JPH04133386A - Board for printed circuit - Google Patents

Board for printed circuit

Info

Publication number
JPH04133386A
JPH04133386A JP40628890A JP40628890A JPH04133386A JP H04133386 A JPH04133386 A JP H04133386A JP 40628890 A JP40628890 A JP 40628890A JP 40628890 A JP40628890 A JP 40628890A JP H04133386 A JPH04133386 A JP H04133386A
Authority
JP
Japan
Prior art keywords
particles
printed circuit
circuit board
dielectric
porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP40628890A
Other languages
Japanese (ja)
Other versions
JP2740357B2 (en
Inventor
Seishiro Yamakawa
山河 清志郎
Michimasa Tsuzaki
津崎 通正
Akiyoshi Nozue
明義 野末
Kiyotaka Komori
清孝 古森
Tomoyuki Fujiki
智之 藤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Publication of JPH04133386A publication Critical patent/JPH04133386A/en
Application granted granted Critical
Publication of JP2740357B2 publication Critical patent/JP2740357B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To effectively increase permittivity by employing a composite dielectric in which porous inorganic dielectric particles are dispersed in resin as a dielectric material. CONSTITUTION:As porous inorganic dielectric particles, 5-100mum of mean particle size, 0.3-7.0m<2>/gr of mean specific surface area are preferable. The particles may be secondary particles formed by aggregating primary particles, and it is desirable to be formed of compound of high permittivity composition having a Perovskite type crystalline structure.

Description

【発明の詳細な説明】[Detailed description of the invention]

[0001] [0001]

【産業上の利用分野】[Industrial application field]

この発明は、プリント回路用基板に関する。 [0002] The present invention relates to a printed circuit board. [0002]

【従来の技術】[Conventional technology]

高度情報化時代を迎え、情報伝送はより高速化・高周波
化の傾向にある。自動車電話やパーソナル無線等の移動
無線、衛星放送、衛星通信やCATV等のニューメディ
アでは、機器のコンパクト化が推し進められており、こ
れに伴い誘電体共振器等のマイクロ波用回路素子に対し
ても小型化が強く望まれている。 [0003] マイクロ波用回路素子の大きさは、使用電磁波の波長が
基準となる。比誘電率εrの誘電体中を伝播する電磁波
の波長λは、真空中の伝播波長をλaとするとλ=λa
/ (εr)0°5となる。したがって、素子は、使用
されるプリント回路板用基板の誘電率が大きい程、小型
になる。また、基板の誘電率が大きいと、電磁エネルギ
ーが基板内に集中するため、電磁波の漏れが少なく好都
合でもあある[0004] このような誘電率向上の立場から、樹脂中に無機誘電体
粒子を分散させた複合誘電体が注目され、数多く出願さ
れている(例えば特公昭49−25159、特公昭54
−18754など)。この複合誘電体を誘電体材料とし
て用いたプリント回路板用基板は、価格や後加工(切断
、孔開、接着等)などの点でも優れている。 [0005]
As we enter the advanced information age, information transmission tends to become faster and more frequent. In new media such as mobile radios such as car telephones and personal radios, satellite broadcasting, satellite communications, and CATV, devices are becoming more compact, and as a result, microwave circuit elements such as dielectric resonators are becoming more compact. There is also a strong desire for miniaturization. [0003] The size of a microwave circuit element is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with relative permittivity εr is λ=λa, where λa is the propagation wavelength in vacuum.
/ (εr)0°5. Therefore, the larger the dielectric constant of the printed circuit board substrate used, the smaller the device will be. In addition, when the dielectric constant of the substrate is large, electromagnetic energy is concentrated within the substrate, which is advantageous because there is less leakage of electromagnetic waves. Dispersed composite dielectrics have attracted attention, and many applications have been filed (for example, Japanese Patent Publication No. 49-25159, Japanese Patent Publication No.
-18754 etc.). Printed circuit board substrates using this composite dielectric as a dielectric material are superior in terms of cost and post-processing (cutting, hole-drilling, adhesion, etc.). [0005]

【発明が解決しようとする課題】[Problem to be solved by the invention]

しかしながら、この無機誘電体粒子含有の複合誘電体を
用いたプリント回路用基板には、無機誘電体粒子の添加
量に見合うほどには適度に大きな誘電率をもたせること
が中々できないという問題がある。なお、プリント回路
用基板に用いられる複合誘電体の誘電率は適度な大きさ
(例えば、比誘電率εr=10〜数10)である。誘電
率が余り大きいと回路の必要幅が細くなり過ぎて回路形
成のための加工が難しくなる。 [0006] 無機誘電体粒子の添加量を増やすには限度があるし、新
たな無機誘電体粒子用化合物の開発も容易でない。 前記特公昭49−25159、特公昭54−18754
号公報記載の発明では、分散させ・る粒子の粒径効果を
検討している。しかし、発明者らの研究結果からは、充
てん量を同じにして高い誘電率を確保する上では、単に
粒径を大きくするだけでは効果が小さいことが見出され
ている。 [0007] 向上と同時に、複合化する時の作り易さも、無機誘電体
粒子含有のこの複合誘電この発明は、このような事情に
鑑み、高誘電率の無機誘電体粒子が誘電率増大作用を効
果的に発揮し十分な誘電率を有するプリント回路用基板
を提供することを課題とする。 [0008]
However, printed circuit boards using composite dielectrics containing inorganic dielectric particles have a problem in that it is difficult to provide a suitably large dielectric constant commensurate with the amount of inorganic dielectric particles added. Note that the dielectric constant of the composite dielectric used in the printed circuit board is an appropriate value (for example, relative permittivity εr=10 to several tens). If the dielectric constant is too large, the required width of the circuit becomes too narrow, making processing for forming the circuit difficult. [0006] There is a limit to increasing the amount of inorganic dielectric particles added, and it is not easy to develop new compounds for inorganic dielectric particles. Said Special Publication No. 49-25159, Special Publication No. 54-18754
In the invention described in the publication, the particle size effect of the particles to be dispersed is studied. However, the inventors' research results have found that simply increasing the particle size has little effect on ensuring a high dielectric constant with the same filling amount. [0007] In view of the above circumstances, the present invention has been developed to improve the ease of manufacturing the composite dielectric when it is made into a composite. An object of the present invention is to provide a printed circuit board that is effective and has a sufficient dielectric constant. [0008]

【課題を解決するための手段】[Means to solve the problem]

