JPH02225357A - Complex dielectric material - Google Patents

Complex dielectric material

Info

Publication number
JPH02225357A
JPH02225357A JP1044117A JP4411789A JPH02225357A JP H02225357 A JPH02225357 A JP H02225357A JP 1044117 A JP1044117 A JP 1044117A JP 4411789 A JP4411789 A JP 4411789A JP H02225357 A JPH02225357 A JP H02225357A
Authority
JP
Japan
Prior art keywords
powder
dielectric
resin
dielectric material
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1044117A
Other languages
Japanese (ja)
Inventor
Seishiro Yamakawa
山河 清志郎
Michimasa Tsuzaki
津崎 通正
Kiyotaka Komori
清孝 古森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP1044117A priority Critical patent/JPH02225357A/en
Publication of JPH02225357A publication Critical patent/JPH02225357A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To form a complex dielectric material having sufficient relative, permittivity, low dielectric loss and excellent utility by blending inorganic dielectric material powder with particulate surface coated with an electroconductive substance with a resin. CONSTITUTION:This complex dielectric material 1 consists of inorganic dielectric material powder 2 and a resin 3 and the surface of practicles 2 of the inorganic dielectric material powder is partially coated with an electroconductive substance 2a. The electroconductive substance 2a is electroconductive powder and is preferably stuck to the surface of the particles 2 of the inorganic dielectric material powder with the same resin for constituting the dielectric material. Metallic powder, carbon powder or semiconductor powder may be cited as the electroconductive powder. Electroconductive needle-like powder 4 may be used instead of the electroconductive powder 2a and a complex dielectric material 1' is produced from the electroconductive needle-like powder, the inorganic dielectric material powder 2 and the resin 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無機誘電体粉末と樹脂とからなる複合誘電
体に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a composite dielectric consisting of an inorganic dielectric powder and a resin.

〔従来の技術〕[Conventional technology]

高度情報化時代を迎え、情報伝送はより高速化・高周波
化の傾向にある。自動車電話やパーソナル無線等の移動
無線、衛星放送、衛星通信やCATV等のニューメディ
アも実用化の段階にある。
As we enter the advanced information age, information transmission tends to become faster and more frequent. Mobile radios such as car telephones and personal radios, new media such as satellite broadcasting, satellite communications, and CATV are also at the stage of practical application.

このような状況の中でのマイクロ波半導体素子およびマ
イクロ波集積回路技術の著しい進歩に伴って、最近、マ
イクロ波回路基板として使われる誘電体基板に対する小
型化の要求が強まってきている。
Under these circumstances, with remarkable progress in microwave semiconductor devices and microwave integrated circuit technology, there has recently been an increasing demand for miniaturization of dielectric substrates used as microwave circuit boards.

通常、誘電体基板としてセラミック基板が用いられるこ
とが多い。セラミック基板として最も普及しているのが
、A l x Os基板である。これは、比誘電率はや
や小さい(9,8)が、通常の樹脂基板に比べれば大き
く、素子小型化や電磁波漏れの点で有利だからである。
Usually, a ceramic substrate is often used as the dielectric substrate. The most popular ceramic substrate is an Al x Os substrate. This is because although the dielectric constant is somewhat small (9, 8), it is larger than that of a normal resin substrate, and is advantageous in terms of device miniaturization and electromagnetic wave leakage.

マイクロ波半導体素子では、素子の大きさは、使用電磁
波の波長が基準となる。比誘電率εrの誘電体中を伝播
する電磁波の波長λは、真空中の伝播波長をλ。とする
と、λ−λJεr6sの関係にある。そのため、素子は
、使用される誘電体基板の比誘電率が高いほど小型にな
り、さらに、やはり比誘電率が高いほど、電磁エネルギ
ーが基板内に集中し電磁波の漏れが少なくなって好都合
となる。
In microwave semiconductor devices, the size of the device is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with relative permittivity εr is the propagation wavelength in vacuum. Then, there is a relationship of λ-λJεr6s. Therefore, the higher the relative dielectric constant of the dielectric substrate used, the smaller the element becomes.Furthermore, the higher the relative permittivity, the more convenient the electromagnetic energy is concentrated within the substrate, and the leakage of electromagnetic waves is reduced. .

しかし、上記のセラミック基板は、後加工(孔明けや切
断)が容易でない、放熱板の圧着が更tしい、生産性が
低い(大面積化が困難なため、回路板作成の際、いわゆ
る多数個取りの個数が少ない)といった問題がある。
However, the above-mentioned ceramic substrates are not easy to perform post-processing (drilling and cutting), require additional pressure bonding of the heat sink, and have low productivity (difficult to increase the area, so when making a circuit board, many There are problems such as (the number of individual pieces is small).

これらの問題を解決するものとして、複合誘電体が提案
されている。例えば、無機誘電体粉末と樹脂(有機樹脂
)からなる複合誘電体等が提案されている。
Composite dielectrics have been proposed to solve these problems. For example, composite dielectrics made of inorganic dielectric powder and resin (organic resin) have been proposed.

上記の回路基板用誘電体としての複合誘電体には、適当
な配合において適度に大きな比誘電率(εr−10〜3
0程度)を有するとともにマイクロ波領域での誘電損失
が少ないことが要求される具体的には、以下のような複
合誘電体が提案されている。
The composite dielectric material used as the dielectric material for circuit boards has a suitably large dielectric constant (εr-10 to 3
Specifically, the following composite dielectric materials have been proposed, which are required to have a low dielectric loss (approximately 0) and low dielectric loss in the microwave region.

