JPS6366008B2 - - Google Patents
Info
- Publication number
- JPS6366008B2 JPS6366008B2 JP58209560A JP20956083A JPS6366008B2 JP S6366008 B2 JPS6366008 B2 JP S6366008B2 JP 58209560 A JP58209560 A JP 58209560A JP 20956083 A JP20956083 A JP 20956083A JP S6366008 B2 JPS6366008 B2 JP S6366008B2
- Authority
- JP
- Japan
- Prior art keywords
- powder
- weight
- dielectric constant
- rate
- change
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000000843 powder Substances 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 17
- 229910052573 porcelain Inorganic materials 0.000 claims description 15
- 239000002245 particle Substances 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- ZKATWMILCYLAPD-UHFFFAOYSA-N niobium pentoxide Chemical compound O=[Nb](=O)O[Nb](=O)=O ZKATWMILCYLAPD-UHFFFAOYSA-N 0.000 claims description 4
- 239000006104 solid solution Substances 0.000 claims description 3
- 229910002113 barium titanate Inorganic materials 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 229910052681 coesite Inorganic materials 0.000 claims description 2
- 229910052906 cristobalite Inorganic materials 0.000 claims description 2
- 239000000377 silicon dioxide Substances 0.000 claims description 2
- 235000012239 silicon dioxide Nutrition 0.000 claims description 2
- 229910052682 stishovite Inorganic materials 0.000 claims description 2
- 229910052905 tridymite Inorganic materials 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 229910010293 ceramic material Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 3
- 238000005245 sintering Methods 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910002367 SrTiO Inorganic materials 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- -1 titanate compound Chemical class 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- 239000003985 ceramic capacitor Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
Landscapes
- Inorganic Insulating Materials (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
Description
産業上の利用分野
本発明は高誘電率磁器材料を製造するための組
成物に関する。特に本発明は高い誘電率を有する
と共に、その誘電率の温度変化率が著しく小さ
く、更に高周波における損失角が良好な小形で大
容量の高規格用磁器コンデンサー材料を製造する
ための組成物に関する。
従来例の構成とその問題点
従来より良く知られている高誘電率磁器材料と
してBaTiO3系磁器材料がある。かかる磁器材料
はBaTiO3に別のチタン酸化合物(例えば
SrTiO3,MgTiO3,PbTiO3および/または
CaTiO3)を含有したものであるが、かかる従来
の磁器材料は何れもその誘電率を3000,4000と高
くすると、温度変化に対する誘電率の変化率が50
%以上と大きくなる欠点を有し、その製造時の焼
結温度も1360〜1380℃と高い。また温度変化に対
する誘電率変化率を10%、20%にすると、その誘
電率は1000,2000と低く、更に高周波における損
失角が悪くなる等多くの欠点を有していた。
発明の目的
本発明は上述した如きBaTiO3系磁器材料の欠
点を改良すること、即ち高い誘電率と、温度変化
に対して小さい誘電率変化率を有し、かつ高周波
における損失角のの良好な磁器材料を製造するこ
とができ、しかも比較的低い温度で焼結できて量
産化に適した磁器材料を製造するための組成物を
提供することにある。
発明の構成
本発明は固溶体になつている粒子径0.2μm〜
0.7μmのBaTiO3粉末94〜99.5重量%とNiO粉末
0.05〜0.7重量%、Nb2O5粉末0.2〜1.5重量%、
CeO2粉末0.02〜0.3重量%、SiO2粉末0.02〜0.3重
量%およびPb2Bi2Ti4O13粉末0.05〜1.5重量%か
らなる高誘電率磁器材料を作るための組成物にあ
る。
本発明組成物において使用するBaTiO3粉末の
粒子径は0.2μm〜0.7μmであるのが好ましく、こ
の範囲を逸脱すると、温度変化に対する誘電率変
化率が大きくなり、また焼結温度が高くなるので
好ましくない。
また本発明組成物において使用するBaTiO3粉
末の割合が99.5重量%より多くなると焼結した磁
器材料の高周波における損失角が悪くなり、誘電
率変化率が大きくなる。また94重量%未満では組
成物の焼結性が不安定になり好ましくない。本発
明で使用するNiO粉末の割合が0.7重量%を越え
ると焼結した磁器材料の温度変化に対する誘電率
変化率が大となり、0.05重量%未満では焼結磁器
材料の誘電率が低下し、かつ誘電率変化率も大と
なり好ましくない。またNb2O5粉末の割合が1.5
重量%を越えると損失角が悪くなり、0.2重量%
未満では誘電率変化率が大となる。またCeO2粉
末の割合が0.3重量%を越えると損失角が悪くな
り、0.02重量%未満では誘電率変化率が大となつ
て好ましくない。SiO2粉末の割合が0.3重量%を
越えると誘電率変化率が大となり、0.02重量%未
満では誘電率が低下し、かつ誘電率変化率が大と
なつて好ましくない。最後にPb2Bi2Ti4O13粉末
の割合が1.5重量%を越えると誘電率が低下し、
0.05重量%未満では誘電率変化率が大となる欠点
を有し好ましくない。
本発明の組成物を作るに当つては、先ず等モル
比のBaCO3とTiO2を混合し、その後混合物を
1050℃〜1200℃で約2時間保持して〓焼した粉砕
し、粒径0.2μm〜0.7μmのBaTiO3粉末を作る。次
にNiO,Nb2O5,CeO2,SiO2,Pb2Bi2Ti4O13粉
末を準備し、上記組成比になるようにそれぞれ秤
量する。これら各粉末を混合するのであるが混合
に当つては不純物の混入を防止するため、ウレタ
ン樹脂内張りのホツトミルおよびウレタンライニ
ングボールを用いて湿式混合するとよい。
本発明による組成物を用いて磁器材料を製造す
るに当つては、上記の如く作つた混合物にポリビ
ニルアルコール等のバインダーを加え、適当な圧
力、通常1000Kg/cm2の圧力で所望の形状に圧縮成
形する。次いで成形体を焼結するのであるが、本
