JPH01317153A - Production of calcined substance for producing inorganic dielectric powder - Google Patents

Production of calcined substance for producing inorganic dielectric powder

Info

Publication number
JPH01317153A
JPH01317153A JP63148711A JP14871188A JPH01317153A JP H01317153 A JPH01317153 A JP H01317153A JP 63148711 A JP63148711 A JP 63148711A JP 14871188 A JP14871188 A JP 14871188A JP H01317153 A JPH01317153 A JP H01317153A
Authority
JP
Japan
Prior art keywords
powder
substance
calcined
raw material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63148711A
Other languages
Japanese (ja)
Inventor
Seishiro Yamakawa
山河 清志郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP63148711A priority Critical patent/JPH01317153A/en
Publication of JPH01317153A publication Critical patent/JPH01317153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PURPOSE:To improve a change both in dielectric constant of a multi-component substrate by temperature and in the dielectric constant and loss thereof by frequency and reduce cost by presubjecting raw material powder to specific treatment, calcining the resultant powder and quenching the calcined substance in obtaining the calcined substance for producing inorganic dielectric powder for manufacturing the substrate consisting of an inorganic dielectric powder and resin. CONSTITUTION:Raw material powder is calcined to provide a calcined substance for producing inorganic dielectric powder. In the process, powder prepared by preapplying a material for weakening bond of mutual powder in calcining to the surface is used as the above-mentioned raw material powder. After calcining, the resultant calcined substance is then quenched to a temperature below the Curie temperature. For example, fine ZrO2 powder, is cited as the substance for weakening the afore-mentioned bond. The above-mentioned substance as a granular substance 2 or layered substance 3 can be applied to the raw material powder 1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、無機誘電体粉末製造用焼成物の製法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a fired product for producing inorganic dielectric powder.

〔従来の技術〕[Conventional technology]

高度情報化時代を迎え、情報伝送はより高速化・高周波
化の傾向にある。自動車電話やパーソナル無線等の移動
無線、衛星放送、衛星通信やCATV等のニューメディ
アも実用化の段階にある。
As we enter the advanced information age, information transmission tends to become faster and more frequent. Mobile radios such as car telephones and personal radios, new media such as satellite broadcasting, satellite communications, and CATV are also at the stage of practical application.

一方、移動無線やニューメディアでは、機器コンパクト
化が推し進められていて、これに伴い誘電体共振器等の
マイクロ波立体回路素子に対しても小型化が強く望まれ
ている。
On the other hand, in mobile radio and new media, devices are being made more compact, and along with this, there is a strong desire for miniaturization of microwave three-dimensional circuit elements such as dielectric resonators.

マイクロ波立体回路素子の大きさは、使用電磁波の波長
が基準となる。比誘電率εrの誘電体中を伝播する電磁
波の波長λは、真空中の伝播波長をλ。とすると、λ−
λ。/εr0Sとなる。したがって、素子は、使用され
る回路用誘電体基板の比誘電率が大きい程、小型になる
。また、誘電体基板の比誘電率が大きいと、電磁エネル
ギーが基板内に集中するため、電磁波の漏れが少なく好
都合である。
The size of the microwave three-dimensional circuit element is based on the wavelength of the electromagnetic waves used. The wavelength λ of an electromagnetic wave propagating in a dielectric material with relative permittivity εr is the propagation wavelength in vacuum. Then, λ−
λ. /εr0S. Therefore, the larger the dielectric constant of the circuit dielectric substrate used, the smaller the element becomes. Further, when the relative dielectric constant of the dielectric substrate is large, electromagnetic energy is concentrated within the substrate, which is advantageous in that leakage of electromagnetic waves is small.

誘電体基板として、セラミック基板が用いられることが
多い。セラミック基板で最も普及しているのが、A1z
Os基板である。比誘電率はやや小さい(9,8)が、
通常の樹脂基板に比べると大きい。
A ceramic substrate is often used as the dielectric substrate. The most popular ceramic substrate is A1z.
It is an Os substrate. Although the relative dielectric constant is somewhat small (9, 8),
Larger than normal resin substrates.

ただ、セラミック基板は、後加工(孔明けや切断)が容
易でない、放熱板の圧着が容易でない、大面積化が困難
なので、回路板作成の際、いわゆる多数個取りの個数が
少なく生産性が低いといった難点がある。
However, with ceramic substrates, post-processing (drilling and cutting) is not easy, heat dissipation plates cannot be easily crimped, and it is difficult to increase the area. There is a drawback that it is low.