■ 樹脂と(粒状)カーボン粉末が混合されてなる複合
誘電体(特公昭55−2044号公報)。
(1) Composite dielectric material made by mixing resin and (granular) carbon powder (Japanese Patent Publication No. 55-2044).

■ 4M脂と無機誘電体粉末とからなる複合誘電体(特
開昭62−200603号公報、特開昭63−8630
9号公、報特開昭63−259903号公報)■ 樹脂
、無機誘電体粉末および(粒状)カーボン粉末が混合さ
れてなる複合誘電体(特開昭57134806号公報)
■ Composite dielectric material consisting of 4M resin and inorganic dielectric powder (JP-A-62-200603, JP-A-63-8630)
9, JP-A-63-259903) Composite dielectric material made by mixing resin, inorganic dielectric powder and (granular) carbon powder (JP-A-57134806)
.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、上記■〜■の複合誘電体は以下の点で実
用性に欠けている。
However, the above composite dielectric materials (1) to (4) lack practicality in the following points.

■の複合誘電体は、誘電率は増大するが、誘電損失が大
きすぎる。■の複合誘電体は、高比誘電率のg!#、機
粉末を加えているにもかかわらず比誘電率が思ったほど
高くない。■の複合誘電体は、やはり誘電損失が改善さ
れず、今ひとつ実用性に欠ける。
Although the dielectric constant of (2) increases, the dielectric loss is too large. ■The composite dielectric has a high dielectric constant g! #The relative dielectric constant is not as high as expected despite the addition of powder. The composite dielectric material (2) still has no improvement in dielectric loss and is not very practical.

この発明は、上記事情に鑑み、十分な比誘電率を有し、
誘電損失が低く実用性に冨む複合誘電体を提供すること
を課題とする。
In view of the above circumstances, this invention has a sufficient dielectric constant,
The object of the present invention is to provide a composite dielectric material that has low dielectric loss and is highly practical.

〔課題を解決するための手段〕[Means to solve the problem]

前記課題を解決するため、請求項1〜5記載の複合誘電
体は、以下の構成をとるようにしている請求項1の複合
誘電体1は、第1図にみるように、無機誘電体粉末2・
・・と樹脂3とからなり、第2図にみるように、無機誘
電体粉末2粒子の表面に部分的に導電性物2aを付着さ
せておく構成となっている。
In order to solve the above problems, the composite dielectric material according to claims 1 to 5 has the following configuration.The composite dielectric material 1 according to claim 1, as shown in FIG. 2・
... and a resin 3, and as shown in FIG. 2, a conductive material 2a is partially attached to the surface of two particles of inorganic dielectric powder.

この発明の誘電体では、導電性物に、例えば、請求項2
の複合誘電体のように、導電性粉末を用い、この粉末を
マトリックスとなる樹脂(誘電体構成用樹脂)と同じ樹
脂により無機誘電体粉末粒子の表面に付着させるように
している。
In the dielectric of this invention, for example, claim 2 is applied to a conductive material.
As in the composite dielectric described above, conductive powder is used, and this powder is attached to the surface of the inorganic dielectric powder particles using the same resin as the matrix resin (resin for forming the dielectric).

導電性粉末には、例えば、請求項3の複合誘電体のよう
に、金属粉末、カーボン粉末、半導体粉末のうちから選
ばれた少なくともひとつが用いられる。
As the conductive powder, at least one selected from metal powder, carbon powder, and semiconductor powder is used, for example, as in the composite dielectric of the third aspect.

請求項4の複合誘電体1′は、第3図にみるように、無
機誘電体粉末2および樹脂3とともに導電性針状粉末4
も含む構成となっている。
As shown in FIG. 3, the composite dielectric 1' of claim 4 includes conductive acicular powder 4 along with inorganic dielectric powder 2 and resin 3.
The structure also includes

請求項5記載の複合誘電体は、加えて、無機誘電体粉末
2としてT i at粉末を用いるようにしている。
In addition, the composite dielectric according to the fifth aspect uses Tiat powder as the inorganic dielectric powder 2.

そして、請求項1〜5の複合誘電体を構成する樹脂とし
ては、例えば、テフロン樹脂、ポリイミド樹脂、エポキ
シ樹脂、ポリエステル樹脂、ポリエチレン樹脂、PPO
(ポリフェニレンオキシド)樹脂、PVDF (ポリぶ
つ化ビニリデン)樹脂等が挙げられる。
Examples of the resin constituting the composite dielectric of claims 1 to 5 include Teflon resin, polyimide resin, epoxy resin, polyester resin, polyethylene resin, and PPO resin.
(polyphenylene oxide) resin, PVDF (polyvinylidene fluoride) resin, and the like.

一方、無機誘電体粉末粒子は、PbTixZr+−X 
Ox 、PbTiOs 、Ti1t 、BaTi01、
PbNb06、さらには、温度および周波数依存性改善
のための改質を施したチタン酸バリウム系組成物、各種
の3成分系のペロブスカイト系組成物等からなるものが
挙げられる。
On the other hand, the inorganic dielectric powder particles are PbTixZr+-X
Ox, PbTiOs, Tilt, BaTi01,
Examples include PbNb06, barium titanate compositions modified to improve temperature and frequency dependence, and various three-component perovskite compositions.

導電什物用の導電性粉末としては、具体的には、例えば
、A、 6粉末く金属粉末)、グラファイト粉末(カー
ボン粉末)、酸化スズ粉末(半導体粉末)、酸化亜鉛粉
末(半導体粉末)等が挙げられる。これらの粉末は複数
併用されるようであってもよい。
Specifically, examples of conductive powder for conductive objects include A, 6 powder (metal powder), graphite powder (carbon powder), tin oxide powder (semiconductor powder), zinc oxide powder (semiconductor powder), etc. Can be mentioned. A plurality of these powders may be used in combination.

