れている。1050℃、965℃及び950℃で焼結されたサンプルの特性を表2に示す。同表に示すように、有用な圧電定数(piezoelectric parameter)を1050℃、ひいては950℃で焼結した時にも得ることができる。Cd量のpが0.04(サンプル♯4)になると、kが急激に低下した。Ba+Srの総量が22モル%(サンプル#1とサンプル#2)である時、Pbに比べてBaやSrの拡散速度が遅いため、kもこのような焼結温度で急激に減少する。サンプル#10およびサンプル#11によれば、Fがkpにあまり影響を与えずに1重量%以下の範囲で添加できることがわかる。なお、表1および以下の表3において、yはさらに含まれるBiの配合量(重量%)、zはLiF又はMgFの配合量(重量%)を表す。MgFを使用することは可能であるが、MgFからなるサンプルのパラメーターはLiFからなるサンプルに比べて好ましくない。
【0029】
Zr/Ti組成比を変化させることでより多様な特性を得ることができる。本発明によってZr/Ti組成比を変化させた低温焼結可能な圧電セラミック組成物を表3に示すように準備した。表3に記載された♯61および♯65の組成物は比較用サンプルであり、本発明の範囲を外れている。940℃で焼結し、準備された圧電ディスク(piezoelectric disk)の特性は表4に示す。全ての組成物は、940℃で容易に焼結され、良好な圧電気的特性である、0.2〜0.4%の低い誘電損失(dielectric loss)、1470〜1850の高い誘電定数(dielectric constant)、310〜396のd33、610〜730の機械的品質係数(mechanical qulity factor)を示した。Zr/Ti組成比を変化させることにより、サンプル#61〜#64に示すように、共振周波数の温度係数(temperature coefficient)と誘電定数(dielectric constant)とを調整することができる。さらにLiFを添加することにより、サンプル#63とサンプル#65に示すように、共振周波数(resonant frequency)の温度係数(temperature coefficient)のそれほど悪化せずに誘電定数(dielectric constant)を増加させることができる。このような低い焼結温度は、圧電セラミックトランスや圧電アクチュエーターのような多層圧電セラミック部品において、内部電極として純Agペーストを使用することを可能にする。高い誘電定数(dielectric constant)と共振周波数の低い温度係数(temperature coefficient)は、圧電セラミックトランスのように共振モ-ドで動作する応用に有用に適用することができる。
【0030】
【表1】

