JPS6366008B2 - - Google Patents

Info

Publication number
JPS6366008B2
JPS6366008B2 JP58209560A JP20956083A JPS6366008B2 JP S6366008 B2 JPS6366008 B2 JP S6366008B2 JP 58209560 A JP58209560 A JP 58209560A JP 20956083 A JP20956083 A JP 20956083A JP S6366008 B2 JPS6366008 B2 JP S6366008B2
Authority
JP
Japan
Prior art keywords
powder
weight
dielectric constant
rate
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58209560A
Other languages
Japanese (ja)
Other versions
JPS60101803A (en
Inventor
Yoshihiro Aratake
Tsuneji Kuroki
Hiromitsu Tagi
Norya Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP58209560A priority Critical patent/JPS60101803A/en
Publication of JPS60101803A publication Critical patent/JPS60101803A/en
Publication of JPS6366008B2 publication Critical patent/JPS6366008B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Capacitors (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は高誘電率磁器材料を製造するための組
成物に関する。特に本発明は高い誘電率を有する
と共に、その誘電率の温度変化率が著しく小さ
く、更に高周波における損失角が良好な小形で大
容量の高規格用磁器コンデンサー材料を製造する
ための組成物に関する。 従来例の構成とその問題点 従来より良く知られている高誘電率磁器材料と
してBaTiO3系磁器材料がある。かかる磁器材料
はBaTiO3に別のチタン酸化合物(例えば
SrTiO3,MgTiO3,PbTiO3および/または
CaTiO3)を含有したものであるが、かかる従来
の磁器材料は何れもその誘電率を3000,4000と高
くすると、温度変化に対する誘電率の変化率が50
%以上と大きくなる欠点を有し、その製造時の焼
結温度も1360〜1380℃と高い。また温度変化に対
する誘電率変化率を10%、20%にすると、その誘
電率は1000,2000と低く、更に高周波における損
失角が悪くなる等多くの欠点を有していた。 発明の目的 本発明は上述した如きBaTiO3系磁器材料の欠
点を改良すること、即ち高い誘電率と、温度変化
に対して小さい誘電率変化率を有し、かつ高周波
における損失角のの良好な磁器材料を製造するこ
とができ、しかも比較的低い温度で焼結できて量
産化に適した磁器材料を製造するための組成物を
提供することにある。 発明の構成 本発明は固溶体になつている粒子径0.2μm〜
0.7μmのBaTiO3粉末94〜99.5重量%とNiO粉末
0.05〜0.7重量%、Nb2O5粉末0.2〜1.5重量%、
CeO2粉末0.02〜0.3重量%、SiO2粉末0.02〜0.3重
量%およびPb2Bi2Ti4O13粉末0.05〜1.5重量%か
らなる高誘電率磁器材料を作るための組成物にあ
る。 本発明組成物において使用するBaTiO3粉末の
粒子径は0.2μm〜0.7μmであるのが好ましく、こ
の範囲を逸脱すると、温度変化に対する誘電率変
化率が大きくなり、また焼結温度が高くなるので
好ましくない。 また本発明組成物において使用するBaTiO3
末の割合が99.5重量%より多くなると焼結した磁
器材料の高周波における損失角が悪くなり、誘電
率変化率が大きくなる。また94重量%未満では組
成物の焼結性が不安定になり好ましくない。本発
明で使用するNiO粉末の割合が0.7重量%を越え
ると焼結した磁器材料の温度変化に対する誘電率
変化率が大となり、0.05重量%未満では焼結磁器
材料の誘電率が低下し、かつ誘電率変化率も大と
なり好ましくない。またNb2O5粉末の割合が1.5
重量%を越えると損失角が悪くなり、0.2重量%
未満では誘電率変化率が大となる。またCeO2
末の割合が0.3重量%を越えると損失角が悪くな
り、0.02重量%未満では誘電率変化率が大となつ
て好ましくない。SiO2粉末の割合が0.3重量%を
越えると誘電率変化率が大となり、0.02重量%未
満では誘電率が低下し、かつ誘電率変化率が大と
なつて好ましくない。最後にPb2Bi2Ti4O13粉末
の割合が1.5重量%を越えると誘電率が低下し、
0.05重量%未満では誘電率変化率が大となる欠点
を有し好ましくない。 本発明の組成物を作るに当つては、先ず等モル
比のBaCO3とTiO2を混合し、その後混合物を
1050℃〜1200℃で約2時間保持して〓焼した粉砕
し、粒径0.2μm〜0.7μmのBaTiO3粉末を作る。次
にNiO,Nb2O5,CeO2,SiO2,Pb2Bi2Ti4O13
末を準備し、上記組成比になるようにそれぞれ秤
量する。これら各粉末を混合するのであるが混合
に当つては不純物の混入を防止するため、ウレタ
ン樹脂内張りのホツトミルおよびウレタンライニ
ングボールを用いて湿式混合するとよい。 本発明による組成物を用いて磁器材料を製造す
るに当つては、上記の如く作つた混合物にポリビ
ニルアルコール等のバインダーを加え、適当な圧
力、通常1000Kg/cm2の圧力で所望の形状に圧縮成
形する。次いで成形体を焼結するのであるが、本
発明組成物を使用した場合、一般に1220℃〜1250
℃の温度で数時間好ましくは2時間保持して焼成
すればよい。 なおBaTiO3およびPb2Bi2Ti4O13のそれぞれの
固溶体を予め作るに当つては、それぞれの原料化
合物を必ずしも等モルでなく、一方の化合物が
0.5モルまでであるなら増減してもよい。 実施例の説明 以下に実施例を挙げて本発明を説明する。 実施例 粒径0.2μm〜0.7μmのBaTiO3,NiO,Nb2O5
CeO2,SiO2およびPb2Bi2Ti4O13の各粉末を第1
表に示す割合でそれぞれ混合して試料1〜15を作
つた。 各試料に適宜ポリビニルアルコールバインダー
を加えて1000Kg/cm2の圧力で直径12mm厚さ0.4mm
の円板に圧縮成形した。次いで各円板を1220℃〜
1250℃で2時間焼成した。かくして得られた焼結
円板に銀電極を付与して、750〜800℃で焼付けし
て、各焼結円板の電気特性を測定した。その結果
を第2表に示す。
INDUSTRIAL APPLICATION FIELD OF THE INVENTION The present invention relates to a composition for producing a high dielectric constant porcelain material. In particular, the present invention relates to a composition for producing a small, large-capacity, high-standard ceramic capacitor material that has a high dielectric constant, a significantly small temperature change rate of the dielectric constant, and a good loss angle at high frequencies. Structure of conventional example and its problems BaTiO 3 ceramic material is a well-known high dielectric constant ceramic material. Such porcelain materials are made of BaTiO 3 with another titanate compound (e.g.
SrTiO 3 , MgTiO 3 , PbTiO 3 and/or
However , when the dielectric constant of such conventional porcelain materials is as high as 3000 or 4000, the rate of change in dielectric constant with respect to temperature changes is 50%.
% or more, and the sintering temperature at the time of production is as high as 1360-1380°C. Furthermore, when the rate of change in dielectric constant with respect to temperature change is set to 10% or 20%, the dielectric constant is as low as 1000 or 2000, and it also has many drawbacks such as poor loss angle at high frequencies. Purpose of the Invention The present invention aims to improve the drawbacks of BaTiO 3 ceramic materials as described above, namely, to have a high dielectric constant, a small rate of change in dielectric constant with respect to temperature changes, and a good loss angle at high frequencies. It is an object of the present invention to provide a composition for producing a porcelain material which can be sintered at a relatively low temperature and is suitable for mass production. Structure of the Invention The present invention provides solid solution particles with a diameter of 0.2 μm or more.