上記導電性粉末は、単独で、あるいは、樹脂を併用し物
理的、化学的に無機誘電体粉末粒子表面に付着(接合)
させられる。特に、マトリックとなる樹脂と同一の樹脂
を併用して付着させると、導電性物がより剥がれ難くく
好ましい。ただ、金属粉末は、樹脂を併用せずとも無機
誘電体粉末粒子の表面に比較的強く付着(接合)させら
れる傾向がみられる。
The above conductive powder is physically and chemically attached (bonded) to the surface of the inorganic dielectric powder particles either alone or in combination with a resin.
I am made to do so. In particular, it is preferable to use the same resin as the matrix resin to make the conductive material more difficult to peel off. However, metal powder tends to be relatively strongly adhered (bonded) to the surface of inorganic dielectric powder particles even without the use of resin.

請求項4記載の複合誘電体で添加される導電性針状粉末
としては、例えば、カーボンファイバー、金属ファイバ
ー、SiCウィスカ等が例示される。これらの導電性針
状粉末は、通常、平均粒子長さが10〜100u程度の
範囲にあり、平均粒径が0.1〜lcjttm程度の範
囲にあるものが用いられる。添加される針状導電性粉末
粒子が余り短いと、無機誘電体粉末粒子間を電気的に接
続する機能が弱く、逆に、余り長いと絶縁性や耐圧の低
下が大きくなる。
Examples of the conductive acicular powder added in the composite dielectric according to claim 4 include carbon fibers, metal fibers, SiC whiskers, and the like. These conductive acicular powders usually have an average particle length in the range of about 10 to 100 u and an average particle size in the range of about 0.1 to lcjttm. If the acicular conductive powder particles added are too short, the ability to electrically connect between the inorganic dielectric powder particles will be weak, and on the other hand, if they are too long, the insulation properties and breakdown voltage will be greatly reduced.

導電性針状粉末の添加割合は、無機誘電体粉末、樹脂お
よび導電性針状粉末の合計量を100容積%とすると、
0.1〜20容積%の範囲であることが好ましい、0.
1容積%未満では、添加効果がなく、20容積%を越え
ると、絶縁性や耐圧の低下が大き過ぎたり、誘電損失が
大き過ぎたりといった不都合が起こる傾向にある。
The addition ratio of the conductive acicular powder is as follows, assuming that the total amount of the inorganic dielectric powder, resin, and conductive acicular powder is 100% by volume.
Preferably in the range of 0.1 to 20% by volume, 0.
If the amount is less than 1% by volume, there is no effect of addition, and if it exceeds 20% by volume, problems such as excessive reduction in insulation properties and breakdown voltage, and excessively large dielectric loss tend to occur.

また、この発明の複合誘電体では、樹脂と無機誘電体粉
末の配合比率(容積比率)は、通常、前記の比率範囲が
とられている。
Further, in the composite dielectric of the present invention, the blending ratio (volume ratio) of the resin and the inorganic dielectric powder is usually within the above ratio range.

樹脂:誘電体粉末−9:】〜2:8 もちろん、この発明にかかる複合誘電体は、上記例示の
樹脂や粉末、あるいは、数値範囲のものに限らないこと
はいうまでもない、また、複合誘電体が、無機誘電体粉
末、樹脂、あるいは、導電性釘状粉末の外に性状向上用
の他成分を含んでいてもよい。
Resin: Dielectric powder -9: ] ~ 2:8 Of course, it goes without saying that the composite dielectric according to the present invention is not limited to the resins and powders exemplified above, or those in the numerical range. The dielectric may contain other components for improving properties in addition to inorganic dielectric powder, resin, or conductive nail powder.

さらに、この発明の複合誘電体は回路基板用として好適
な材料であるが、他の用途に用いてもよいことはいうま
でもない。
Further, although the composite dielectric of the present invention is a suitable material for circuit boards, it goes without saying that it may be used for other purposes.

〔作   用〕[For production]

請求項1〜3の複合誘電体では、無機誘電体粉・未粒子
の表面に部分的に導電性物が付着している。この導電性
物は、複合誘電体において隣接し合う無機誘電体粉末粒
子を並列に接続するいわば低抵抗電極として作用し、こ
れにより高誘電性無機誘電体粉末が十分に活かされ、複
合誘電体全体でみた比誘電率を高いものとする。
In the composite dielectric material according to claims 1 to 3, a conductive material is partially attached to the surface of the inorganic dielectric powder/non-particles. This conductive material acts as a so-called low-resistance electrode that connects adjacent inorganic dielectric powder particles in parallel in the composite dielectric, and thereby the high dielectric inorganic dielectric powder is fully utilized and the entire composite dielectric is Assume that the dielectric constant is high.

請求項4の複合誘電体では、導電性針状粉末粒子が、複
数の無機誘電体粉末粒子を並列に接続するように作用し
、これにより高誘電性無機誘電体粉末が十分に活かされ
、複合誘電体全体でみた比誘電率を高いものとする。
In the composite dielectric material according to claim 4, the conductive acicular powder particles act to connect the plurality of inorganic dielectric powder particles in parallel, whereby the highly dielectric inorganic dielectric powder is fully utilized, and the composite The dielectric constant as a whole is set to be high.