Figure 0004804709
【0031】
【表2】
Figure 0004804709
Figure 0004804709
【0032】
【表3】
Figure 0004804709
【0033】
【表4】
Figure 0004804709
【0034】
【実施例2】
純Ag内部電極を有する圧電セラミックトランス
純Ag内部電極を有する圧電セラミックトランスを本発明に係る組成物を用いて作製した。組成物のサンプル#63をその例として挙げる。作製したローゼン型圧電セラミックトランス(Rosen−type piezoceramic transformer)を図1に示す。図1に示すように、入力部分Iは多層構造であり、多層構造の各層は、厚さ方向に上下交互に分極される。出力部分Oは単層になっており、トランスの長さ方向に分極Pされている。圧電セラミックトランスの作製は、まずPZT物質のグリーンシート(green sheet)を準備するところから始まる。か焼物をポリビニルブチラール(PVB、Polyvinyl Butyral)、フタル酸ジブチル(DBP、Dibutyl Phthalate)、魚油(fish oil)、メチルエチルケトン(MEK、Methyl Ethyl Ketone)及びトルエン(toluene)からなる結合剤と共にボールミルを用いて36時間混合する。粉砕されたスラリーを真空脱泡した後、ドクターブレード・キャスティングマシン(doctor blade casting machine)を用いてPETフィルム上に厚さ95μmのテープを成形する。グリーンテープ(green tape)を整列用穴を有する150mm×150mmのシート(sheet)に裁断する。交互になっている内部圧電は、Agペーストをグリーンシート(green sheet)に印刷し、連続式オーブンで乾燥する。印刷されたグリーンシート(green sheet)を整列用穴を用いて積層するが、内部圧電が一定に配列されるようにし、85℃、真空加熱圧着する。加熱圧着された(hot−laminated)グリーンバー(green bar)をそれぞれのグリーンエレメント(green element)に切る。グリーンエレメント(green element)にある他の有機物のみならず、結合剤は、260℃での脱バインダー後、940℃で2時間焼結された。外部入力・出力電極はAgペーストをスクリ-ン印刷し、780℃で焼き付けた。入力部分は450VDCの分極電圧で、出力部分は25kVDCの分極電圧で130℃のシリコンオイル槽で分極処理を行った。
【0035】
圧電セラミックトランスは、その大きさが26.0mm×5.0mm×1.3mmであり、15個の圧電活性層(piezo−active layer)を有し、16個の内部電極を持っている。Agペーストは、本発明に係る組成物サンプル#63からなるPZTマトリックス(matrix)と940℃で同時焼結時にほぼ反応が無い。Ag内部電極は電極面を100%被覆されており、層間剥離(delamination)がなく、かつ共振インピーダンス(resonance impedance)がそれほど高くなく、圧電特性に優れている。表5に圧電セラミックトランスの特性を示す。図2には動作の特性に示す。93%以上の変換効率(conversion efficiency)が測定された。
【0036】
本発明に係る低温焼結可能な圧電セラミック組成物は圧電セラミックトランスの適用に限定されるものではなく、単層圧電トランスはもとより多層アクチュエーター、多層センサー、バイモルフ(bimorph)に適用することもできる。
【0037】
【表5】
Figure 0004804709
【0038】
【発明の効果】
以上説明したように、本発明に係る圧電セラミック組成物は、低い誘電損失(dielectric loss)及び高い圧電定数(piezoelectric parameter)を有し、低下した温度、特にAgの融点である962℃以下で純Agと同時焼結を行うことができる。
【0039】
また、本発明に係る圧電セラミック装置は、圧電セラミックトランス、多層圧電セラミックアクチュエーターなどのように連続動作を行う応用に適したものであり、優秀な変換効率(conversion efficiency)を有する。
【図面の簡単な説明】
【図1】本発明の圧電セラミック装置の一実施例に係る圧電セラミックトランス内の圧電セラミックの斜視図である。
【図2】本発明の圧電セラミック装置の一実施例に係る圧電セラミックトランスの動作特性のうち、出力電圧の周波数の特性を示すグラフである。
【図3】本発明の圧電セラミック装置の一実施例に係る圧電セラミックトランスの動作特性のうち、オープンロード(open−load)100MOhm及び200kOhmに対する周波数の特性を示すグラフでである。
【図4】本発明の圧電セラミック装置の一実施例に係る圧電セラミックトランスの動作特性のうち、出力電流及び出力電圧の特性を示すグラフである。
【符号の説明】
I 入力部分(Input section)
O 出力部分(Output section)
P 分極(Polarization)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a low-temperature sinterable PZT ceramic composition and a piezoelectric ceramic device using the same. More specifically, the present invention can sinter at a low temperature of 1050 ° C. or lower, and at the same time, simultaneously sintered with an Ag electrode at a low temperature of 940 ° C. The present invention relates to a low-loss piezoelectric ceramic material and a piezoelectric ceramic device using the same.
[0002]
[Prior art]
Applications for multi-layer piezoelectric salamic devices such as piezoelectric transformers and piezoelectric actuators have recently increased. However, in an existing multilayer piezoelectric ceramic device made of Pb (Zr, Ti) O 3 (lead zirconate titanate, hereinafter referred to as “PZT”) material, platinum (Pt), palladium ( Both Pd) or silver (Ag) -palladium (Pd) paste had to be sintered together. The high cost of such internal electrodes has limited the wide use of multilayer piezoelectric devices. Therefore, various efforts have been made to develop PZT materials that can be sintered at low temperatures, particularly below 962 ° C., which is the melting point of Ag.
[0003]
In a continuously driven application such as a piezoceramic transformer, in order to achieve high efficiency, a high piezoelectric constant (d ij , piezo modulus), a high electrical coupling coefficient k p (electro-mechanical coupling coefficient), high A low loss hard piezoelectric ceramic material having a dielectric constant has been sought. However, it has been difficult to reduce the sintering temperature without deteriorating the piezoelectric characteristics of the hard piezoelectric ceramic.
[0004]
In order to accelerate densification at low temperature by liquid phase sintering, the sintering temperature of the PZT material can be lowered by simply adding a glass frit having a low melting point. However, this method has a problem of lowering the piezoelectric constant.
[0005]
US patent application no. No. 579379 relates to a PZT ceramic composition having a sintering temperature of 900 ° C. or less and capable of being sintered simultaneously with Ag as an internal electrode material. Use a sintering aid composed of B 2 O 3 , Bi 2 O 3 , MeO and CuO (where Me is one metal selected from the group consisting of Ca, Sr, Ba and Zn). To lower the sintering temperature. However, when the sintering temperature is lowered, the K p is reduced to 0.55 or less as compared with a hard piezoelectric ceramic having a K p (electromechanical coupling coefficient) of 0.60 or more.