発明組成物を使用した場合、一般に1220℃〜1250
℃の温度で数時間好ましくは2時間保持して焼成
すればよい。
なおBaTiO3およびPb2Bi2Ti4O13のそれぞれの
固溶体を予め作るに当つては、それぞれの原料化
合物を必ずしも等モルでなく、一方の化合物が
0.5モルまでであるなら増減してもよい。
実施例の説明
以下に実施例を挙げて本発明を説明する。
実施例
粒径0.2μm〜0.7μmのBaTiO3,NiO,Nb2O5,
CeO2,SiO2およびPb2Bi2Ti4O13の各粉末を第1
表に示す割合でそれぞれ混合して試料1〜15を作
つた。
各試料に適宜ポリビニルアルコールバインダー
を加えて1000Kg/cm2の圧力で直径12mm厚さ0.4mm
の円板に圧縮成形した。次いで各円板を1220℃〜
1250℃で2時間焼成した。かくして得られた焼結
円板に銀電極を付与して、750〜800℃で焼付けし
て、各焼結円板の電気特性を測定した。その結果
を第2表に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a composition for producing a high dielectric constant porcelain material. In particular, the present invention relates to a composition for producing a small, large-capacity, high-standard ceramic capacitor material that has a high dielectric constant, a significantly small temperature change rate of the dielectric constant, and a good loss angle at high frequencies. Structure of conventional example and its problems BaTiO 3 ceramic material is a well-known high dielectric constant ceramic material. Such porcelain materials are made of BaTiO 3 with another titanate compound (e.g.
SrTiO 3 , MgTiO 3 , PbTiO 3 and/or
However , when the dielectric constant of such conventional porcelain materials is as high as 3000 or 4000, the rate of change in dielectric constant with respect to temperature changes is 50%.
% or more, and the sintering temperature at the time of production is as high as 1360-1380°C. Furthermore, when the rate of change in dielectric constant with respect to temperature change is set to 10% or 20%, the dielectric constant is as low as 1000 or 2000, and it also has many drawbacks such as poor loss angle at high frequencies. Purpose of the Invention The present invention aims to improve the drawbacks of BaTiO 3 ceramic materials as described above, namely, to have a high dielectric constant, a small rate of change in dielectric constant with respect to temperature changes, and a good loss angle at high frequencies. It is an object of the present invention to provide a composition for producing a porcelain material which can be sintered at a relatively low temperature and is suitable for mass production. Structure of the Invention The present invention provides solid solution particles with a diameter of 0.2 μm or more.
0.7μm BaTiO3 powder 94-99.5wt% and NiO powder
0.05-0.7 wt%, Nb2O5 powder 0.2-1.5 wt%,
The composition consists of 0.02-0.3% by weight of CeO2 powder, 0.02-0.3% by weight of SiO2 powder and 0.05-1.5 % by weight of Pb2Bi2Ti4O13 powder for making a high dielectric constant porcelain material. The particle size of the BaTiO 3 powder used in the composition of the present invention is preferably 0.2 μm to 0.7 μm; if it deviates from this range, the rate of change in dielectric constant with respect to temperature changes will increase, and the sintering temperature will increase. Undesirable. Furthermore, when the proportion of BaTiO 3 powder used in the composition of the present invention exceeds 99.5% by weight, the loss angle of the sintered porcelain material at high frequencies becomes poor and the rate of change in dielectric constant becomes large. Further, if it is less than 94% by weight, the sinterability of the composition becomes unstable, which is not preferable. If the proportion of NiO powder used in the present invention exceeds 0.7% by weight, the rate of change in dielectric constant of the sintered porcelain material with respect to temperature changes will increase, and if it is less than 0.05% by weight, the dielectric constant of the sintered porcelain material will decrease, and The rate of change in dielectric constant also becomes large, which is not preferable. Also, the proportion of Nb 2 O 5 powder is 1.5
If it exceeds 0.2% by weight, the loss angle becomes worse.