前記課題を解決するため、この発明にかかるプリント回
路用基板では、樹脂中に多孔質無機誘電体粒子が分散さ
れてなる複合誘電体を誘電体材料として用いるようにし
ている。 この多孔質無機誘電体粒子は、表面に向けて開口する孔
や割れ目などからなる空隙が多数個ある粒子であって、
この空隙内に樹脂が入り込むことができるような状態と
なっ七いる。その状態は、たとえば、図1にみるようで
ある。図1において、球形状のものが多孔質無機誘電体
粒子をあられし、黒地部分が樹脂をあられす。多孔質無
機誘電体粒子が樹脂中に分散し、この樹脂の一部が粒子
の空隙内に入り込んでいる。 [0009] 多孔質無機誘電体粒子としては、平均粒径5〜100μ
m、平均比表面積0゜3〜7.0m2/grのものが好
ましい。 粒径が1100Atを超えると、プリント回路用基板の
表面に粒子による凹凸が現れて平滑性が悪くなったり、
耐湿性(耐水性)が劣り誘電損失特性が悪くなったりす
るほか、製造時等に粒子が割れ易くて誘電特性がばらつ
いたりするという傾向がみられる。粒径が5μmを下回
ると、誘電率向上効果が十分でなくなる傾向がみられる
。 [0010] ると、誘電率向上効果が十分でなくなる傾向がみられる
。 。この二次粒子では、一次粒子間に空隙があって多孔質
Qこなってし)る。この場合多孔質粒子を構成する一次
粒子は、焼結により互り)に物理的・化学白り(コ結合
していることが好ましい。 [0011] この多孔質無機誘電体粒子は、ペロブスカイト型結晶構
造を有する高誘電率組成の化合物からなることが好まし
l、)。 以下に、この発明のプリント回路用基板を、より具体的
Q二説明する。 この発明において、複合化用マトリックス樹脂として(
よ、必要Qこ応じて適宜G二選択された樹脂が用いられ
るが、高周波域の用途では、高周波損失の少なu)((
氏tanδ)樹脂が好ましく、例えば、PP○(ポリフ
ェニレンオキサイド)樹月旨、フッ素樹脂(例えば、テ
フロン(デュポン社の商品名)のようなポ1ノフツイヒ
エチレン系樹脂) ポリカーボネート、ポリエチレン、
ポリエチレンテレフタレートポリプロピレン、ポリスチ
レンなどが挙げられる。これらの樹脂の比誘電率εrは
、普通、2.0〜3.2程度である。その他の用途の場
合(よ、高周波損失の点で多少劣るカミポリエステル、
エポキシ、あるν)は、誘電率の大きなPVDF(ポリ
フッ化ビニリデン)などの樹脂でもよい。 [0012] 多孔質無機誘電体粒子としては、例えば、BaTiO2
系、S r T i○3系、PbTi   Zr   
O系、Pb(Mg   Nb   )○ 系、Ba(S
nx1/2  1/2 3       2/3  1
/3  3ト型結晶構造(あるいは複合ペロブスカイト
型結晶構造)を有するもの、その他TiOZrOSn○
 の単独およびその複合酸化物などの無機化合物2・ 
   2・    2 等が具体的に挙げられる。多孔質無機誘電体粒子は、球
状、あるν)は、様々な形のブロック片的形状であって
よく、その形状については特に限定しなXJ)。 [0013] この多孔質無機誘電体粒子は、例えば、■焼結密度が低
く多孔質となるようにして得た無機誘電体ブロックを粉
砕したり、あるいは、■無機粉末をノ〈インダー(例え
ば、PVA=ポリビニルアルコール水溶液)中に分散し
、乾燥雰囲気(例えば、130℃程度の温度雰囲気)中
にスプレーすることにより粒状物を得て、これを11.
00℃程度の温度で焼成するようにしたりして、得るこ
とができる。 後者■の場合、無機粉末としては種々の粒径のものを選
ぶことができるが、焼成は、スプレーにより得られた粒
状物において、個々の粒状物内の粉末同士は焼結により
物理的・化学的な結合が起こり、特に出発原料が微粒子
の場合は粒成長が起こるが、粒状物同士は簡単に離れる
程度に行う。焼結粒子は、表面に開口した孔や割れ目な
どがあって内部に空隙が生じており、多孔質となってい
る。 [0014] この焼結に際しては、必要に応じて焼結助剤を用いても
良い。焼結助剤としては、このような粉体を焼結する際
に通常使用される助剤であれば、何であっても良いので
あるが、強いて定義すれば、誘電体組成を破壊せず、特
性を損なわず、充分に補強効果を与えるものが好ましい
。 焼結助剤の使用量は、目的に応じて、また、焼結助剤の
種類に応じて適宜選択すれば良いが、通常は、無機誘電
体粒子に対して0.1〜5重量%が好ましい。 焼結助剤の粒子径は、0.01〜100μmの範囲であ
れば、いずれも使用できるが、均一に分散させるために
、0.1〜50μm程度が好ましい。焼結助剤の添加時
期は、無機誘電体化合物の調製段階および焼成段階の任
意の時期でよい。 例えば、無機粉末をバインダー中に分散する際に同時に
焼結助剤を分散させるようにするのである。 [0015] 焼結助剤を用いた場合には、不使用の場合に較べて、焼
結が容易になるという効果のみでなく、多孔質粒子の強
度が向上するためにプリント回路用基板の作製時におけ
る多孔質誘電体粒子の崩れが防止できるという付Dl的
効果や、比較的低温で焼結できるようになるため、より
空隙率の大きな多孔質粒子の形成を可能とし、樹脂層の
誘電率を大きくして、プリント回路基板の誘電率を向上
させうる等の付随的効果が表れる場合がある。 [0016] 焼結助剤の具体例としては以下のものがある。すなわち
、■Ba〇−3i○2B203、Ca OS 102 
 B2O3、L 12O−3i○2−B2O3、LGe
OCaO−PbO−3iO、L 120−8iO2、B
203−Bi22゛2 0 、PbO−3i○ −BaO、Na  〇−P b
 OS 102、PbO−Ge02等のホウ酸系ガラス
、鉛系ガラス、ビスマス系ガラス、カドミウム系ガラス
リチウム系ガラスなど、■CuOBi  OB  OC
d01L l 20ゝ   2 3ゝ  2 3・ PbO1W○ 、Pb Ge OLi SiO3等の酸
化物、および、■35311ゝ   2 LiF、CuF  、ZnF  、CaF2等の弗化物
である。 [0017] 無機誘電体化合物粒子を焼結する際には、一般に、添加
物の作用によって粒子成長や焼結体の電気特性を制御す
ることが行われているが、この発明においても、従来知
られている種々の添加物を同様の目的で使用することが
できる。 多孔質無機誘電体粒子としては、前述のように、平均粒
径5〜100μm、平均比表面積0.3〜7.0m2/
grのものが好ましいのであるが、一次粒子を集合させ
て二次粒子にする場合には、一次粒子としては、例えば
、0.1〜5μm程度になる。これは、粒子を球とした
場合、d(一次粒子の粒径) ρ(一次粒子の真比重)
Sw(二次粒子の比表面積)の間に、d=67 (ρX
Sw)の関係があるからである。したがって、例えば、
チタン酸バリウムの場合、一次粒子の粒径は0.14〜
3.3μm程度となる。 [0018] この発明のプリント回路用基板は、通常、補強材で強化
し、機械的強度や寸法安定性をよくする。 補強材としては、クロス状補強材、マット状補強材、フ
ァイバー状補強材等が挙げられる。この補強材には、無
機材料のものも有機材料のものもあり、ガラス材、アル
ミナやジルコニア等のセラミック材、ポリエチレンやポ
リアミド等の有機材料からなるクロス、マット、ファイ
バーなどが挙げられる。クロスやマットは、通常、厚み
15μm〜1.5mm程度、繊維径0.5〜20μm程
度のものを使う。ファイバーは、通常、長さ20〜30
0μm程度、繊維径2〜50μm程度のものを使う。 [0019] この発明のプリント回路用基板は、例えば、下記のよう
にして製造する。 多孔質無機誘電体粒子を分散させた樹脂フェスを作り、
これを補強用クロスに含浸させて乾燥し、ついで、この
ようにして得たクロス複数枚を積層して(必要に応じて
金属箔を光面に配して)おいて金型で加熱加圧成形する
ようにする。 この発明のプリント回路用基板の厚みは、通常、0.1
〜2mm程度である。また、この発明のプリント回路用
基板におけるマトリックス用樹脂、多孔質無機誘電体粒
子、必要に応じて用いられる補強材の配合割合は、通常
、樹脂:25〜95■01%(体積%)、多孔質無機誘
電体粒子:5〜75vo1%であり、補強材を用いる場
合は補強材:0〜70vo1%の範囲にある。 [0020] この発明は、上記例示の化合物や数値範囲あるいは処理
方法に限られるものでないことは言うまでもない。 [00213
In order to solve the above problems, the printed circuit board according to the present invention uses a composite dielectric in which porous inorganic dielectric particles are dispersed in a resin as a dielectric material. These porous inorganic dielectric particles are particles that have many voids consisting of pores and cracks that open toward the surface.
The state is such that the resin can enter into this void. The state is as shown in FIG. 1, for example. In FIG. 1, the spherical part contains porous inorganic dielectric particles, and the black part contains resin. Porous inorganic dielectric particles are dispersed in a resin, and a portion of the resin enters into the voids of the particles. [0009] The porous inorganic dielectric particles have an average particle size of 5 to 100μ
m and an average specific surface area of 0°3 to 7.0 m2/gr are preferred. If the particle size exceeds 1100 At, unevenness will appear on the surface of the printed circuit board due to the particles, resulting in poor smoothness.
In addition to poor moisture resistance (water resistance) and poor dielectric loss properties, there is also a tendency for particles to break easily during manufacturing, resulting in variations in dielectric properties. When the particle size is less than 5 μm, there is a tendency that the effect of improving the dielectric constant becomes insufficient. [0010] Then, there is a tendency that the effect of improving the dielectric constant becomes insufficient. . These secondary particles have voids between the primary particles, making them porous. In this case, it is preferable that the primary particles constituting the porous particles are physically and chemically bonded (co-bonded) to each other by sintering. It is preferable that the compound be made of a compound having a high dielectric constant composition and having a structure (1). Below, the printed circuit board of the present invention will be explained in more detail. In this invention, as a composite matrix resin (
Depending on the required Q, a resin selected as appropriate is used, but for applications in the high frequency range, resins with low high frequency loss u) ((
Preferably, resins such as PP○ (polyphenylene oxide), fluororesins (for example, polyethylene resins such as Teflon (trade name of DuPont)), polycarbonate, polyethylene,
Examples include polyethylene terephthalate, polypropylene, and polystyrene. The dielectric constant εr of these resins is usually about 2.0 to 3.2. For other uses (such as polyester, which is somewhat inferior in terms of high frequency loss,