[0006]
US patent application no. 5433917 relates to a PZT composition having a low sintering temperature of about 1,000 ° C. using a eutectic mixture of CuO and an alkaline earth metal oxide. However, there are no reports on other detailed piezoelectric constants except for the dielectric constant and the dielectric loss. Gui et al also describe a method for reducing the sintering temperature of PZT by using a small amount of B 2 O 3 , Bi 2 O 3 , and CdO. However, there is a problem that the sintering temperature in both prior arts is still high for sintering simultaneously with the Ag electrode.
[0007]
In such prior art, a glass frit having a low melting point is used as a sintering aid, but all elements in the glass frit, such as boron, are perovskite in a PZT matrix during sintering. Not substituted with crystal lattice structure. However, after sintering, they remain in the glass phase along the grain boundaries, which becomes a problem that degrades the piezoelectric properties.
[0008]
[Patent Literature]
US patent application no. 579379
[Patent Literature]
US patent application no. 5433917
[0009]
[Problems to be solved by the invention]
The present invention has been made to solve such a problem, and an object of the present invention is to provide a piezoelectric ceramic composition having a low dielectric loss and a high piezoelectric constant and capable of being sintered at a low temperature. Is to provide.
[0010]
Another object of the present invention is to provide a low-temperature sintered piezoelectric ceramic composition that can be sintered simultaneously with pure Ag at a melting point of Ag of 962 ° C. or lower.
[0011]
Another object of the present invention is to provide a piezoelectric ceramic device suitable for continuous driving, such as a multilayer piezoelectric ceramic transformer and a multilayer piezoelectric ceramic actuator, using the piezoelectric ceramic composition according to the present invention. .
[0012]
[Means for Solving the Problems]
To achieve the above object, the present invention is, [(Pb 1-m- n over p Sr m Ba n Cd p) (Zr x Ti 1-x) 1-k (Bi a Mn b) k] O 3 (In the formula, molar ratios m, n, p, x, a, b and k are 0.00 ≦ m <0.15, 0.00 ≦ n <0.15, 0.00 <m + n <0.21. 0.00 <p <0.04, 0.50 ≦ x <0.56, 0.00 <a ≦ 1.00, 0.00 <b ≦ 1.00, 0.00 <k <0.04 A piezoelectric ceramic composition comprising a ceramic.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
The piezoelectric ceramic composition according to the present invention, as an essential component [(Pb 1-m-n over p Sr m Ba n Cd p) (Zr x Ti 1-x) 1-k (Bi a Mn b) k] O 3 (molar ratios m, n, p, x, a, b and k are 0.00 ≦ m <0.15, 0.00 ≦ n <0.15, 0.00 <m + n <0.21, 0 0.00 <p <0.04, 0.50 ≦ x <0.56, 0.00 <a ≦ 1.00, 0.00 <b ≦ 1.00, 0.00 <k <0.04. .) Contains ceramic. The ceramic is obtained by alloying a solid solution of PZT (lead zirconate titanate) together with strontium, barium, cadmium, bismuth and manganese ions. In order to lower the sintering temperature without deteriorating the piezoelectric constant, highly reactive Cd and Bi are added. Zr 4+ or Ti 4+ is replaced with Bi 3+ . The charge balance due to the substitution of alien ions is maintained by the generation of oxygen vacancies that increase the diffusion process during sintering, and thus firing. Effectively lowers the setting temperature. The Pb 2+ in such materials system was replaced with Cd 2+, high activity of Cd 2+ while accelerating the diffusion process in the sintering process, effectively lowering the sintering temperature. The Cd content p is preferably 0 <p <0.04. If the amount of Cd is out of this range, the electromechanical coupling coefficient K p (electromechanical coupling coefficient) and the piezoelectric constant d 33 (piezo modulus) decrease until reaching a non-practical level, which is not preferable.
[0014]
Bi is added together with Mn expressed in Bi a Mn b . Mn, along with increasing the mechanical quality factor Q m (mechanical quality factor), is added to control the size of the crystal grains of the sintered body (sintered element). A or b, which is the relative amount of Bi and Mn, is preferably in the range of 0 <a or b ≦ 1, and more preferably 3a + 4b = 4.
[0015]