従来は、粒径が1〜2μ園に揃っている無機誘電体粉末
(例えば13 a T i O!粉末)が使われており
、この場合、個々の無機誘電粉末をひとつのコンデンサ
と想定すると、多数のコンデンサが直列に接続されかた
ちとなり、その結果、比誘電率が低下していたのである
。これに対し、この発明の複合誘電体では、直列結合が
減り、並列結合が増えるようなかたちとなるため、比誘
電率が高くなるのである。
Conventionally, inorganic dielectric powder (for example, 13 a Ti O! powder) with a uniform particle size of 1 to 2 μm has been used. In this case, assuming that each inorganic dielectric powder is one capacitor, Many capacitors were connected in series, resulting in a lower dielectric constant. On the other hand, in the composite dielectric of the present invention, the series coupling is reduced and the parallel coupling is increased, so that the dielectric constant becomes high.

そして、上記の導電性物や導電性針状粉末は少量で効果
的に比誘電率を高めるため、従来のように導電性粉末の
添加による誘電損失の増加を招来したりしないのである
Since the above-mentioned conductive material and conductive acicular powder effectively increase the dielectric constant even in small amounts, the addition of conductive powder does not cause an increase in dielectric loss as in the conventional case.

無機誘電体粉末が単一成分系である酸化チタン(特にル
チル型酸化チタン)粉末であると、静電容量−周波数特
性や静電容量−温度特性が安定する等、多成分系の粉末
に比べ性能安定性に優れ、また、安価となる。
When the inorganic dielectric powder is a single-component titanium oxide (especially rutile titanium oxide) powder, it has stable capacitance-frequency characteristics and capacitance-temperature characteristics, compared to multi-component powders. It has excellent performance stability and is inexpensive.

〔実 施 例〕〔Example〕

以下、この発明にかかる複合誘電体の実施例および比較
例を説明する。
Examples and comparative examples of composite dielectrics according to the present invention will be described below.

一実施例1 まず、無機誘電体粉末を以下のようにして作成した。Example 1 First, inorganic dielectric powder was created as follows.

B a T i * 、 ? 4 Z r m 、 !
 a Otの組成となるように、BaC0t 、TiO
x s Zr0zを秤量配合しポットミルを用いて、水
を加えての湿式粉砕混合を行い、乾燥した後、ジルコニ
アルツボ中テ1300℃、1時間の焼成を行い、上記組
成の焼成物を得た。この焼成物を超硬質の乳鉢でまず粗
粉砕し、続いて、ジルコニアポットとジルコニアボール
を用い、粒径7〜15μ蔦(平均Ion)となるまで湿
式粉砕し、そして、乾燥することにより、無機誘電体粉
末を作成した。なお、このセラミック誘電体粉末自体は
、εr =7000 (25℃)tanδ=1.3%(
25℃)の誘電特性をもつ。
B a T i *, ? 4 Z r m,!
a Ot composition, BaC0t, TiO
x s Zr0z was weighed and blended, wet pulverized and mixed with water using a pot mill, dried, and then fired at 1300° C. for 1 hour in a zirconia crucible to obtain a fired product having the above composition. This fired product is first coarsely ground in an ultra-hard mortar, then wet-ground using a zirconia pot and zirconia balls until the particle size becomes 7 to 15 μm (average Ion), and then dried. Dielectric powder was created. Note that this ceramic dielectric powder itself has εr = 7000 (25°C) tan δ = 1.3% (
25°C).

つぎに、上記無機誘電体粉末を99容積%に、0.1μ
臘以下の粒径のグラファイト粉末を0,7容積%、0.
3μ厘以下に微粉砕したPPO樹脂(導電他物付着用樹
脂)を0.3容積%添加し、0荀奈良機械製作所製のハ
イブリダイゼーションシステムを用い、粒子表面に部分
的に導電性物を付着させた1n(機誘電体粉末を得た。
Next, the inorganic dielectric powder was added to 99% by volume and 0.1μ
0.7% by volume of graphite powder with a particle size of 0.7% or less.
Add 0.3% by volume of PPO resin (resin for attaching conductive substances) finely pulverized to 3 μm or less, and use a hybridization system manufactured by Nara Kikai Seisakusho to partially attach conductive substances to the particle surface. 1n (mechanical dielectric powder was obtained).

このようにして得た無機誘電体粉末とPPO樹脂を、容
積比率1:3の割合で混合した。この混合物を金型にセ
ットし、230℃の温度下、20kg/c+Jの圧力で
成形し、圧力をかけたまま室温まで冷却して複合誘電体
を得た。なお、金型内の混合物はCu箔間にセットする
ようにして、出来上がった複合誘電体の両面にはCu箔
が接合されているようにした。
The inorganic dielectric powder thus obtained and the PPO resin were mixed at a volume ratio of 1:3. This mixture was set in a mold, molded at a temperature of 230° C. and a pressure of 20 kg/c+J, and cooled to room temperature while the pressure was applied to obtain a composite dielectric. The mixture in the mold was set between Cu foils so that the Cu foils were bonded to both sides of the completed composite dielectric.

一実施例2− ppo樹脂と無機誘電体粉末の配合比率(容積比率)を
1=1とした他は実施例1と同様にして複合誘電体を得
た。
Example 2 A composite dielectric was obtained in the same manner as in Example 1, except that the blending ratio (volume ratio) of PPO resin and inorganic dielectric powder was 1=1.

実施例3 無機誘電体粉末を97容積%に、0.1μm以下の粒径
のグラファイト粉末を2容積%、0.3μ曹以下に微粉
砕したPPO樹脂を1容積%添加し、ei奈良機械製作
所製のハイブリダイゼーションシステムを用い、粒子表
面に部分的に導電性物を付着させるようにした外は、実
施例1と同様にして複合誘電体を得た。
Example 3 97% by volume of inorganic dielectric powder, 2% by volume of graphite powder with a particle size of 0.1 μm or less, and 1% by volume of PPO resin finely pulverized to 0.3 μm or less were added. A composite dielectric material was obtained in the same manner as in Example 1, except that a conductive substance was partially attached to the particle surface using a hybridization system manufactured by A.