The epoxy (v) may be a resin such as PVDF (polyvinylidene fluoride), which has a large dielectric constant. [0012] Porous inorganic dielectric particles include, for example, BaTiO2
system, S r Ti ○3 system, PbTi Zr
O series, Pb(MgNb)○ series, Ba(S
nx1/2 1/2 3 2/3 1
/3 Those with trigonal crystal structure (or composite perovskite crystal structure), and other TiOZrOSn○
Inorganic compounds such as single oxides and their composite oxides 2.
2.2 etc. are specifically mentioned. The porous inorganic dielectric particles may be spherical or may have various block-like shapes, and the shape is not particularly limited. [0013] These porous inorganic dielectric particles can be produced, for example, by (1) crushing an inorganic dielectric block obtained by making the sintered density low and porous, or (2) inorganic powder inorganic powder (for example, PVA=polyvinyl alcohol aqueous solution) and sprayed in a dry atmosphere (for example, an atmosphere at a temperature of about 130°C) to obtain granules, which were then subjected to 11.
It can be obtained by firing at a temperature of about 00°C. In the latter case (2), various particle sizes can be selected as the inorganic powder, but sintering is a physical and chemical process in which the powders within each granule are physically and chemically bonded to each other in the granules obtained by spraying. Particularly when the starting material is fine particles, grain growth occurs, but this is done to the extent that the grains can easily separate from each other. The sintered particles have open pores and cracks on the surface and voids inside, making them porous. [0014] During this sintering, a sintering aid may be used as necessary. The sintering aid may be any aid as long as it is normally used when sintering such powders, but it must be defined as one that does not destroy the dielectric composition, It is preferable to use a material that provides a sufficient reinforcing effect without impairing the properties. The amount of the sintering aid used may be appropriately selected depending on the purpose and the type of sintering aid, but usually 0.1 to 5% by weight based on the inorganic dielectric particles. preferable. Any particle size of the sintering aid can be used as long as it is in the range of 0.01 to 100 μm, but it is preferably about 0.1 to 50 μm to ensure uniform dispersion. The sintering aid may be added at any time during the preparation stage and firing stage of the inorganic dielectric compound. For example, when the inorganic powder is dispersed in the binder, the sintering aid is simultaneously dispersed. [0015] When a sintering aid is used, it is not only easier to sinter than when it is not used, but also because the strength of the porous particles is improved, making it easier to manufacture printed circuit boards. This has an additional effect of preventing porous dielectric particles from collapsing during heating, and since sintering can be performed at a relatively low temperature, it is possible to form porous particles with a higher porosity, and the dielectric constant of the resin layer Incidental effects may occur, such as increasing the dielectric constant of the printed circuit board. [0016] Specific examples of sintering aids include the following. That is, ■Ba〇-3i○2B203, Ca OS 102
B2O3, L 12O-3i○2-B2O3, LGe
OCaO-PbO-3iO, L 120-8iO2, B
203-Bi22゛20, PbO-3i○ -BaO, Na〇-Pb
OS 102, boric acid glass such as PbO-Ge02, lead glass, bismuth glass, cadmium glass, lithium glass, etc.CuOBi OB OC
d01L l 20ゝ 2 3ゝ 2 3 - Oxides such as PbO1W○, Pb Ge OLi SiO3, and ■35311ゝ 2 fluorides such as LiF, CuF, ZnF, CaF2. [0017] When inorganic dielectric compound particles are sintered, particle growth and electrical properties of the sintered body are generally controlled by the action of additives, but in this invention, conventionally known A variety of additives can be used for similar purposes. As mentioned above, the porous inorganic dielectric particles have an average particle diameter of 5 to 100 μm and an average specific surface area of 0.3 to 7.0 m2/
gr is preferable, but when primary particles are aggregated to form secondary particles, the primary particles have a diameter of, for example, about 0.1 to 5 μm. When the particles are spheres, d (particle diameter of primary particles) ρ (true specific gravity of primary particles)
Between Sw (specific surface area of secondary particles), d=67 (ρX
This is because there is a relationship of Sw). Therefore, for example,
In the case of barium titanate, the particle size of the primary particles is 0.14~
The thickness is approximately 3.3 μm. [0018] The printed circuit board of the present invention is typically reinforced with a reinforcing material to improve mechanical strength and dimensional stability. Examples of the reinforcing material include cross-shaped reinforcing material, mat-like reinforcing material, fiber-like reinforcing material, and the like. This reinforcing material includes both inorganic materials and organic materials, such as glass materials, ceramic materials such as alumina and zirconia, and cloths, mats, and fibers made of organic materials such as polyethylene and polyamide. The cloth or mat used usually has a thickness of about 15 μm to 1.5 mm and a fiber diameter of about 0.5 to 20 μm. Fibers are typically 20 to 30
Use fibers with a diameter of about 0 μm and a fiber diameter of about 2 to 50 μm. [0019] The printed circuit board of the present invention is manufactured, for example, as follows. Create a resin face with porous inorganic dielectric particles dispersed,
A reinforcing cloth is impregnated with this and dried. Then, multiple pieces of the cloth thus obtained are laminated (with metal foil placed on the light surface if necessary) and heated and pressed in a mold. Let it form. The thickness of the printed circuit board of this invention is usually 0.1
It is about 2 mm. Further, in the printed circuit board of the present invention, the blending ratio of matrix resin, porous inorganic dielectric particles, and reinforcing material used as necessary is usually resin: 25 to 95% (volume %), porous Inorganic dielectric particles: 5 to 75 vol%, and when a reinforcing material is used, the reinforcing material: 0 to 70 vol%. [0020] It goes without saying that the present invention is not limited to the compounds, numerical ranges, or treatment methods exemplified above. [00213