これらの問題を解決するため、高比誘電率(εr=50
0〜8000)をもつ無機誘電体粉末と樹脂を用いた複
合基板が開発されつつある。この複合基板は、比誘電率
εrf)<適度に大きい(εr=10〜30程度)こと
が要求される。比誘電率が余り大きいと、回路の必要幅
が細くなりすぎて回路形成が困難となるからである。高
比誘電率の無機誘電体粉末を樹脂と混合させることで適
度に大きな比誘電率εrを持たせるようにするのである
In order to solve these problems, a high dielectric constant (εr=50
Composite substrates using inorganic dielectric powders and resins having a particle size of 0 to 8,000) are being developed. This composite substrate is required to have a relative dielectric constant εrf)<moderately large (εr=about 10 to 30). This is because if the dielectric constant is too large, the required width of the circuit becomes too narrow, making it difficult to form the circuit. By mixing inorganic dielectric powder with a high relative permittivity with a resin, a suitably large relative permittivity εr can be obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、無機誘電体粉末と樹脂を用いた複合基板は、比
誘電率の対温度変化、比誘電率および誘電損失の対周波
数変化が大きく、安定性が十分でない。
However, a composite substrate using an inorganic dielectric powder and a resin has large changes in relative permittivity with respect to temperature and changes in relative permittivity and dielectric loss with respect to frequency, and is not sufficiently stable.

しかも、複合基板に使われる無機誘電体粉末は、製造時
間が長くてコストが高いという難点がある。無機焼成物
の粉砕に時間がかかるからであるこの発明は、これらの
事情に鑑み、複合基板の比誘電率の対温度変化、比誘電
率および誘電損失の対周波数変化を向上させられ、しか
も、製造時間が短くてコストの安い無機誘電体粉末を作
ることのできる焼成物の製法を提供することを課題とす
る。
Moreover, the inorganic dielectric powder used in composite substrates has the drawback of long manufacturing time and high cost. This is because it takes time to grind an inorganic fired product.In view of these circumstances, the present invention improves the relative permittivity of a composite substrate relative to temperature, and the relative permittivity and dielectric loss relative to frequency. An object of the present invention is to provide a method for producing a fired product that can produce inorganic dielectric powder in a short production time and at low cost.

〔課題を解決するための手段〕[Means to solve the problem]

この発明の製法では、原料粉末を焼成した無機誘電体粉
末製造用の焼成物を得るにあたり、前記原料粉末として
、焼成の際の粉末同士の結合を弱める物質を表面に予め
付着させた粉末を用いるようにするとともに、焼成後、
キュリー温度を下回る温度まで急冷するようにしている
In the manufacturing method of the present invention, in order to obtain a fired product for producing an inorganic dielectric powder by firing a raw material powder, the raw material powder is a powder on which a substance that weakens the bond between the powders during firing is adhered in advance to the surface. In addition, after firing,
It is rapidly cooled to a temperature below the Curie temperature.

〔作   用〕[For production]

焼成物は焼成後の急冷により、高温時の常誘電体のまま
である。常誘電体では、比誘電率の対温度変化、比誘電
率および誘電損失の対周波数変化が小さい。
The fired product remains a paraelectric material at high temperatures due to rapid cooling after firing. In a paraelectric material, the change in relative permittivity with respect to temperature and the change in relative permittivity and dielectric loss with respect to frequency are small.

一方、焼成物では必要温度での焼成の際に粉末同士の結
合を弱める物質が付着しているため、焼結の程度、すな
わち結合の程度が弱い。それだけでなく、焼成物は急冷
により焼結個所(ネ・ンク)に切れが入るなどして脆く
なっている。そのため、粉砕に要する時間が短くてすむ
On the other hand, in the fired product, a substance that weakens the bond between the powders is attached during firing at the required temperature, so the degree of sintering, that is, the degree of bonding is weak. Not only that, but the fired product becomes brittle due to rapid cooling, with cuts appearing in the sintered parts. Therefore, the time required for crushing can be shortened.

〔実 施 例〕〔Example〕

以下、この発明を、その実施例に基づいて詳しく説明す
る。
Hereinafter, the present invention will be explained in detail based on examples thereof.

原料粉末には、通常、仮焼粉末が使われる。予め仮焼し
て一定の組成の誘電体粉末にしておくのである。
Calcined powder is usually used as the raw material powder. The dielectric powder is calcined in advance to form a dielectric powder with a certain composition.