実施例4 無機誘電体粉末を98容積%に、グラファイト粉末に換
えて、0.1 tr*以下の粒径のAI粉末を2容積%
添加し、−奈良機械製作所要のハイブリダイゼーション
システムを用い、粒子表面に部分的に導電性物を付着さ
せるようにした外は、実施例1と同様にして複合誘電体
を得た。
Example 4 98% by volume of inorganic dielectric powder, 2% by volume of AI powder with a particle size of 0.1 tr* or less in place of graphite powder
A composite dielectric material was obtained in the same manner as in Example 1, except that the conductive material was partially attached to the particle surface using a hybridization system manufactured by Nara Kikai Seisakusho.

実施例5− 無機誘電体粉末を97容積%に、グラファイト粉末に換
えて、0.1μm以下の粒径の3 n Oを粉末(三菱
金属@M)を2容積%、0.3p以下に微粉砕したPP
O樹脂を1容積%添加し、■奈良機械製作所載のハイブ
リダイゼーションシステムを用い、粒子表面に部分的に
導電性物を付着させるようにした外は、実施例1と同様
にして複合誘電体を得た。
Example 5 - 97% by volume of inorganic dielectric powder, replaced with graphite powder, and 2% by volume of 3nO powder (Mitsubishi Metals @M) with a particle size of 0.1 μm or less, finely divided into 0.3p or less. crushed PP
A composite dielectric material was prepared in the same manner as in Example 1, except that 1% by volume of O resin was added and a conductive material was partially attached to the particle surface using the hybridization system manufactured by Nara Kikai Seisakusho. Obtained.

実施例6− まず、無機誘電体粉末を以下のようにして作成した。Example 6- First, inorganic dielectric powder was created as follows.

ルチル型酸化チタン粉(平均粒径0.2n)に同粉に対
しPVA熔液を1wt%(PVAは固形分換算)添加し
、水を加えて1QQcpsの粘度のスラリとなるように
調整した。このスラリを、スプレードライヤーを用い、
吐出?、圧力、乾燥温度、風量を調整して、粒径20〜
50μ閣の乾燥粉末を得た。この乾燥粉末を、アルミナ
ルツボ中で1200℃の温度下、2時間焼成し焼結させ
た。このとき、内部では焼結収縮が起こるが、粉末粒子
間での接合は僅かであり、焼成物をアルミナポット中で
約1時間粉砕して、最終的に8〜35μ鳳の酸化チタン
粉末を作成した。
1 wt % (PVA is calculated as solid content) of PVA melt was added to rutile type titanium oxide powder (average particle size 0.2 n), and water was added to adjust the slurry to have a viscosity of 1 QQ cps. Using a spray dryer, this slurry is
vomit? , adjust the pressure, drying temperature, and air volume to obtain a particle size of 20~
A dry powder of 50 μm was obtained. This dry powder was fired and sintered in an aluminum crucible at a temperature of 1200° C. for 2 hours. At this time, sintering shrinkage occurs internally, but the bonding between powder particles is slight, and the fired product is ground in an alumina pot for about 1 hour to finally create titanium oxide powder with a size of 8 to 35μ. did.

つぎに、上記無機誘電体粉末を95容積%に、0.1μ
l以下の粒径のグラファイト粉末を4容積%、0.3u
以下に微粉砕したPPO樹脂(導電製物件着用樹脂)を
1容積%添加し、0喝奈良機械製作所製のハイブリダイ
ゼーションシステムを用い、粒子表面に部分的に導電性
物を付着させた酸化チタン粉末を得た。
Next, the inorganic dielectric powder was added to 95% by volume and 0.1μ
4% by volume of graphite powder with a particle size of less than l, 0.3u
Titanium oxide powder was added with 1% by volume of finely pulverized PPO resin (resin for attaching conductive objects) to the following, and a conductive material was partially attached to the particle surface using a hybridization system manufactured by Nara Kikai Seisakusho. I got it.

ついで、得られた粉末を容積比率で等量のPPO樹脂と
混合した。この混合物を金型にセットし230℃の温度
下、20kg/c11の圧力で成形し、圧力をかけたま
ま室温まで冷却して複合誘電体を得た。なお、金型内で
は混合物をCu箔間にセットするようにし、出来上がっ
た複合誘電体の両面にはCulが接合されているように
した。
The resulting powder was then mixed in volume proportions with an equal amount of PPO resin. This mixture was set in a mold and molded at a temperature of 230° C. and a pressure of 20 kg/c11, and cooled to room temperature while the pressure was applied to obtain a composite dielectric. In addition, the mixture was set between Cu foils in the mold, and Cu was bonded to both sides of the completed composite dielectric.

実施例7 PPO樹脂と酸化チタン粉末の配合比率(容積比率)を
1:2とした他は実施例6と同様にして複合誘電体を得
た。
Example 7 A composite dielectric was obtained in the same manner as in Example 6, except that the blending ratio (volume ratio) of PPO resin and titanium oxide powder was 1:2.

一実施例8− 酸化チタン粉末を90容積%に、0.1μ璽以下の粒径
のグラファイト粉末を8容積%、0.3μ薦以下に微粉
砕したPPO樹脂を2容積%添加し、−奈良機械製作所
型のハイブリダイゼーションシステムを用い、粒子表面
に部分的に導電性物を付着させるようにした外は、実施
例6と同様にして複合誘電体を得た。
Example 8 - 90% by volume of titanium oxide powder, 8% by volume of graphite powder with a particle size of 0.1 μm or less, and 2% by volume of PPO resin finely ground to 0.3 μm or less, - Nara A composite dielectric material was obtained in the same manner as in Example 6, except that a conductive substance was partially attached to the particle surface using a machine manufacturing type hybridization system.