Below this, the rate of change in dielectric constant becomes large. Moreover, if the proportion of CeO 2 powder exceeds 0.3% by weight, the loss angle becomes poor, and if it is less than 0.02% by weight, the rate of change in dielectric constant increases, which is not preferable. If the proportion of SiO 2 powder exceeds 0.3% by weight, the rate of change in dielectric constant becomes large, and if the proportion of SiO 2 powder exceeds 0.02% by weight, the dielectric constant decreases and the rate of change in dielectric constant becomes large, which is not preferable. Finally, when the proportion of Pb 2 Bi 2 Ti 4 O 13 powder exceeds 1.5% by weight, the dielectric constant decreases,
If it is less than 0.05% by weight, the rate of change in dielectric constant becomes large, which is not preferable. In making the composition of the present invention, BaCO 3 and TiO 2 are first mixed in equimolar ratios, and then the mixture is
The mixture is held at 1050°C to 1200°C for about 2 hours and then sintered and ground to produce BaTiO 3 powder with a particle size of 0.2μm to 0.7μm. Next, NiO, Nb 2 O 5 , CeO 2 , SiO 2 , Pb 2 Bi 2 Ti 4 O 13 powders are prepared and weighed so that the above composition ratio is achieved. These powders are mixed in a wet manner using a urethane resin-lined hot mill and a urethane-lined ball to prevent impurities from being mixed. When producing a porcelain material using the composition according to the present invention, a binder such as polyvinyl alcohol is added to the mixture prepared as described above, and the mixture is compressed into a desired shape under an appropriate pressure, usually 1000 kg/cm 2 . Shape. The molded body is then sintered, and when the composition of the present invention is used, the temperature is generally 1220°C to 1250°C.
C. for several hours, preferably 2 hours. Note that when preparing solid solutions of BaTiO 3 and Pb 2 Bi 2 Ti 4 O 13 in advance, the raw material compounds are not necessarily equimolar;
It may be increased or decreased up to 0.5 mole. Description of Examples The present invention will be described below with reference to Examples. Examples BaTiO 3 , NiO, Nb 2 O 5 , with a particle size of 0.2 μm to 0.7 μm,
Each powder of CeO 2 , SiO 2 and Pb 2 Bi 2 Ti 4 O 13 was
Samples 1 to 15 were prepared by mixing them in the proportions shown in the table. Add appropriate polyvinyl alcohol binder to each sample and apply a pressure of 1000Kg/cm 2 to a diameter of 12mm and a thickness of 0.4mm.
It was compression molded into a disk. Then each disc was heated to 1220℃~
It was baked at 1250°C for 2 hours. Silver electrodes were applied to the sintered disks thus obtained and baked at 750 to 800°C, and the electrical properties of each sintered disk were measured. The results are shown in Table 2.
【表】【table】
【表】【table】
【表】【table】
【表】
参考例
従来より良く知られていたBaTiO3系磁器材
料、即ちMgTiO3,SrTiO3,PbTiO3または
CaTiO3を用いた磁器材料を実施例に示した方法
で作成し、その電気特性を測定した。
各磁器材料の成分を第3表に、測定結果を第4
表に示す。[Table] Reference examples BaTiO 3 based porcelain materials that are well known in the past, namely MgTiO 3 , SrTiO 3 , PbTiO 3 or
A ceramic material using CaTiO 3 was created by the method shown in the example, and its electrical properties were measured. The components of each porcelain material are shown in Table 3, and the measurement results are shown in Table 4.
Shown in the table.