【作用] この発明のプリント回路用基板においては、複合誘電体
の無機誘電体粒子が多孔質となっている。この多孔質粒
子を分散させた複合誘電体と、非多孔質粒子を分散させ
た複合誘電体とで、粒子が複合誘電体中に占める重量割
合が同じである場合についてみると、両複合誘電体にお
いては、多孔質粒子も非多孔質粒子も真に占める体積割
合は同じであるが、前者(この発明の多孔質粒子を分散
させた複合誘電体)では、多孔質無機誘電体粒子は空隙
により膨らんだ状態になって複合誘電体内に存在するた
め、後者(非多孔質粒子を分散させた複合誘電体)に較
べて、粒子の無機誘電体内に占める見掛は上の体積が大
きい。そして、この多孔質無機誘電体粒子の空隙部分も
高誘電率域として作用すると考えられるから、この発明
の複合誘電体では誘電率が効果的に向上するのである。 [0022] また、多孔質無機誘電体粒子は、同じ大きさの非多孔質
無機誘電体粒子に比べて樹脂中で沈み難く沈降分離が起
こり難くなるため、基板の製造を容易とさせるさらに、
回路用基板の加工(切断、孔開等)の場合、同じ粒径の
非多孔質無機誘電体粒子に比べて容易に破壊するので、
加工表面も良好で、加工消耗品の劣化も少ない。 [0023] 【実施例】 続いて、この発明の具体的実施例について説明する。 一実施例1− 平均粒径20μm、平均比表面積1.0 m2/gr(
7)多孔質BaTiO3粉末30vo1%、PP○樹脂
70vo1%となるように両者を秤量し、容量で1.5
倍のトリクレン(東亜合成化学工業株式会社製、トリク
ロロエチレン)を添加してかく拌することにより、PP
O樹脂を完全に溶解・させてワニスを得た。ついでこの
ワニスを平織ガラスクロス(厚み:1100At、繊維
径ニアμm、織密度:25mmあたり縦60本、横58
本)に含浸、50℃で乾燥させた。得られたワニス含浸
ガラスクロスにおける樹脂とBaTi○3粉末の割合は
73wt%(約70 vo1%)であった。このように
して得られたワニス含浸クロスを5枚重ねて、上下に銅
箔(厚み17μm)を配して、温度250℃、圧力33
kg/Cm210分間の成形条件で加圧成形し、両面銅
箔張りプリント回路板用基板を得た。 [0024] 一実施例2− 平均粒径15μm、平均比表面積1.5 m  /gr
の多孔質BaTio、7Zro、303粉末を用いた他
は、実施例1と同様にして、プリント回路用基板を得た
。得られたワニス含浸ガラスクロスにおける樹脂と無機
誘電体粉末の割合は72wt%(約70vo1%)であ
った。 [0025] 一実施例3− 平均粒径25μm、平均比表面積2.b m  /gr
の多孔質B a o、 s S r o、 2Ti03
粉末を用いた他は、実施例1と同様にして、プリント回
路用基板を得た。得られたワニス含浸ガラスクロスにお
ける樹脂と無機誘電体粉末の割合は72wt%(約70
vo1%)であった。 [0026] 一実施例4− 平均粒径5μm、平均比表面積5.2 m2/grの多
孔質BaT io、7Zr。 得られたワニス含浸ガラスクロスにおける樹脂と無機誘
電体粉末の割合は73能%(約70vo1%)であった
。 [0027] 一実施例5− 平均粒径60μm、平均比表面積1.8m2/grの多
孔質B a T io、 rt Z r。得られたワニ
ス含浸ガラスクロスにおける樹脂と無機誘電体粉末の割
合は73wt%(約70vo1%)であった。 [0028] 一実施例6 平均粒径1100At、平均比表面積2.1m2/gr
の多孔質BaTio、7Zro。303粉末を用いた他
は、実施例1と同様にして、プリント回路用基板を得た
。得られたワニス含浸ガラスクロスにおける樹脂と無機
誘電体粉末の割合は72wt%(約70vo1%)であ
った。 [0029] 一実施例7− 平均粒径20μm、平均比表面積0.5 m  /gr
の多孔質B a T io、 7Z rO,303粉末
を用いた他は、実施例1と同様にして、プリント回路用
基板を得た。得られたワニス含浸ガラスクロスにおける
樹脂と無機誘電体粉末の割合は72wt%(約70vo
1%)であった。 [00303 一実施例8− 平均粒径23 pm、平均比表面積6.8m/grの多
孔質BaTio、7Zr0.303粉末を用いた他は、
実施例1と同様にして、プリント回路用基板を得た。得
られたワニス含浸ガラスクロスにおける樹脂と無機誘電
体粉末の割合は73wt%(約70vo1%)であった
。 [0031] −比較例1− 平均粒径1.0prn、平均比表面積1.8 m  /
grの非多孔質BaTio、7Z r O,303粉末
を用いた他は、実施例1と同様にして、プリント回路用
基板を得た。 一比較例2− 平均粒径20μm、平均比表面積0.2m/grの非多
孔質B a T 1 o、 7Zro、303粉末を用
いた他は、実施例1と同様にして、プリント回路用基板
を得た。 [0032] なお、各実施例の多孔質無機誘電体粒子は、平均粒径0
.1μ■1の無機粉末の仮焼物を出発原料として用いて
前述の方法で得た二次粒子である。ここで、平均粒径0
. 1μmの原料仮焼物は1μm前後の一次粒子に成長
している。 実施例および比較例の各プリント回路用基板について、
インピーダンスアナライザを用いて誘電特性を測定した
。結果を、表1に示す。 [0033]
[Function] In the printed circuit board of the present invention, the inorganic dielectric particles of the composite dielectric are porous. In the case where a composite dielectric material in which porous particles are dispersed and a composite dielectric material in which non-porous particles are dispersed have the same weight ratio of particles in the composite dielectric material, both composite dielectric materials have the same weight ratio. However, in the former (composite dielectric material in which porous particles of this invention are dispersed), the porous inorganic dielectric particles are Since the particles exist in the composite dielectric in a swollen state, the apparent volume occupied by the particles in the inorganic dielectric is larger than in the latter (composite dielectric in which non-porous particles are dispersed). Since the voids in the porous inorganic dielectric particles are also considered to act as high dielectric constant regions, the dielectric constant of the composite dielectric of the present invention is effectively improved. [0022] In addition, porous inorganic dielectric particles are less likely to sink in the resin than non-porous inorganic dielectric particles of the same size, making it difficult for sedimentation separation to occur, making it easier to manufacture the substrate.
When processing circuit boards (cutting, drilling holes, etc.), they break easily compared to non-porous inorganic dielectric particles of the same particle size.
The machined surface is also good, and there is little deterioration of processing consumables. [0023]Examples Next, specific examples of the present invention will be described. Example 1 - average particle size 20 μm, average specific surface area 1.0 m2/gr (