実施例9− 酸化チタン粉末を95容積%に、グラファイト粉末に換
えて、0゜1μm以下の粒径のへ!粉末を5容積%添加
し、01奈良機械製作所製のハイブリダイゼーションシ
ステムを用い、粒子表面に部分的に導電性物を付着させ
るようにした外は、実施例6と同様にして複合誘電体を
得た。
Example 9 - 95% by volume of titanium oxide powder was replaced with graphite powder with a particle size of 0.1 μm or less! A composite dielectric was obtained in the same manner as in Example 6, except that 5% by volume of powder was added and a conductive substance was partially attached to the particle surface using a hybridization system manufactured by 01 Nara Kikai Seisakusho. Ta.

一実施例IO 酸化チタン粉末を95容積%に、グラファイト粉末に換
えて、0. I ttm以下の粒径の導電性5nO8粉
末を4.5容積%、0.3 us以下に微粉砕したPr
o樹脂を0.5容積%添加し、−奈良機械製作所型のハ
イブリダイゼーションシステムを用い、粒子表面に部分
的に導電性物を付着させるようにした外は、実施例6と
同様にして複合誘電体を得た一実施例11 まず、無機誘電体粉末を以下のようにして作成した。
Example IO Titanium oxide powder was replaced with 95% by volume and graphite powder was replaced with 0.0% by volume. Pr is 4.5% by volume of conductive 5nO8 powder with a particle size of I ttm or less, finely pulverized to 0.3 us or less.
A composite dielectric was prepared in the same manner as in Example 6, except that 0.5% by volume of o resin was added, and a conductive material was partially attached to the particle surface using a Nara Kikai Seisakusho type hybridization system. Example 11: First, an inorganic dielectric powder was prepared as follows.

B a T i #、FA Z r *、zaOzの組
成となるように% Bacon 、Ties 、Zr0
tを秤量配合しボットミルを用いて、水を加えての湿式
粉砕混合を行い、乾燥した後、ジルコニアルツボ中で1
300℃、1時間の焼成を行い、上記組成の焼成物を1
%だ。この焼成物を超硬質の乳鉢でまず粗粉砕し、続い
て、ジルコニアボットとジルコニアポールを用い、粒径
7〜15μ飄(平均lOμl)となるまで湿式粉砕し乾
燥することにより、無機誘電体粉末を作成した。なお、
このセラミック誘電体粉末自体は、tr =7000 
 (25℃)、tanδ=1.3%(25°C)の誘電
特性であった。
% Bacon , Ties , Zr0 so that the composition becomes B a T i #, FA Z r *, zaOz
t was weighed and blended, water was added and wet pulverized using a bot mill, and after drying, 1 was mixed in a zirconia crucible.
Firing was performed at 300°C for 1 hour, and the fired product with the above composition was
%is. This fired product is first coarsely ground in an ultra-hard mortar, then wet-ground using a zirconia bot and zirconia pole until the particle size is 7 to 15 μl (average 10 μl), and dried to produce an inorganic dielectric powder. It was created. In addition,
This ceramic dielectric powder itself has tr = 7000
(25°C) and tan δ = 1.3% (25°C).

一方、カーボンファイバーをライカイ機で微粉砕し、約
50〜100IJlの長さで、約5〜10f@の径の導
電性針状粉末を別途に作成した。
On the other hand, carbon fiber was finely pulverized using a Raikai machine to separately prepare conductive acicular powder having a length of about 50 to 100 IJl and a diameter of about 5 to 10 f@.

ついで、上記無機誘電体粉末49容積%に、カーボンフ
ァイバーからなる導電性針状粉末を1容積%、PPO樹
脂を50容積%添加し、粒径がなるべく保たれるように
してロッキングミキサを用い、十分に混合・解砕した。
Next, 1 volume % of conductive acicular powder made of carbon fiber and 50 volume % of PPO resin were added to 49 volume % of the inorganic dielectric powder, and a rocking mixer was used to maintain the particle size as much as possible. Thoroughly mixed and crushed.

この混合物を金型に七ソ]・シ、230℃の温度下、2
0kg/co!の圧力で成形し、圧力をかけたまま室温
まで冷却して複合誘電体を得た。なお、金型内では混合
物がCu箔間にセットし、出来上がった複合誘電体の両
面にはCuiが接合されているようにした。
This mixture was placed in a mold at a temperature of 230°C for 2 hours.
0kg/co! A composite dielectric material was obtained by molding the material under a pressure of The mixture was set between Cu foils in the mold, and Cu was bonded to both sides of the resulting composite dielectric.

実施例12− 無機誘電体粉末45容積%に、カーボンファイバーから
なる導電性針状粉末を5容積%、PPO樹脂を50容積
%添加するようにした外は実施例11と同様にして複合
誘電体を得た。
Example 12 - A composite dielectric was produced in the same manner as in Example 11, except that 5 volume % of conductive acicular powder made of carbon fiber and 50 volume % of PPO resin were added to 45 volume % of inorganic dielectric powder. I got it.

一実施例13− 上記無機誘電体粉末45容積%に、カーボンファイバー
に換えて、SiCウィスカ(約50〜100μの長さ、
約0.1〜1μの径)からなる導電性針状粉末を5容積
%、PPO樹脂を50容積%添加するようにした外は実
施例11と同様にして複合誘電体を得た。
Example 13 - SiC whiskers (approximately 50 to 100μ in length,
A composite dielectric material was obtained in the same manner as in Example 11, except that 5% by volume of conductive acicular powder (with a diameter of approximately 0.1 to 1 μm) and 50% by volume of PPO resin were added.