For example, a = 1, 2/3, 1/2, or 1/3, and b = 1/4, 1/2, 5/8, or 3/4, respectively. If Zr 4+ and Ti 4+ are replaced with Bi 3+ or Mn 4+ under the above conditions, k (a / 4) mole amount of Bi 3+ or Mn 4+ ions will be excessive per mole of matrix. Therefore, an excessive amount of Bi 3+ or Mn 4+ ions not substituted by the PZT matrix (matrix) forms a liquid phase during sintering, which is useful for densification. The maximum amount (k) of Bi a Mn b is preferably 0 <k <0.04. Outside this range, K p and d 33 decrease rapidly, which is not preferable. Further, k preferably satisfies k = p.
[0016]
In order to increase the dielectric constant and at the same time improve the densification without apparently adverse effects on the piezoelectric constant, Sr or Ba is added. The maximum amount of Sr or Ba that can replace Pb is about 15 mol% in PZT when added alone. However, when added together, the maximum amount of Sr + Ba can be extended to 18-20 mol%. As a result, a higher dielectric constant can be obtained. In addition, in the case of mixed substitution, if it is added at the same atomic ratio, it shows better sintering characteristics than single substitution. The amount of Sr or Ba (m or n) is preferably 0.0 <m or n <0.15 and 0 <m + n <0.21. If it is out of such a range, the sintering temperature becomes very high, which is not preferable.
[0017]
The piezoelectric ceramic composition according to the present invention preferably further includes 0.001 to 1% by weight of Bi 2 O 3 in order to improve the sinterability or the mechanical quality factor.
[0018]
The piezoelectric ceramic composition according to the present invention further comprises a LiF or MgF 2. Fluorine (F) improves the piezoelectric characteristics at high electric fields and increases the dielectric constant. Therefore, when such a fluorine compound is included, high mechanical adaptability or high piezoelectric characteristics at high electric fields can be obtained. Improved and preferred. The amount of LiF or MgF 2 which is a fluorine compound is 0.001 to 1% by weight.
[0019]
The piezoelectric ceramic composition according to the present invention preferably further includes 0.001 to 0.50 wt% of MnO 2 in order to improve the sinterability or the mechanical quality factor.
[0020]
The present invention also provides a piezoelectric ceramic device comprising a piezoelectric ceramic obtained by sintering the piezoelectric ceramic composition at 1075 ° C. or lower.
[0021]
The present invention also provides a multilayer piezoelectric ceramic device comprising a piezoelectric ceramic layer obtained by simultaneously sintering the piezoelectric ceramic composition together with an Ag internal electrode at 960 ° C. or less.
[0022]
The present invention also provides a multilayer piezoelectric ceramic device comprising a piezoelectric ceramic layer obtained by simultaneously sintering the piezoelectric ceramic composition together with an Ag—Pd internal electrode. The amount of Pd is preferably 0.001 to 20% by weight with respect to 100% by weight of Ag and Pd.
[0023]
The present invention also provides a piezoelectric ceramic device comprising a piezoelectric ceramic layer obtained by co-sintering the piezoelectric ceramic composition together with an Ag internal electrode at 960 ° C. or less and including a multilayer portion and a single layer portion. To do.
[0024]
The present invention also includes a piezoelectric ceramic layer comprising a piezoelectric ceramic layer obtained by simultaneously sintering the piezoelectric ceramic composition together with an Ag—Pd internal electrode at 1050 ° C. or less, and including a multilayer portion and a single layer portion. I will provide a. The amount of Pd is preferably 0.001 to 20% by weight with respect to 100% by weight of Ag and Pd.
[0025]
The present invention will be readily understood by the following examples relating to a piezoelectric ceramic composition and a piezoelectric ceramic transformer using the same. However, these examples are only for explaining the present invention and do not limit the scope of the present invention.
[0026]
[Example 1]