0.7μm BaTiO3 powder 94-99.5wt% and NiO powder
0.05-0.7 wt%, Nb2O5 powder 0.2-1.5 wt%,
The composition consists of 0.02-0.3% by weight of CeO2 powder, 0.02-0.3% by weight of SiO2 powder and 0.05-1.5 % by weight of Pb2Bi2Ti4O13 powder for making a high dielectric constant porcelain material. The particle size of the BaTiO 3 powder used in the composition of the present invention is preferably 0.2 μm to 0.7 μm; if it deviates from this range, the rate of change in dielectric constant with respect to temperature changes will increase, and the sintering temperature will increase. Undesirable. Furthermore, when the proportion of BaTiO 3 powder used in the composition of the present invention exceeds 99.5% by weight, the loss angle of the sintered porcelain material at high frequencies becomes poor and the rate of change in dielectric constant becomes large. Further, if it is less than 94% by weight, the sinterability of the composition becomes unstable, which is not preferable. If the proportion of NiO powder used in the present invention exceeds 0.7% by weight, the rate of change in dielectric constant of the sintered porcelain material with respect to temperature changes will increase, and if it is less than 0.05% by weight, the dielectric constant of the sintered porcelain material will decrease, and The rate of change in dielectric constant also becomes large, which is not preferable. Also, the proportion of Nb 2 O 5 powder is 1.5
If it exceeds 0.2% by weight, the loss angle becomes worse.
Below this, the rate of change in dielectric constant becomes large. Moreover, if the proportion of CeO 2 powder exceeds 0.3% by weight, the loss angle becomes poor, and if it is less than 0.02% by weight, the rate of change in dielectric constant increases, which is not preferable. If the proportion of SiO 2 powder exceeds 0.3% by weight, the rate of change in dielectric constant becomes large, and if the proportion of SiO 2 powder exceeds 0.02% by weight, the dielectric constant decreases and the rate of change in dielectric constant becomes large, which is not preferable. Finally, when the proportion of Pb 2 Bi 2 Ti 4 O 13 powder exceeds 1.5% by weight, the dielectric constant decreases,
If it is less than 0.05% by weight, the rate of change in dielectric constant becomes large, which is not preferable. In making the composition of the present invention, BaCO 3 and TiO 2 are first mixed in equimolar ratios, and then the mixture is
The mixture is held at 1050°C to 1200°C for about 2 hours and then sintered and ground to produce BaTiO 3 powder with a particle size of 0.2μm to 0.7μm. Next, NiO, Nb 2 O 5 , CeO 2 , SiO 2 , Pb 2 Bi 2 Ti 4 O 13 powders are prepared and weighed so that the above composition ratio is achieved. These powders are mixed in a wet manner using a urethane resin-lined hot mill and a urethane-lined ball to prevent impurities from being mixed. When producing a porcelain material using the composition according to the present invention, a binder such as polyvinyl alcohol is added to the mixture prepared as described above, and the mixture is compressed into a desired shape under an appropriate pressure, usually 1000 kg/cm 2 . Shape. The molded body is then sintered, and when the composition of the present invention is used, the temperature is generally 1220°C to 1250°C.
C. for several hours, preferably 2 hours. Note that when preparing solid solutions of BaTiO 3 and Pb 2 Bi 2 Ti 4 O 13 in advance, the raw material compounds are not necessarily equimolar;
It may be increased or decreased up to 0.5 mole. Description of Examples The present invention will be described below with reference to Examples. Examples BaTiO 3 , NiO, Nb 2 O 5 , with a particle size of 0.2 μm to 0.7 μm,
Each powder of CeO 2 , SiO 2 and Pb 2 Bi 2 Ti 4 O 13 was
Samples 1 to 15 were prepared by mixing them in the proportions shown in the table. Add appropriate polyvinyl alcohol binder to each sample and apply a pressure of 1000Kg/cm 2 to a diameter of 12mm and a thickness of 0.4mm.
It was compression molded into a disk. Then each disc was heated to 1220℃~
It was baked at 1250°C for 2 hours. Silver electrodes were applied to the sintered disks thus obtained and baked at 750 to 800°C, and the electrical properties of each sintered disk were measured. The results are shown in Table 2.