一比較例1 無機誘電体粉末粒子の表面に導電性物を付着させないよ
うにした外は、実施例1と同様にして複合誘電体を得た
Comparative Example 1 A composite dielectric was obtained in the same manner as in Example 1, except that no conductive material was attached to the surface of the inorganic dielectric powder particles.

比較例2 無機誘電体粉末粒子の表面に導電性物を付着させないよ
うにした外は、実施例6と同様にして複合誘電体を得た
Comparative Example 2 A composite dielectric was obtained in the same manner as in Example 6, except that no conductive substance was attached to the surface of the inorganic dielectric powder particles.

一比較例3 無機誘電体粉末粒子50容積%とし、PPO樹脂50容
禎%としたく導電性針状粉末は添加せず)外は、実施例
11と同様にして複合誘電体を得た。
Comparative Example 3 A composite dielectric was obtained in the same manner as in Example 11, except that the inorganic dielectric powder particles were 50% by volume and the PPO resin was 50% by volume (no conductive acicular powder was added).

一比較例4− 無機誘電体粉末粒子とPP樹脂を容積比でl:3で混合
するとともに、導電性針状粉末に換えて、粒状グラファ
イト粉末を3容積%添加するようにした他は、実施例1
1と同様にして複合誘電体を得た。
Comparative Example 4 - Inorganic dielectric powder particles and PP resin were mixed at a volume ratio of 1:3, and granular graphite powder was added in an amount of 3% by volume instead of conductive acicular powder. Example 1
A composite dielectric material was obtained in the same manner as in Example 1.

このようにして得た、実施例1〜13および比較例1〜
4の複合誘電体の比誘電率εrおよび誘電損失特性(誘
電正接;  tanδ)を測定した。なお、測定周波数
はIGhであり、測定の際の雰囲気温度は25℃である
Examples 1-13 and Comparative Examples 1-
The relative dielectric constant εr and dielectric loss characteristics (dielectric loss tangent; tan δ) of the composite dielectric material No. 4 were measured. Note that the measurement frequency is IGh, and the ambient temperature during measurement is 25°C.

測定結果を第1〜3表に記す。The measurement results are shown in Tables 1 to 3.

第 表 第1.2表の実施例1〜13の複合誘電体は、いずれも
、十分な比誘電率を有している。実施例1の複合誘電体
は、対応する比較例1の複合誘電体と比べて比誘電率が
著しく高く、また、実施例6の複合誘電体は、対応する
比較例2の複合誘電体に比べてやはり比誘電率が著しく
高く、無機誘電体粉末粒子の表面に導電性物を付着させ
ることが比誘電率の向上をもたらすものであることをよ
く示している。また、実施例11の複合誘電体は、対応
する比較例3の複合誘電体と比べて比誘電率が著しく高
く、導電性針状粉末を添加することが比誘電率の向上を
もたらすものであることをよく示している。さらに、各
実施例の複合誘電体は、粒状のカーボン粉末を用いた従
来の複合誘電体(比較例4)に比べて誘電正接が1%以
下と低く誘電損失特性が実用性の損なわれない範囲にあ
ることもよく分かる。
The composite dielectrics of Examples 1 to 13 in Table 1.2 all have sufficient dielectric constants. The composite dielectric of Example 1 has a significantly higher dielectric constant than the corresponding composite dielectric of Comparative Example 1, and the composite dielectric of Example 6 has a significantly higher dielectric constant than the corresponding composite dielectric of Comparative Example 2. After all, the dielectric constant is extremely high, which clearly shows that attaching a conductive substance to the surface of the inorganic dielectric powder particles brings about an improvement in the dielectric constant. Further, the composite dielectric of Example 11 has a significantly higher dielectric constant than the corresponding composite dielectric of Comparative Example 3, and the addition of the conductive acicular powder brings about an improvement in the dielectric constant. It clearly shows that. Furthermore, the composite dielectric materials of each example have a dielectric loss tangent of 1% or less, which is lower than that of the conventional composite dielectric material using granular carbon powder (Comparative Example 4), and the dielectric loss characteristics are within a range that does not impair practicality. It is also clear that there is