【表】【table】
【表】【table】
【表】
発明の効果
第1表および第2表において、試料番号3〜10
は本発明の範囲内の試料であり、他は比較例の試
料である。
第2表のデータから明らかな如く、本発明の組
成物から作つた焼結磁器材料は何れも緻密な磁器
であり、電気特性においても従来の材料および比
較例に比して、誘電率が高く、高周波の損失角が
良好で、更に温度変化率も小さく安定である。
また本発明組成物は焼結温度が1220〜1250℃と
比較的低い温度で焼結でき、産業上の価値が大で
ある。
また参考例の第4表のデータから明らかな如
く、従来の磁器材料は温度変化率が大であつた。
これに対し、本発明による磁器材料は温度変化率
も小さく安定しており、すぐれていることが明ら
かである。[Table] Effect of the invention In Tables 1 and 2, sample numbers 3 to 10
are samples within the scope of the present invention, and the others are comparative samples. As is clear from the data in Table 2, all of the sintered porcelain materials made from the composition of the present invention are dense porcelains, and their electrical properties also have higher dielectric constants than conventional materials and comparative examples. , the high frequency loss angle is good, and the temperature change rate is also small and stable. Further, the composition of the present invention can be sintered at a relatively low sintering temperature of 1220 to 1250°C, and has great industrial value. Furthermore, as is clear from the data in Table 4 of Reference Examples, the rate of temperature change in conventional porcelain materials was large.
In contrast, the porcelain material according to the present invention has a small temperature change rate and is stable, and is clearly superior.
Claims (1)
BaTiO3粉末94〜99.5重量%と、NiO粉末0.05〜
0.7重量%、Nb2O5粉末0.2〜1.5重量%、CeO2粉
末0.02〜0.3重量%、SiO2粉末0.02〜0.3重量%お
よびPb2Bi2Ti4O13粉末0.05〜1.5重量%からなる
高誘電率磁器材料用組成物。1 Particles with a diameter of 0.2 μm to 0.7 μm that have become a solid solution
BaTiO3 powder 94~99.5% by weight and NiO powder 0.05~
0.7% by weight, Nb2O5 powder 0.2-1.5 % by weight , CeO2 powder 0.02-0.3% by weight, SiO2 powder 0.02-0.3% by weight and Pb2Bi2Ti4O13 powder 0.05-1.5% by weight. Composition for dielectric constant porcelain materials.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58209560A JPS60101803A (en) | 1983-11-08 | 1983-11-08 | Composition for high dielectric constant porcelain material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58209560A JPS60101803A (en) | 1983-11-08 | 1983-11-08 | Composition for high dielectric constant porcelain material |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60101803A JPS60101803A (en) | 1985-06-05 |
JPS6366008B2 true JPS6366008B2 (en) | 1988-12-19 |
Family
ID=16574845
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58209560A Granted JPS60101803A (en) | 1983-11-08 | 1983-11-08 | Composition for high dielectric constant porcelain material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60101803A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4201242B2 (en) | 2002-03-26 | 2008-12-24 | Tdk株式会社 | High dielectric constant dielectric ceramic composition |
EP2276923B1 (en) | 2008-05-23 | 2011-11-30 | Siemens Aktiengesellschaft | Tip end bracket |
JP5418323B2 (en) * | 2010-03-15 | 2014-02-19 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
JP5668569B2 (en) * | 2011-03-28 | 2015-02-12 | Tdk株式会社 | Dielectric porcelain composition and electronic component |
-
1983
- 1983-11-08 JP JP58209560A patent/JPS60101803A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS60101803A (en) | 1985-06-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3028503B2 (en) | Non-reducing dielectric porcelain composition | |
KR910002185B1 (en) | Low temp fired dielectric ceramic composition with flat tc charasteristic and method of making | |
US4785375A (en) | Temperature stable dielectric composition at high and low frequencies | |
JPS6366008B2 (en) | ||
JPS597665B2 (en) | High dielectric constant porcelain composition | |
DE3730821A1 (en) | CERAMIC COMPOSITION WITH A HIGH DIELECTRICITY CONSTANT | |
JP2866986B2 (en) | Piezoelectric ceramic composition | |
JPH0437076A (en) | Piezoelectric porcelain compound | |
JP2861659B2 (en) | Method for producing dielectric porcelain composition | |
JPH04114919A (en) | Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same | |
JPS6199210A (en) | Ceramic dielectric composition | |
JPH027481B2 (en) | ||
JP2619675B2 (en) | Dielectric porcelain composition | |
JPH0283257A (en) | Porcelain composition of high permittivity for temperature compensation and production thereof | |
JPS61237304A (en) | Dielectric ceramic composition | |
KR900002529B1 (en) | Eielectric ceramic composition | |
JPH03285870A (en) | Grain boundary insulation type semiconductor porcelain composition and production thereof | |
JPS5858761B2 (en) | dielectric composition | |
JPS6122507A (en) | Dielectric porcelain composition | |
JPS6341866B2 (en) | ||
JPH05213666A (en) | Dielectric porcelain composition and its production | |
JPS6230483B2 (en) | ||
JPS6199207A (en) | High-permeability porcelain composition | |
JPS6223405B2 (en) | ||
JPH05330909A (en) | Porcelain composition of high dielectric constant |