【表】【table】

【表】【table】

【表】【table】

【表】 参考例 従来より良く知られていたBaTiO3系磁器材
料、即ちMgTiO3,SrTiO3,PbTiO3または
CaTiO3を用いた磁器材料を実施例に示した方法
で作成し、その電気特性を測定した。 各磁器材料の成分を第3表に、測定結果を第4
表に示す。
[Table] Reference examples BaTiO 3 based porcelain materials that are well known in the past, namely MgTiO 3 , SrTiO 3 , PbTiO 3 or
A ceramic material using CaTiO 3 was created by the method shown in the example, and its electrical properties were measured. The components of each porcelain material are shown in Table 3, and the measurement results are shown in Table 4.
Shown in the table.

【表】【table】

【表】【table】

【表】 発明の効果 第1表および第2表において、試料番号3〜10
は本発明の範囲内の試料であり、他は比較例の試
料である。 第2表のデータから明らかな如く、本発明の組
成物から作つた焼結磁器材料は何れも緻密な磁器
であり、電気特性においても従来の材料および比
較例に比して、誘電率が高く、高周波の損失角が
良好で、更に温度変化率も小さく安定である。 また本発明組成物は焼結温度が1220〜1250℃と
比較的低い温度で焼結でき、産業上の価値が大で
ある。 また参考例の第4表のデータから明らかな如
く、従来の磁器材料は温度変化率が大であつた。
これに対し、本発明による磁器材料は温度変化率
も小さく安定しており、すぐれていることが明ら
かである。
[Table] Effect of the invention In Tables 1 and 2, sample numbers 3 to 10
are samples within the scope of the present invention, and the others are comparative samples. As is clear from the data in Table 2, all of the sintered porcelain materials made from the composition of the present invention are dense porcelains, and their electrical properties also have higher dielectric constants than conventional materials and comparative examples. , the high frequency loss angle is good, and the temperature change rate is also small and stable. Further, the composition of the present invention can be sintered at a relatively low sintering temperature of 1220 to 1250°C, and has great industrial value. Furthermore, as is clear from the data in Table 4 of Reference Examples, the rate of temperature change in conventional porcelain materials was large.
In contrast, the porcelain material according to the present invention has a small temperature change rate and is stable, and is clearly superior.