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、この発明の複合誘電体では、無機
誘電体粉末粒子表面に部分的に導電性物を付着させたり
、あるいは、導電性針状粉末を添加したりしているため
、十分な比誘電率と低い誘電損失を兼ね備えた実用性の
高いものとなっている。
As mentioned above, in the composite dielectric of the present invention, a conductive substance is partially attached to the surface of the inorganic dielectric powder particles, or conductive acicular powder is added, so that the composite dielectric material of the present invention is sufficiently It has a high relative dielectric constant and low dielectric loss, making it highly practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、請求項1の複合誘電体の一例を模式的にあら
れす説明図、第2図は、この複合誘電体の無機誘電体粉
末粒子を模式的にあられず説明図、第3図は、請求項4
の複合誘電体の一例を模式的にあられす説明図である。 l、1′・・・複合誘電体  2・・・無機誘電体粉末
2a・・・導電性物  3・・・樹脂  4・・・導電
性針状粉末 代理人 弁理士  松 本 武 彦
FIG. 1 is a schematic illustration of an example of the composite dielectric of claim 1, FIG. 2 is a schematic illustration of inorganic dielectric powder particles of this composite dielectric, and FIG. Claim 4
FIG. 2 is an explanatory diagram schematically showing an example of a composite dielectric material. l, 1'... Composite dielectric 2... Inorganic dielectric powder 2a... Conductive material 3... Resin 4... Conductive acicular powder Agent Patent attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】 1 無機誘電体粉末と樹脂とからなる複合誘電体におい
て、前記無機誘電体粉末粒子の表面には部分的に導電性
物が付着されていることを特徴とする複合誘電体。 2 導電性物が導電性粉末であって、誘電体構成用樹脂
と同じ樹脂により無機誘電体粉末粒子の表面に付着され
ている請求項1記載の複合誘電体。 3 導電性粉末が、金属粉末、カーボン粉末、半導体粉
末のうちから選ばれた少なくともひとつである請求項2
記載の複合誘電体。 4 無機誘電体粉末と樹脂とからなる複合誘電体におい
て、導電性針状粉末も含んでいることを特徴とする複合
誘電体。 5 無機誘電体粉末がTiO_2粉末である請求項1か
ら請求項4までのいずれかに記載の複合誘電体。
[Scope of Claims] 1. A composite dielectric comprising an inorganic dielectric powder and a resin, characterized in that a conductive material is partially attached to the surface of the inorganic dielectric powder particles. . 2. The composite dielectric material according to claim 1, wherein the conductive material is a conductive powder, and is adhered to the surface of the inorganic dielectric powder particles using the same resin as the resin for forming the dielectric material. 3. Claim 2, wherein the conductive powder is at least one selected from metal powder, carbon powder, and semiconductor powder.
Composite dielectric as described. 4. A composite dielectric comprising an inorganic dielectric powder and a resin, the composite dielectric comprising also conductive acicular powder. 5. The composite dielectric material according to any one of claims 1 to 4, wherein the inorganic dielectric powder is TiO_2 powder.
JP1044117A 1989-02-23 1989-02-23 Complex dielectric material Pending JPH02225357A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1044117A JPH02225357A (en) 1989-02-23 1989-02-23 Complex dielectric material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1044117A JPH02225357A (en) 1989-02-23 1989-02-23 Complex dielectric material

Publications (1)

Publication Number Publication Date
JPH02225357A true JPH02225357A (en) 1990-09-07

Family

ID=12682663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1044117A Pending JPH02225357A (en) 1989-02-23 1989-02-23 Complex dielectric material

Country Status (1)

Country Link
JP (1) JPH02225357A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724727A (en) * 1996-08-12 1998-03-10 Motorola, Inc. Method of forming electronic component
WO1999043036A1 (en) * 1998-02-20 1999-08-26 Sumitomo Electric Industries, Ltd. Phase shifter and scanning antenna
JP2002293610A (en) * 2001-03-30 2002-10-09 Jsr Corp Composite particles for dielectric, composition for forming dielectric, and electronic component
JP2003011270A (en) * 2001-07-02 2003-01-15 Jsr Corp Dielectric layer with conductive foil, capacitor using the same and forming method thereof
JP2015197515A (en) * 2014-03-31 2015-11-09 大王製紙株式会社 Manufacturing method of carbon fine particles for electrophotographic toner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5724727A (en) * 1996-08-12 1998-03-10 Motorola, Inc. Method of forming electronic component
WO1999043036A1 (en) * 1998-02-20 1999-08-26 Sumitomo Electric Industries, Ltd. Phase shifter and scanning antenna
JP2002293610A (en) * 2001-03-30 2002-10-09 Jsr Corp Composite particles for dielectric, composition for forming dielectric, and electronic component
JP2003011270A (en) * 2001-07-02 2003-01-15 Jsr Corp Dielectric layer with conductive foil, capacitor using the same and forming method thereof
JP2015197515A (en) * 2014-03-31 2015-11-09 大王製紙株式会社 Manufacturing method of carbon fine particles for electrophotographic toner

Similar Documents

Publication Publication Date Title
US5427988A (en) Ceramic ferroelectric composite material - BSTO-MgO
KR20020091779A (en) Method for manufacturing spherical ceramics powder, spherical ceramics powder, and composite materials
JPH02225357A (en) Complex dielectric material
CN113336539A (en) Microwave dielectric ceramic material, preparation method and application
JP2802173B2 (en) Composite dielectric
CN113831123B (en) Dielectric ceramic material for barium titanate-based chip capacitor and preparation method and application thereof
US3832192A (en) Ceramic dielectric porcelains
JP4131996B2 (en) Dielectric ceramic composition and dielectric resonator using the same
JPH02225358A (en) Complex dielectric material
Gu et al. A novel low-fired and high-ε r microwave dielectric ceramic BaCu (B 2 O 5)-added 0.6 Ca 3/5 La 4/15 TiO 3–0.4 Li 1/2 Nd 1/2 TiO 3
KR100784928B1 (en) Manufacturing and composition of thick films ferroelectric for rf tunable device
JPS59103205A (en) Dielectric porcelain composition for microwave
JPH0426004A (en) Composite dielectric
FI129542B (en) Manufacturing electroceramic composite
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JP2002293619A (en) Dielectric composite material and production method therefor
JP2004203626A (en) Dielectric composition
JPH08511502A (en) New Ceramic Ferroelectric Composite Material-BSTO-MgO
JPH04133386A (en) Board for printed circuit
JP2665104B2 (en) Composite dielectric and printed circuit board
JP2000063182A (en) Production of ceramic raw material capable of being sintered at low temperature
JP2003238241A (en) Method of producing glass ceramics
JPH02252654A (en) Dielectric porcelain composition for microwave
JPH09169564A (en) Dielectric ceramic composition and production thereof
JP3683645B2 (en) High frequency dielectric ceramic composition