7) Weigh both porous BaTiO3 powder 30vol 1% and PP○ resin 70vol 1%, and the volume is 1.5
By adding twice as much trichlorethylene (manufactured by Toagosei Kagaku Kogyo Co., Ltd., trichlorethylene) and stirring, PP
A varnish was obtained by completely dissolving the O resin. Next, apply this varnish to a plain-woven glass cloth (thickness: 1100 At, fiber diameter near μm, weave density: 60 vertically, 58 horizontally per 25 mm).
The material was impregnated into a 100% polyester resin and dried at 50°C. The ratio of resin and BaTi○3 powder in the obtained varnish-impregnated glass cloth was 73 wt% (about 70 vol%). Five sheets of the varnish-impregnated cloth obtained in this way were stacked, copper foil (thickness 17 μm) was arranged on the top and bottom, and the temperature was 250°C and the pressure was 33°C.
Pressure molding was performed under molding conditions of kg/Cm2 for 10 minutes to obtain a printed circuit board substrate with copper foil on both sides. [0024] Example 2 - Average particle size 15 μm, average specific surface area 1.5 m/gr
A printed circuit board was obtained in the same manner as in Example 1, except that the porous BaTio, 7Zro, and 303 powders were used. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 72 wt% (about 70 vol%). [0025] Example 3 - Average particle size 25 μm, average specific surface area 2. b m /gr
Porous B ao, s S r o, 2Ti03
A printed circuit board was obtained in the same manner as in Example 1 except that powder was used. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 72 wt% (approximately 70 wt%).
vo1%). [0026] Example 4 - Porous BaTio, 7Zr with an average particle size of 5 μm and an average specific surface area of 5.2 m2/gr. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 73% by volume (approximately 70% by volume). [0027] Example 5 - Porous B a T io, rt Z r with an average particle size of 60 μm and an average specific surface area of 1.8 m 2 /gr. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 73 wt% (about 70 vol%). [0028] Example 6 Average particle size 1100 At, average specific surface area 2.1 m2/gr
Porous BaTio, 7Zro. A printed circuit board was obtained in the same manner as in Example 1 except that 303 powder was used. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 72 wt% (about 70 vol%). [0029] Example 7 - Average particle size 20 μm, average specific surface area 0.5 m/gr
A printed circuit board was obtained in the same manner as in Example 1, except that the porous B a T io, 7Z rO, 303 powder was used. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 72wt% (approximately 70vo
1%). [00303 Example 8 - Porous BaTio, 7Zr0.303 powder with an average particle size of 23 pm and an average specific surface area of 6.8 m/gr was used.
A printed circuit board was obtained in the same manner as in Example 1. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 73 wt% (about 70 vol%). [0031] - Comparative Example 1 - Average particle size 1.0 prn, average specific surface area 1.8 m/
A printed circuit board was obtained in the same manner as in Example 1, except that gr non-porous BaTio, 7Z r O, 303 powder was used. Comparative Example 2 - A printed circuit board was prepared in the same manner as in Example 1, except that non-porous B a T 1 o, 7Zro, 303 powder with an average particle size of 20 μm and an average specific surface area of 0.2 m/gr was used. I got it. [0032] The porous inorganic dielectric particles of each example had an average particle size of 0.
.. These are secondary particles obtained by the method described above using a calcined product of inorganic powder with a size of 1 μl as a starting material. Here, the average particle size is 0
.. The calcined material of 1 μm has grown into primary particles of around 1 μm. Regarding each printed circuit board of Examples and Comparative Examples,
Dielectric properties were measured using an impedance analyzer. The results are shown in Table 1. [0033]