Piezoelectric ceramic compositions PbO, ZrO 2 , TiO 2 , SrCO 3 , BaCO 3 , CdO, Bi 2 O 3 , MnO 2 and LiF or MgF 2 are used as starting materials. After the starting materials are weighed in the quantitative ratios shown in Table 1, deionized water is added, wet mixing is performed using an attrition mill for 2 hours, and the slurry is vacuum filtered. The filtered material is dried in an oven at 120 ° C. and calcined at 700-875 ° C. for 2 hours. The obtained calcined product is pulverized again using an attrition mill until the average particle size becomes about 0.8 μm. The slurry obtained by pulverization is dried, and a small amount (about 2% by weight) of 10% PVA (Poly Vinyl Alcohol) is added to the dried powder and granulated. The obtained granulated powder, a green disk having a diameter of 25 mm and a thickness of about 2.5 mm (meaning an unfired disk, the same applies hereinafter) (green disk), was formed by applying a pressure of 1000 kg / cm 2. Get a molding. The green disk is sintered at 920-1000 ° C. for 2 hours. Ag paste is printed on both surfaces of the sintered disk and baked at 700-770 ° C. for 15 minutes. The disk on which the electrode is formed is subjected to polarization treatment by applying a voltage of 3 to 4 kV / mm for 15 minutes in a 120 to 140 ° C. silicon oil bath. The dielectric constant and the dielectric loss factor are measured using an LCR meter at an input level of 1 Vrms and 1 kHz. The piezoelectric constant d 33 is measured using a Berlinlin d 33 meter. The planar coupling coefficient (planar coupling coefficient) and mechanical quality factor Qm (mechanical qualityfactor), the resonance frequency f r (resonant frequency), the anti-resonance frequency f a (antiresonant frequency), the capacitance C 0 and the impedance measured at LCR meter The resonance impedance Z r (resonant impedance) measured by an analyzer (Impedance / Gain-Phase analyzer) is calculated by the following equation.
[0027]
1 / k p = 0.395 f r / (f a −f r ) +0.574
Q m = 1 / 2πf r Z r C o (1- (f r / f a) 2)
[0028]
The compositions marked with * in Table 1 and the compositions of Samples # 6, # 8 and # 13-15 are comparative samples and are outside the scope of the present invention. The properties of the samples sintered at 1050 ° C., 965 ° C. and 950 ° C. are shown in Table 2. As shown in the table, a useful piezoelectric constant can also be obtained when sintered at 1050 ° C. and thus 950 ° C. When p of the Cd amount became 0.04 (sample # 4), k p rapidly decreased. When the total amount of Ba + Sr is 22 mol% (Sample # 1 and Sample # 2), due to the slow diffusion rate of Ba and Sr in comparison with Pb, k p also decreases rapidly at such a sintering temperature. According to sample # 10 and sample # 11, it can be seen that F can be added in a range of 1 wt% or less without significantly affecting kp. In Table 1 and Table 3 below, y represents the amount (% by weight) of Bi 2 O 3 further contained, and z represents the amount (% by weight) of LiF or MgF 2 . Although it is possible to use MgF 2 , the parameters of the sample made of MgF 2 are less preferred than those of the sample made of LiF.
[0029]
More diverse characteristics can be obtained by changing the Zr / Ti composition ratio. As shown in Table 3, piezoelectric ceramic compositions capable of being sintered at low temperature with varying Zr / Ti composition ratios according to the present invention were prepared. The compositions of # 61 and # 65 listed in Table 3 are comparative samples and are outside the scope of the present invention. Table 4 shows the characteristics of a piezoelectric disk prepared by sintering at 940 ° C. All compositions are easily sintered at 940 ° C. and have good piezoelectric properties, low dielectric loss of 0.2-0.4%, high dielectric constant of 1470-1850. constant), a d 33 of 310-396, and a mechanical quality factor of 610-730. By changing the Zr / Ti composition ratio, as shown in samples # 61 to # 64, the temperature coefficient of the resonance frequency and the dielectric constant can be adjusted. Further, by adding LiF, as shown in sample # 63 and sample # 65, it is possible to increase the dielectric constant without deteriorating the temperature coefficient of the resonant frequency (temporal coefficient). it can. Such a low sintering temperature makes it possible to use pure Ag paste as an internal electrode in multilayer piezoelectric ceramic parts such as piezoelectric ceramic transformers and piezoelectric actuators. A high dielectric constant and a low temperature coefficient of the resonant frequency can be usefully applied to an application that operates in a resonant mode, such as a piezoelectric ceramic transformer.
[0030]
[Table 1]
Figure 0004804709
[0031]
[Table 2]
Figure 0004804709
Figure 0004804709
[0032]
[Table 3]
Figure 0004804709
[0033]
[Table 4]
Figure 0004804709
[0034]
[Example 2]