例えば、B a T i Ch組成になるよう出発原料
として、TiOx 、B a CO@の各粉末を等モル
比の割合で良く混ぜ合わせて、アルミナルツボ中、空気
雰囲気の下、1150℃の温度で仮焼成物を得る。これ
を、ナイロンポットとナイロンコーティング鋼球を用い
た湿式粉砕により粉砕し仮焼粉末にする。この仮焼粉末
は、例えば、0.5〜5゜0μm程度の範囲の粒径であ
る。なお、BaTi0、組成の場合、いわゆるデブレソ
サとして、MgTioz 、CaTi0i 、、Ba5
ins 、Fe、02等が併用されていてもよい。ただ
、粉砕するとデプレソサ効果は弱まる傾向がある。
For example, powders of TiOx and B a CO@ are mixed well in an equimolar ratio as starting materials to obtain a B a T i Ch composition, and the mixture is heated in an alumina crucible at a temperature of 1150°C under an air atmosphere. Obtain a calcined product. This is pulverized into a calcined powder by wet pulverization using a nylon pot and nylon coated steel balls. This calcined powder has a particle size in the range of, for example, about 0.5 to 5.0 μm. In addition, in the case of BaTi0, the composition is MgTioz, CaTi0i, Ba5 as so-called Debresosa.
ins, Fe, 02, etc. may be used in combination. However, when crushed, the depressosa effect tends to weaken.

つぎに、この仮焼粉末の表面に焼成の際の粉末同士の結
合を弱める物質を付着させた原料粉末を作る。この物質
は、第1図にみるように、仮焼粉末1表面に粒状物2と
して付着させるようにしてもよいし、第2図にみるよう
に、層状物3として付着させるようにしてもよい。具体
的にはZrO2@粉末を付着させる等の処理を行う。
Next, a raw material powder is prepared by attaching a substance to the surface of this calcined powder to weaken the bond between the powders during firing. This substance may be attached to the surface of the calcined powder 1 as granules 2, as shown in FIG. 1, or as a layered material 3, as shown in FIG. . Specifically, a process such as attaching ZrO2@ powder is performed.

ついで、このようにして作成した原料粉末を焼成(本焼
成)して焼成物を作る。
Next, the raw material powder thus created is fired (main firing) to produce a fired product.

本焼成の場合、焼成温度は、通常、1200〜1400
℃の範囲である。これは、所定の誘電特性を有するよう
に構成結晶をある程度まで粒成長させるためである。
In the case of main firing, the firing temperature is usually 1200 to 1400.
℃ range. This is to cause the constituent crystals to grow to a certain extent so as to have predetermined dielectric properties.

上記の温度範囲の焼成では、通常、焼成物の粉末は強く
焼結するが、この発明の焼成物では表面に付着す゛る物
質により焼結が弱められる。
When firing in the above temperature range, the powder of the fired product is usually strongly sintered, but in the fired product of the present invention, the sintering is weakened by the substances adhering to the surface.

原料物を焼成した後で一定以上の温度からキュリー温度
を下回る温度まで一気に下げるように急冷する。急冷は
、原料物を蒸留水に投下することにより行う。通常、急
冷開始温度は、必要焼成温度より少し低い温度になる。
After the raw materials are fired, they are rapidly cooled to lower the temperature from a certain level to below the Curie temperature. Rapid cooling is performed by dropping the raw material into distilled water. Usually, the quenching start temperature is slightly lower than the required firing temperature.

高温度の原料物をルツボ(焼成炉)から出し水中に投下
するまでの間に温度が下がるからである。原料物の温度
が余り低くなると、急冷しても十分な効果は得られない
。急冷開始温度は、通常、700℃以上であることが好
ましい。
This is because the temperature of the high-temperature raw material drops before it is taken out of the crucible (calcination furnace) and dropped into water. If the temperature of the raw material is too low, even if it is rapidly cooled, a sufficient effect cannot be obtained. The quenching start temperature is usually preferably 700°C or higher.

急冷により高温での結晶構造がそのまま室温に持ち込ま
れ常誘電体になる。13 a T j Oxの場合、キ
ュリー温度が120℃である。12・0℃以上では立方
晶であり、急冷によりこの立方晶が室温に持ち込まれる
のである。
Rapid cooling brings the crystal structure at high temperature to room temperature, making it a paraelectric material. In the case of 13 a T j Ox, the Curie temperature is 120°C. At temperatures above 12.0°C, it forms a cubic crystal, and this cubic crystal is brought to room temperature by rapid cooling.

他に急冷の具体的な方法として、十分大きな熱容量の冷
鉄板の上に放置する方法などがある。
Another specific method of rapid cooling is to leave it on a cold iron plate with a sufficiently large heat capacity.

焼成物の粉砕は、例えば、ナイロンポットとナイロンコ
ーティング鋼球を用いた湿式粉砕等により粉末化する。
The fired product is pulverized by, for example, wet pulverization using a nylon pot and a nylon-coated steel ball.

この無機誘電体粉末(セラミック誘電体粉末)の粉末粒
径(平均粒径)は、複合基板の場合、通常、0.1〜3
.c+m (0,1〜10μm程度の粒度分布をもつ)
程度が好ましい。
The powder particle size (average particle size) of this inorganic dielectric powder (ceramic dielectric powder) is usually 0.1 to 3
.. c+m (with particle size distribution of about 0.1 to 10 μm)
degree is preferred.