【表1】 1季開平4−+33agb (12) [0034] 表1から分かるように、実施例1〜8のプリント回路用
基板は、いずれも、基板として適当な約10以上の比誘
電率を有するとともに損失(tanδ)も十分に実用で
きる範囲内にある。実施例と比較例1.2の間の比誘電
率の値を比べればこの発明のプリント回路用基板では、
誘電率が飛躍的に増加していることがよく分かる。 [0035] 次に、焼結助剤を添加して焼結することにより得られる
多孔質無機誘電体粒子を使用する例について記述する。 一実施例9− 平均粒径0.1μmのBaTio、7Zro、303粉
体500g、ホウケイ酸系ガラス(居城硝子社製)2.
5gと5wt%ポリビニルアルコール溶液50ミリリツ
トルをイオン交換水1リツトル中でよく湿式混合した後
、噴霧造粒した。次に、これを1050℃で2時間熱処
理して、複数の一次粒子からなる多孔質無機誘電体粒子
である粒状物(二次粒子)を得た。この粒状物の粒子径
、比表面積および粒強度を測定した結果を表2に示す。 なお、粒強度測定には島津製作所製PCT強度試験機を
用いた。 [0036] 次に、この多孔質B a T 1 o、 7Z 、r 
o、 303粒状物30vo1%、PP○樹脂70 v
o1%となるように両者を秤量し、容量で1.5倍のト
リクレンを添加して、かく拌することにより、PP○樹
脂を完全に溶解させてワニスを得た。一ついで、このワ
ニスを平織ガラスクロス(厚み1100μm、繊維径ニ
アμm、織密度:25mmあたり9a60本、横58本
)に含浸、50℃で乾燥させた。得られたワニス含浸ガ
ラスクロスにおける樹脂と粒状物の割合は73wt%(
約70vo1%)であった。このようにして得られたワ
ニス含浸クロスを5枚重ねて、上下に銅箔(厚み17μ
m)を配して、温度250℃、圧力33 kg/Cm2
.10分間の成形条件で加圧成形し、両面銅箔張りプリ
ント回路板用基板を得た。 [0037] このプリント回路用基板の表裏面にアクリル系Agペー
ストを塗布硬化させて電極を形成し、インピーダンスア
ナライザーを用いて誘電特性を測定した結果を表3に示
す。 一実施例1〇− 平均粒径0.1μmのBao、7Sro、3Ti03粉
末を用いた他は、実施例9と同様にして、プリント回路
用基板を得て、誘電特性を調べた。粒状物の物性を表2
に示し、プリント回路用基板の誘電特性を表3に示す。 なお、得られなワニス含浸ガラスクロスにおける樹脂と
粒状物の割合は73wt%(約70vo1%)であった
。 [0038] 一実施例11− ホウケイ酸系ガラスの量を5.0gにした他は、実施例
9と同様にして、プリント回路用基板を得て、誘電特性
を調べた。粒状物の物性を表2に示し、プリント回路用
基板の誘電特性を表3に示す。なお、得られたワニス含
浸ガラスクロスにおける樹脂と粒状物の割合は73wt
%(約70vo1%)であった。 [0039] 一実施例12− ホウケイ酸系ガラスをホウ酸ビスマス系ガラスに代え、
また、熱処理温度を950℃とした他は、実施例9と同
様にして、プリント回路用基板を得て、誘電特性を調べ
た。粒状物の物性を表2に示し、プリント回路用基板の
誘電特性を表3に示す。なお、得られたワニス含浸ガラ
スクロスにおける樹脂と無機誘電体粉末の割合は7′2
wt%(約70vo1%)であった。 [0040] 一実施例13.14.15一 実施例9において、スラリー濃度、噴霧条件および熱処
理温度を変えることにより、物性の異なる3種類の粒状
物を得た。これらの粒状物を用いて実施例9と同様の方
法によってプリント回路用基板を作製し、誘電特性を調
べた。粒状物の物性を表2に示し、プリント回路用基板
の誘電特性を表3に示す。なお、得られたワニス含浸ガ
ラスクロスにおける樹脂と粒状誘物の割合は73wt%
(約70vO1%)であった。 [0041] 一実施例16− 実施例9において、ホウケイ酸系ガラスをCurl、7
gに代え、また、熱処理温度を1000℃にした他は、
実施例9と同様にして、プリント回路用基板を得て、誘
電特性を調べた。粒状物の物性を表2に示し、プリント
回路用基板の誘電特性を表3に示す。なお、得られたワ
ニス含浸ガラスクロスにおける樹脂と粒状物の割合は7
2wt%(約70vo1%)であった。 [0042,] 一実施例17− 実施例9において、ホウケイ酸系ガラスをLiF2.5
gに代え、また、 熱処理温度を800℃にした他は、
実施例9と同様にして、プリント回路用基板径て、誘電
特性を調べた。粒状物の物性を表2に示し、プリント回
路用基板の誘電特性を表3に示す。なお、得られたワニ
ス含浸ガラスクロスにおける樹脂と粒状物の割合は72
wt%(約70vo1%)であった。 [0043]
[Table 1] 1st year Kaihei 4-+33agb (12) [0034] As can be seen from Table 1, the printed circuit boards of Examples 1 to 8 all have a dielectric constant of about 10 or more, which is suitable for a board. At the same time, the loss (tan δ) is also within a sufficiently practical range. Comparing the relative dielectric constant values between Example and Comparative Example 1.2, the printed circuit board of this invention has
It is clearly seen that the dielectric constant has increased dramatically. [0035] Next, an example will be described in which porous inorganic dielectric particles obtained by adding a sintering aid and sintering are used. Example 9 - 500 g of BaTio, 7Zro, 303 powder with an average particle size of 0.1 μm, borosilicate glass (manufactured by Ijo Glass Co., Ltd.)2.
5 g and 50 ml of a 5 wt % polyvinyl alcohol solution were thoroughly wet-mixed in 1 liter of ion-exchanged water, and then sprayed and granulated. Next, this was heat treated at 1050° C. for 2 hours to obtain granules (secondary particles) which were porous inorganic dielectric particles consisting of a plurality of primary particles. Table 2 shows the results of measuring the particle diameter, specific surface area, and particle strength of this granule. Note that a PCT strength testing machine manufactured by Shimadzu Corporation was used for grain strength measurement. [0036] Next, this porous B a T 1 o, 7Z , r
o, 303 granules 30vo1%, PP○ resin 70v
Both were weighed so that the concentration was 1%, 1.5 times the volume of trichlorethylene was added, and the mixture was stirred to completely dissolve the PP○ resin to obtain a varnish. Then, this varnish was impregnated into a plain-woven glass cloth (thickness 1100 μm, fiber diameter near μm, weave density: 9a 60 pieces per 25 mm, 58 widths) and dried at 50°C. The ratio of resin and particulate matter in the obtained varnish-impregnated glass cloth was 73 wt% (
It was about 70vo1%). Five sheets of the varnish-impregnated cloth obtained in this way were stacked on top of each other, and copper foil (thickness: 17 μm) was placed on top and bottom.
m), temperature 250℃, pressure 33kg/Cm2
.. Pressure molding was performed under molding conditions for 10 minutes to obtain a printed circuit board substrate covered with copper foil on both sides. [0037] Acrylic Ag paste was applied and cured on the front and back surfaces of this printed circuit board to form electrodes, and the dielectric properties were measured using an impedance analyzer. Table 3 shows the results. Example 1 - A printed circuit board was obtained in the same manner as in Example 9, except that Bao, 7Sro, and 3Ti03 powders with an average particle size of 0.1 μm were used, and the dielectric properties were examined. Table 2 shows the physical properties of the granules.
The dielectric properties of the printed circuit board are shown in Table 3. In addition, the ratio of resin and particulate matter in the obtained varnish-impregnated glass cloth was 73 wt% (about 70 vol%). [0038] Example 11 - A printed circuit board was obtained in the same manner as in Example 9, except that the amount of borosilicate glass was changed to 5.0 g, and its dielectric properties were examined. Table 2 shows the physical properties of the granules, and Table 3 shows the dielectric properties of the printed circuit board. The ratio of resin and particulate matter in the obtained varnish-impregnated glass cloth was 73wt.
% (approximately 70vol%). [0039] Example 12 - Replacing borosilicate glass with bismuth borate glass,
Further, a printed circuit board was obtained in the same manner as in Example 9 except that the heat treatment temperature was 950° C., and its dielectric properties were examined. Table 2 shows the physical properties of the granules, and Table 3 shows the dielectric properties of the printed circuit board. The ratio of resin and inorganic dielectric powder in the obtained varnish-impregnated glass cloth was 7'2.
wt% (approximately 70vol%). [0040] In Examples 13, 14, and 15 and 9, three types of granules with different physical properties were obtained by changing the slurry concentration, spraying conditions, and heat treatment temperature. A printed circuit board was produced using these granules in the same manner as in Example 9, and its dielectric properties were examined. Table 2 shows the physical properties of the granules, and Table 3 shows the dielectric properties of the printed circuit board. In addition, the ratio of resin and particulate inducer in the obtained varnish-impregnated glass cloth was 73 wt%.
(approximately 70vO1%). [0041] Example 16 - In Example 9, the borosilicate glass was Curl, 7
g, and the heat treatment temperature was 1000°C.
A printed circuit board was obtained in the same manner as in Example 9, and its dielectric properties were examined. Table 2 shows the physical properties of the granules, and Table 3 shows the dielectric properties of the printed circuit board. The ratio of resin and particulate matter in the obtained varnish-impregnated glass cloth was 7.
It was 2wt% (approximately 70vol%). [0042,] Example 17 - In Example 9, borosilicate glass was LiF2.5
g, and the heat treatment temperature was 800℃.
In the same manner as in Example 9, the dielectric properties of the printed circuit board were examined. Table 2 shows the physical properties of the granules, and Table 3 shows the dielectric properties of the printed circuit board. In addition, the ratio of resin and particulate matter in the obtained varnish-impregnated glass cloth was 72
wt% (approximately 70vol%). [0043]