Piezoelectric ceramic transformer having a pure Ag internal electrode A piezoelectric ceramic transformer having a pure Ag internal electrode was produced using the composition according to the present invention. Take composition sample # 63 as an example. The produced Rosen-type piezoceramic transformer is shown in FIG. As shown in FIG. 1, the input portion I has a multilayer structure, and each layer of the multilayer structure is alternately polarized up and down in the thickness direction. The output portion O is a single layer and is polarized P in the length direction of the transformer. Fabrication of the piezoelectric ceramic transformer begins with the preparation of a green sheet of PZT material. The calcined product is combined with a ball using polyvinyl butyral (PVB), dibutyl phthalate (DBP), fish oil, fish oil, methyl ethyl ketone (MEK) and toluene (toluene). Mix for 36 hours. The ground slurry is vacuum degassed, and then a 95 μm-thick tape is formed on the PET film using a doctor blade casting machine. A green tape is cut into a 150 mm × 150 mm sheet having alignment holes. The alternating internal piezoelectrics are printed on a green sheet of Ag paste and dried in a continuous oven. The printed green sheets are stacked using the alignment holes, and the internal piezoelectric elements are arranged in a uniform manner, and are heated and pressure bonded at 85 ° C. under vacuum. A hot-laminated green bar is cut into each green element. The binder, as well as other organics in the green element, were sintered at 940 ° C. for 2 hours after debinding at 260 ° C. The external input / output electrodes were screen-printed with Ag paste and baked at 780 ° C. The input portion was a polarization voltage of 450 VDC, the output portion was a polarization voltage of 25 kVDC, and the polarization treatment was performed in a silicon oil bath at 130 ° C.
[0035]
The piezoelectric ceramic transformer has a size of 26.0 mm × 5.0 mm × 1.3 mm, has 15 piezoelectric-active layers, and has 16 internal electrodes. The Ag paste has almost no reaction when co-sintered at 940 ° C. with a PZT matrix made of composition sample # 63 according to the present invention. The Ag internal electrode is 100% coated on the electrode surface, has no delamination, does not have a very high resonance impedance, and has excellent piezoelectric characteristics. Table 5 shows the characteristics of the piezoelectric ceramic transformer. FIG. 2 shows the operation characteristics. A conversion efficiency of 93% or more was measured.
[0036]
The low-temperature sinterable piezoelectric ceramic composition according to the present invention is not limited to the application of a piezoelectric ceramic transformer, but can be applied not only to a single-layer piezoelectric transformer but also to a multilayer actuator, a multilayer sensor, and a bimorph.
[0037]
[Table 5]
Figure 0004804709
[0038]
【The invention's effect】
As described above, the piezoelectric ceramic composition according to the present invention has a low dielectric loss and a high piezoelectric constant, and is pure at a reduced temperature, particularly at or below 962 ° C., which is the melting point of Ag. Simultaneous sintering with Ag can be performed.
[0039]
In addition, the piezoelectric ceramic device according to the present invention is suitable for applications in which continuous operation is performed, such as a piezoelectric ceramic transformer, a multilayer piezoelectric ceramic actuator, and the like, and has excellent conversion efficiency.
[Brief description of the drawings]
FIG. 1 is a perspective view of a piezoelectric ceramic in a piezoelectric ceramic transformer according to an embodiment of the piezoelectric ceramic device of the present invention.
FIG. 2 is a graph showing a frequency characteristic of an output voltage among operating characteristics of a piezoelectric ceramic transformer according to an embodiment of the piezoelectric ceramic device of the present invention.
FIG. 3 is a graph showing frequency characteristics for open-load 100 MOhm and 200 kOhm among operating characteristics of a piezoelectric ceramic transformer according to an embodiment of the piezoelectric ceramic device of the present invention;
FIG. 4 is a graph showing output current and output voltage characteristics among operating characteristics of a piezoelectric ceramic transformer according to an embodiment of the piezoelectric ceramic device of the present invention;
[Explanation of symbols]
I Input part (Input section)
O Output section (Output section)
P Polarization