Claims (1)

【特許請求の範囲】[Claims] 1 固溶体になつている粒子径0.2μm〜0.7μmの
BaTiO3粉末94〜99.5重量%と、NiO粉末0.05〜
0.7重量%、Nb2O5粉末0.2〜1.5重量%、CeO2
末0.02〜0.3重量%、SiO2粉末0.02〜0.3重量%お
よびPb2Bi2Ti4O13粉末0.05〜1.5重量%からなる
高誘電率磁器材料用組成物。
1 Particles with a diameter of 0.2 μm to 0.7 μm that have become a solid solution
BaTiO3 powder 94~99.5% by weight and NiO powder 0.05~
0.7% by weight, Nb2O5 powder 0.2-1.5 % by weight , CeO2 powder 0.02-0.3% by weight, SiO2 powder 0.02-0.3% by weight and Pb2Bi2Ti4O13 powder 0.05-1.5% by weight. Composition for dielectric constant porcelain materials.
JP58209560A 1983-11-08 1983-11-08 Composition for high dielectric constant porcelain material Granted JPS60101803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58209560A JPS60101803A (en) 1983-11-08 1983-11-08 Composition for high dielectric constant porcelain material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58209560A JPS60101803A (en) 1983-11-08 1983-11-08 Composition for high dielectric constant porcelain material

Publications (2)

Publication Number Publication Date
JPS60101803A JPS60101803A (en) 1985-06-05
JPS6366008B2 true JPS6366008B2 (en) 1988-12-19

Family

ID=16574845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58209560A Granted JPS60101803A (en) 1983-11-08 1983-11-08 Composition for high dielectric constant porcelain material

Country Status (1)

Country Link
JP (1) JPS60101803A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4201242B2 (en) 2002-03-26 2008-12-24 Tdk株式会社 High dielectric constant dielectric ceramic composition
EP2276923B1 (en) 2008-05-23 2011-11-30 Siemens Aktiengesellschaft Tip end bracket
JP5418323B2 (en) * 2010-03-15 2014-02-19 Tdk株式会社 Dielectric porcelain composition and electronic component
JP5668569B2 (en) * 2011-03-28 2015-02-12 Tdk株式会社 Dielectric porcelain composition and electronic component

Also Published As

Publication number Publication date
JPS60101803A (en) 1985-06-05

Similar Documents

Publication Publication Date Title
JP3028503B2 (en) Non-reducing dielectric porcelain composition
KR910002185B1 (en) Low temp fired dielectric ceramic composition with flat tc charasteristic and method of making
US4785375A (en) Temperature stable dielectric composition at high and low frequencies
JPS6366008B2 (en)
JPS597665B2 (en) High dielectric constant porcelain composition
DE3730821A1 (en) CERAMIC COMPOSITION WITH A HIGH DIELECTRICITY CONSTANT
JP2866986B2 (en) Piezoelectric ceramic composition
JPH0437076A (en) Piezoelectric porcelain compound
JP2861659B2 (en) Method for producing dielectric porcelain composition
JPH04114919A (en) Production of multiple perovskite-type dielectric porcelain powder and porcelain capacitor using same
JPS6199210A (en) Ceramic dielectric composition
JPH027481B2 (en)
JP2619675B2 (en) Dielectric porcelain composition
JPH0283257A (en) Porcelain composition of high permittivity for temperature compensation and production thereof
JPS61237304A (en) Dielectric ceramic composition
KR900002529B1 (en) Eielectric ceramic composition
JPH03285870A (en) Grain boundary insulation type semiconductor porcelain composition and production thereof
JPS5858761B2 (en) dielectric composition
JPS6122507A (en) Dielectric porcelain composition
JPS6341866B2 (en)
JPH05213666A (en) Dielectric porcelain composition and its production
JPS6230483B2 (en)
JPS6199207A (en) High-permeability porcelain composition
JPS6223405B2 (en)
JPH05330909A (en) Porcelain composition of high dielectric constant