【表2】 特開平4−+3a;(8b (1B)[Table 2] JP-A-4-+3a; (8b (1B)

【表3】 特開平4−13:5a86(20) [0045] 表2.3から分かるように、実施例9〜17の粒状物は
、いずれも、粒強度が高く、また、tanδも十分に実
用できる範囲内にある。 これらの実施例9〜17を、前述の実施例2と比較する
ことにより、この発明に用いた粒状物は、プリント回路
用基板の比誘電率とtanδをほとんど変化させること
なく、粒強度を飛躍的に増大させていることが分かる。 [0046]
[Table 3] JP-A-4-13:5a86(20) [0045] As can be seen from Table 2.3, the granules of Examples 9 to 17 all had high grain strength and sufficient tan δ. It is within the practical range. By comparing these Examples 9 to 17 with the above-mentioned Example 2, it was found that the granules used in this invention dramatically increased the granule strength without almost changing the dielectric constant and tan δ of the printed circuit board. It can be seen that this has increased significantly. [0046]

【発明の効果】【Effect of the invention】

以上に述べたことから分かるように、この発明にががる
請求項1〜7のプリント回路用基板は、無機誘電体粒子
が多孔質であるなめ、同粒子による誘電率向上効果が有
効に発揮され、しかも、沈降分離現象が生じ難く、その
製造も容易である。また、その加工(切断、孔開等)も
比較的容易である。 [0047] 請求項2のプリント回路用基板では、多孔質無機誘電体
粒子の平均粒径が5〜100μm、平均比表面積0. 
3〜7.0m2/grのものであるため、誘電率向上効
果がより顕著に発揮される。 請求項3のプリント回路用基板では、多孔質無機誘電体
粒子が一次粒子が集合してなる二次粒子であって、この
多孔質粒子の作製が容易であるため、結果として製造し
易いものとなっている。 [0048] 請求項4のプリント回路用基板では、多孔質無機誘電体
粒子における一次粒子が焼結により互いに結合している
ため、誘電率向上効果がより顕著に発揮されるようにな
る。 請求項5のプリント回路用基板では、多孔質無機誘電体
粒子の強度が向上しているため、複合化工程で粒子破壊
が発生せず、安定した性能が期待でき、粒子の製造が容
易となる。 [0049] 請求項6のプリント回路用基板では、多孔質無機誘電体
粒子がペロブスカイト型結晶構造を有する化合物からな
るため、誘電率向上効果がより顕著に発揮される。 請求項7のプリント回路用基板では、補強材で強化され
ているため、寸法安定性等の機械的特性が良好である。
As can be seen from the above, in the printed circuit board according to claims 1 to 7 of the present invention, since the inorganic dielectric particles are porous, the effect of improving the dielectric constant by the particles is effectively exhibited. In addition, it is difficult to cause sedimentation and separation, and its production is easy. In addition, its processing (cutting, hole punching, etc.) is relatively easy. [0047] In the printed circuit board of claim 2, the porous inorganic dielectric particles have an average particle diameter of 5 to 100 μm and an average specific surface area of 0.
Since it is of 3 to 7.0 m2/gr, the effect of improving the dielectric constant is more significantly exhibited. In the printed circuit board according to claim 3, the porous inorganic dielectric particles are secondary particles formed by aggregation of primary particles, and since the porous particles are easy to produce, they are easy to manufacture as a result. It has become. [0048] In the printed circuit board according to the fourth aspect, since the primary particles in the porous inorganic dielectric particles are bonded to each other by sintering, the effect of improving the dielectric constant is more prominently exhibited. In the printed circuit board according to claim 5, since the strength of the porous inorganic dielectric particles is improved, particle destruction does not occur in the composite process, stable performance can be expected, and the particles can be easily manufactured. . [0049] In the printed circuit board according to the sixth aspect, since the porous inorganic dielectric particles are made of a compound having a perovskite crystal structure, the effect of improving the dielectric constant is more significantly exhibited. In the printed circuit board according to the seventh aspect, since it is reinforced with a reinforcing material, mechanical properties such as dimensional stability are good.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】 この発明にかかるプリント回路用基板における多孔質無
機誘電体粒子の構造の一例をあられす倍率約2500倍
の走査型電子顕微鏡写真である。
FIG. 1 is a scanning electron micrograph at a magnification of approximately 2500 times showing an example of the structure of porous inorganic dielectric particles in a printed circuit board according to the present invention.