Claims (12)

下記一般式(1)
[(Pb1−m−n-pSrBaCd)(Zr x Ti1−x1−k(BiMn]O・・・(I)
( 但し、一般式(I)中、モル比m,n,p,x,a,b及び0.00≦m<0.15、0.00≦n<0.15、0.00<m+n<0.21、0.00<p<0.04、0.50≦x<0.56、0.00<a≦1.00、0.00<b≦1.00、0.00<k<0.04である)で表されるセラミックを含み;0.001〜1重量%のLiF又はMgFをさらに含むことを特徴とする圧電セラミック組成物。
The following general formula (1)
[(Pb 1-m-n -p Sr m Ba n Cd p) (Zr x Ti 1-x) 1-k (Bi a Mn b) k] O 3 ··· (I)
(In the general formula (I), the molar ratios m, n, p, x, a, b and k are 0.00 ≦ m <0.15, 0.00 ≦ n <0.15, 0.00 < m + n <0.21, 0.00 <p <0.04, 0.50 ≦ x <0.56, 0.00 <a ≦ 1.00, 0.00 <b ≦ 1.00, 0.00 < k <0.04); a piezoelectric ceramic composition characterized by further comprising 0.001 to 1% by weight of LiF or MgF 2 .
前記a及びbにおいて、3a+4b=4であることを特徴とする請求項1記載の圧電セラミック組成物。  2. The piezoelectric ceramic composition according to claim 1, wherein a and b are 3a + 4b = 4. 0.001〜1重量%のBi2O3をさらに含むことを特徴とする請求項1記載の圧電セラミック組成物。  The piezoelectric ceramic composition according to claim 1, further comprising 0.001 to 1 wt% Bi2O3. 前記p及びkにおいて、p=kであることを特徴とする請求項1記載の圧電セラミック組成物。  2. The piezoelectric ceramic composition according to claim 1, wherein, in p and k, p = k. 0.001〜0.50重量%のMnO2をさらに含むことを特徴とする請求項1記載の圧電セラミック組成物。  The piezoelectric ceramic composition according to claim 1, further comprising 0.001 to 0.50% by weight of MnO2. 前記請求項1または請求項2の圧電セラミック組成物を1075℃以下で焼結して得た圧電セラミックを含んで構成されることを特徴とする圧電セラミック装置。  A piezoelectric ceramic device comprising a piezoelectric ceramic obtained by sintering the piezoelectric ceramic composition of claim 1 or 2 at 1075 ° C. or lower. 前記請求項1または請求項2の圧電セラミック組成物を銀(Ag)内部電極と共に960℃以下で同時焼結を行って得た圧電セラミック層を含んで構成されることを特徴とする多層圧電セラミック装置。  A multilayer piezoelectric ceramic comprising a piezoelectric ceramic layer obtained by co-sintering the piezoelectric ceramic composition of claim 1 or 2 with a silver (Ag) internal electrode at 960 ° C. or lower. apparatus. 前記請求項1または請求項2の圧電セラミック組成物を銀(Ag)−パラジウム(Pd)内部電極と共に同時焼結を行って得た圧電セラミック層を含んで構成されることを特徴とする多層圧電セラミック装置。  A multilayer piezoelectric material comprising a piezoelectric ceramic layer obtained by co-sintering the piezoelectric ceramic composition of claim 1 or 2 together with a silver (Ag) -palladium (Pd) internal electrode. Ceramic equipment. 前記Pdの量は、前記Ag及びPdの100重量%に対して0.001〜20重量%であることを特徴とする請求項8記載の多層圧電セラミック装置。  9. The multilayer piezoelectric ceramic device according to claim 8, wherein the amount of Pd is 0.001 to 20% by weight with respect to 100% by weight of Ag and Pd. 前記請求項1または請求項2の圧電セラミック組成物をAg内部電極と共に960℃以下で同時焼結を行って得た圧電セラミック層を含んで構成され、多層部分及び単層部分を含むことを特徴とする圧電セラミック装置。  A piezoelectric ceramic layer obtained by co-sintering the piezoelectric ceramic composition according to claim 1 or 2 together with an Ag internal electrode at 960 ° C. or less and including a multilayer portion and a single layer portion. A piezoelectric ceramic device. 前記請求項1または請求項2の圧電セラミック組成物をAg−Pd内部電極と共に1050℃以下で同時焼結を行って得た圧電セラミック層を含んで構成され、多層部分及び単層部分を含むことを特徴とする圧電セラミック装置。  A piezoelectric ceramic layer obtained by co-sintering the piezoelectric ceramic composition according to claim 1 or 2 together with an Ag—Pd internal electrode at 1050 ° C. or less and including a multilayer portion and a single layer portion. A piezoelectric ceramic device characterized by the above. 前記Pdの量は、前記Ag−Pdの100重量%に対して、0.001〜20重量%であることを特徴とする請求項11記載の圧電セラミック装置。The piezoelectric ceramic device according to claim 11 , wherein the amount of Pd is 0.001 to 20% by weight with respect to 100% by weight of the Ag—Pd.
JP2003193772A 2002-07-10 2003-07-08 PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same Expired - Lifetime JP4804709B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR2002-039881 2002-07-10
KR10-2002-0039881A KR100482724B1 (en) 2002-07-10 2002-07-10 Low Temperature Firable PZT Compositions and piezoelectric ceramic devices using the same