【書類名】【Document name】

図面 drawing

【図1】[Figure 1]

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 樹脂中に多孔質無機誘電体粒子が分散さ
れてなる複合誘電体が誘電体材料として用いられている
プリント回路用基板。
1. A printed circuit board in which a composite dielectric consisting of porous inorganic dielectric particles dispersed in a resin is used as a dielectric material.
【請求項2】 多孔質無機誘電体粒子が、平均粒径5〜
100pm、平均比表面積0.3〜7.0m^2/gr
のものである請求項1記載のプリント回路用基板。
[Claim 2] The porous inorganic dielectric particles have an average particle size of 5 to 5.
100pm, average specific surface area 0.3-7.0m^2/gr
2. The printed circuit board according to claim 1.
【請求項3】 多孔質無機誘電体粒子が、一次粒子が集
合してなる二次粒子である請求項1または2記載のプリ
ント回路用基板。
3. The printed circuit board according to claim 1, wherein the porous inorganic dielectric particles are secondary particles formed by aggregation of primary particles.
【請求項4】 二次粒子は一次粒子が焼結により互いに
結合してなるものである請求項3記載のプリント回路用
基板。
4. The printed circuit board according to claim 3, wherein the secondary particles are primary particles bonded to each other by sintering.
【請求項5】 焼結が焼結助剤を添加してなされている
請求項4記載のプリント回路用基板。
5. The printed circuit board according to claim 4, wherein the sintering is performed by adding a sintering aid.
【請求項6】 多孔質無機誘電体粒子が、ペロブスカイ
ト型結晶構造を有する化合物からなる請求項1から5ま
でのいずれかに記載のプリント回路用基板。
6. The printed circuit board according to claim 1, wherein the porous inorganic dielectric particles are made of a compound having a perovskite crystal structure.
【請求項7】 補強材で強化されてなる請求項1から6
までのいずれかに記載のプリント回路用基板。
[Claim 7] Claims 1 to 6 reinforced with a reinforcing material.
The printed circuit board described in any of the above.
JP2406288A 1990-02-06 1990-12-05 Printed circuit board Expired - Lifetime JP2740357B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2-26906 1990-02-06
JP2690690 1990-02-06

Publications (2)

Publication Number Publication Date
JPH04133386A true JPH04133386A (en) 1992-05-07
JP2740357B2 JP2740357B2 (en) 1998-04-15

Family

ID=12206271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2406288A Expired - Lifetime JP2740357B2 (en) 1990-02-06 1990-12-05 Printed circuit board

Country Status (1)

Country Link
JP (1) JP2740357B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147870A (en) * 1996-01-05 2000-11-14 Honeywell International Inc. Printed circuit assembly having locally enhanced wiring density
US6246014B1 (en) 1996-01-05 2001-06-12 Honeywell International Inc. Printed circuit assembly and method of manufacture therefor
JP2005174711A (en) * 2003-12-10 2005-06-30 Tdk Corp Dielectric ceramic powder, manufacturing method of dielectric ceramic powder, and compound dielectric material
WO2013125558A1 (en) * 2012-02-23 2013-08-29 京セラ株式会社 Wiring board, mounting structure using same, and wiring board manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268853A (en) * 1985-09-20 1987-03-28 Kanegafuchi Chem Ind Co Ltd Improved heat-resistant polyimide film
JPS63173633A (en) * 1987-01-13 1988-07-18 富士通株式会社 Copper-clad laminated board

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6268853A (en) * 1985-09-20 1987-03-28 Kanegafuchi Chem Ind Co Ltd Improved heat-resistant polyimide film
JPS63173633A (en) * 1987-01-13 1988-07-18 富士通株式会社 Copper-clad laminated board

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6147870A (en) * 1996-01-05 2000-11-14 Honeywell International Inc. Printed circuit assembly having locally enhanced wiring density
US6246014B1 (en) 1996-01-05 2001-06-12 Honeywell International Inc. Printed circuit assembly and method of manufacture therefor
JP2005174711A (en) * 2003-12-10 2005-06-30 Tdk Corp Dielectric ceramic powder, manufacturing method of dielectric ceramic powder, and compound dielectric material
WO2013125558A1 (en) * 2012-02-23 2013-08-29 京セラ株式会社 Wiring board, mounting structure using same, and wiring board manufacturing method
US9693451B2 (en) 2012-02-23 2017-06-27 Kyocera Corporation Wiring board, mounting structure using same, and method of manufacturing wiring board

Also Published As

Publication number Publication date
JP2740357B2 (en) 1998-04-15

Similar Documents

Publication Publication Date Title
CN1564721A (en) Highly filled composites of powdered fillers and polymer matrix
US9455064B2 (en) Ceramic filled fluoropolymer compositions, methods and applications thereof
JPH10223045A (en) Manufacture of voltage change dielectric synchronizing ferroelectric ceramic polymer composite material
US4835656A (en) Multi-layered ceramic capacitor
KR100344923B1 (en) Hybrid Laminate and Manufacturing Method Thereof
EP0441441B1 (en) Composite dielectric and printed-circuit use substrate utilizing the same
JP2802173B2 (en) Composite dielectric
JP2006248074A (en) Composite substrate with high dielectric constant, composite sheet with high dielectric constant, and methods for producing them
JPH04133386A (en) Board for printed circuit
JP4714996B2 (en) Multilayer ceramic electronic component and manufacturing method thereof
US9505902B2 (en) Ceramic filler, method of preparing the ceramic filler and applications as resonator and laminate thereof
JPH07240117A (en) Composite dielectric and its manufacture
JP2802172B2 (en) Composite dielectric and printed circuit board
CN1130897A (en) Magnetodielectric ceramic composite material, method of manufacturing same, application, and multifunctional element
JP2001047423A (en) Composite laminate and its manufacture
JP2006344407A (en) Composite dielectric material, prepreg using the same, metal foil painted object, molded compact, composite dielectric base board, multi-layered base board, and manufacturing method of composite dielectric material
JP4596154B2 (en) Composite porous body and method for producing composite porous body
WO2018140972A1 (en) Multilayer devices and methods of manufacturing
EP1881506A1 (en) Conductor paste and electronic component
FI129541B (en) Manufacturing composite electroceramics
US20240067571A1 (en) Manufacturing composite electroceramics using waste electroceramics
JP3081605B1 (en) Dielectric porcelain composition, porcelain capacitor using the same, and method of manufacturing the same
JPH02225357A (en) Complex dielectric material
JP2002293619A (en) Dielectric composite material and production method therefor
JP3666908B2 (en) Manufacturing method of ceramic substrate for ceramic capacitor