Publications (2)

Publication Number Publication Date
JP2004051476A JP2004051476A (en) 2004-02-19
JP4804709B2 true JP4804709B2 (en) 2011-11-02

Family

ID=30439296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003193772A Expired - Lifetime JP4804709B2 (en) 2002-07-10 2003-07-08 PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same

Country Status (3)

Country Link
JP (1) JP4804709B2 (en)
KR (1) KR100482724B1 (en)
DE (1) DE10331036B4 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100497644B1 (en) * 2002-11-12 2005-07-01 (주)동일기연 Soft piezoelectric ceramic composition and piezoelectric devices using the same
JP2006013437A (en) * 2004-05-27 2006-01-12 Kyocera Corp Laminated piezoelectric element, its manufacturing method, and injection device using it
JP4973931B2 (en) * 2007-03-27 2012-07-11 Tdk株式会社 Piezoelectric ceramic composition
CN113582667B (en) * 2021-07-13 2023-08-04 同济大学 Low-temperature cofiring high-energy-storage antiferroelectric ceramic material and preparation method and application thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD104661A1 (en) * 1973-05-17 1974-03-12
US4626369A (en) * 1985-06-26 1986-12-02 The United States Of America As Represented By The Secretary Of The Navy Lead zirconate titanate ceramics
JP3096918B2 (en) * 1991-05-01 2000-10-10 株式会社トーキン Piezoelectric ceramic composition
US5433917A (en) * 1993-09-16 1995-07-18 The Penn State Research Foundation PZT ceramic compositions having reduced sintering temperatures and process for producing same
KR960006245B1 (en) * 1993-10-04 1996-05-11 김정덕 Process for the preparation of piezo electric ceramics
DE4406812C1 (en) * 1994-03-02 1995-07-06 Fraunhofer Ges Forschung Low sintering temp. dielectric for green tape system
KR100317749B1 (en) * 1996-07-12 2001-12-24 기무라 미치오 Piezoelectric transformer device
KR19980040840A (en) * 1996-11-29 1998-08-17 조희재 Dielectric Ceramics Composition for Low Temperature Sintering
US5792379A (en) * 1997-03-27 1998-08-11 Motorola Inc. Low-loss PZT ceramic composition cofirable with silver at a reduced sintering temperature and process for producing same
US6322718B1 (en) * 1999-09-21 2001-11-27 Cts Corporation Piezoelectric ceramic compositions and methods for production thereof
KR100358048B1 (en) * 1999-12-27 2002-10-25 주식회사 하이닉스반도체 Method of fabrication a piezoelectric ceramics

Also Published As

Publication number Publication date
DE10331036A1 (en) 2004-02-12
KR100482724B1 (en) 2005-04-13
KR20040005360A (en) 2004-01-16
DE10331036B4 (en) 2007-11-22
JP2004051476A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
JP5576365B2 (en) Piezoelectric ceramics, manufacturing method thereof, and piezoelectric device
US6979410B2 (en) Piezoelectric ceramic, method of manufacturing the same and piezoelectric device
JP4039029B2 (en) Piezoelectric ceramics, piezoelectric element, and multilayer piezoelectric element
US8853920B2 (en) Piezoelectric ceramic composition consisting of a perovskite-type oxide and piezoelectric element
JP2006188414A (en) Piezoelectric ceramic composition and piezoelectric ceramic electronic component
JP5782457B2 (en) Piezoelectric ceramics, piezoelectric ceramic component, and piezoelectric device using the piezoelectric ceramic component
JP3341672B2 (en) Method for manufacturing piezoelectric ceramic element
JP5506731B2 (en) Method for manufacturing piezoelectric element
JP4748291B2 (en) Laminate displacement element
JP2008537927A (en) High power piezoelectric ceramic composition
JP4804709B2 (en) PZT composition capable of low-temperature sintering and piezoelectric ceramic device using the same
JP4321526B2 (en) Dielectric porcelain composition and electronic component using the same
US6878307B2 (en) Low temperature firable PZT compositions and piezoelectric ceramic devices using the same
JP4868881B2 (en) Piezoelectric ceramic composition, piezoelectric ceramic, piezoelectric actuator element and circuit module
JP2001253772A (en) Piezoelectric porcelain composition and method for manufacture the same
JP4998668B2 (en) Piezoelectric ceramic manufacturing method and piezoelectric element manufacturing method
JP3993395B2 (en) Piezoelectric ceramic, manufacturing method thereof, and piezoelectric element
JP2006193414A (en) Method for producing piezoelectric ceramic and method for producing piezoelectric element
JP4424177B2 (en) Piezoelectric ceramic and piezoelectric element
JP2014185061A (en) Piezoelectric element
KR100497644B1 (en) Soft piezoelectric ceramic composition and piezoelectric devices using the same
US6808649B1 (en) Soft piezoelectric ceramic composition and piezoelectric device using the same
JP5018602B2 (en) Piezoelectric ceramic composition, and piezoelectric ceramic and laminated piezoelectric element using the same
JP2003055046A (en) Piezoelectric ceramic composition, piezoelectric device using the same and producing method therefor
JP2003128459A (en) Piezoelectric ceramics, piezoelectric element and laminated piezoelectric element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100604

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20100702

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20100707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110802

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110810

R150 Certificate of patent or registration of utility model

Ref document number: 4804709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term