複合基板を作るには、樹脂(架橋剤等を含む場合もある
)と無機誘電体粉末を混合し、必要に応じて銅薄等の金
属薄を積層し、加熱加圧成形するようにする。
To make a composite board, resin (which may contain a crosslinking agent, etc.) and inorganic dielectric powder are mixed, a thin metal such as copper is layered as needed, and the mixture is heated and pressed.

複合基板に強度を持たせる場合には、樹脂と粉末の混合
物をガラスクロス等の基材に含浸させ、必要に応じて金
属薄を積層し、加熱加圧成形するようにする。例えば、
PPO(ポリフェニレンオキシド)樹脂と重合架橋剤の
スチレンを含む樹脂液70容量部に無機誘電体粉末を3
0容量部を十分に混ぜ合わせたものを、100μmの厚
みのガラスクロスに含浸させ乾燥させる。乾燥させた基
材5枚と35μmの銅薄を両面に積層して、200℃の
温度下、加熱加圧して硬化させ銅張り複合基板(厚み0
.8m1)を完成する。もちろん、銅薄は回路形成のた
めのものであり、回路形成は通常のエツチング法等によ
り行う。
In order to provide strength to the composite substrate, a base material such as glass cloth is impregnated with a mixture of resin and powder, and if necessary, a thin metal layer is laminated and molded under heat and pressure. for example,
Add 3 parts by volume of inorganic dielectric powder to 70 parts by volume of a resin solution containing PPO (polyphenylene oxide) resin and styrene as a polymerization crosslinking agent.
A glass cloth having a thickness of 100 μm is impregnated with a sufficiently mixed mixture of 0 parts by volume and dried. Five dried base materials and 35 μm thin copper were laminated on both sides and cured by heating and pressing at a temperature of 200°C to form a copper-clad composite board (thickness 0).
.. 8m1) completed. Of course, the copper thin film is used for forming a circuit, and the circuit is formed by a normal etching method or the like.

なお、上記のように加熱加圧成形の際、樹脂の種類や無
機誘電体粉末の種類によっては、無機誘電体粉末が、キ
ュリー温度以上まで再び加熱され室温に冷却されること
になるが、この場合にも、粉末が常誘電体から強誘電体
に変化することはない。これは、粉末には樹脂による圧
縮応力と急冷により粉末表面に生じた圧縮応力により、
無機誘電体粉末が常誘電体のまま維持されるためと推察
している。急冷せず徐冷した焼成物を粉砕した粉末では
、もちろん、樹脂応力や成形の際の加熱−冷却で強誘電
体が常誘電体に変化してしまうことはない。本願発明の
急冷を経ていて、始めて常誘電体の維持ができ、温度特
性および周波数特性が向上するのである。
As mentioned above, during hot-press molding, depending on the type of resin and the type of inorganic dielectric powder, the inorganic dielectric powder may be heated again to above the Curie temperature and then cooled to room temperature. Even in this case, the powder does not change from paraelectric to ferroelectric. This is due to the compressive stress caused by the resin in the powder and the compressive stress generated on the powder surface due to rapid cooling.
It is assumed that this is because the inorganic dielectric powder remains as a paraelectric substance. Of course, in powder obtained by pulverizing a fired product that has been slowly cooled without rapid cooling, the ferroelectric material will not change to a paraelectric material due to resin stress or heating and cooling during molding. It is only through the rapid cooling of the present invention that the paraelectric state can be maintained and the temperature characteristics and frequency characteristics are improved.

続いて、この発明にかかる焼成物を得て、粉末化から複
合基板を得るまでのより具体的な実施例および比較例の
説明を行う。
Next, more specific examples and comparative examples from obtaining a fired product according to the present invention and from powdering to obtaining a composite substrate will be explained.

一実施例1− 仮焼粉末(誘電体粉末)を以下のようにして作成した。Example 1- Calcined powder (dielectric powder) was created as follows.

13 a T i Os組成になるように、出発原料と
して、T i Ot 、B a COsの各粉末を等モ
ル比で配合し良く混合した混合物を、アルミナルツボ中
で、温度1150℃で仮焼成して仮焼物を得た。
13 A mixture of T i Ot and B a COs powders were blended in an equimolar ratio as starting materials so as to have a T i Os composition, and the mixture was preliminarily calcined at a temperature of 1150°C in an alumina crucible. A calcined product was obtained.

この仮焼成物を、ナイロンポットとナイロンコーティン
グ鋼球を用いた湿式粉砕により粉末化し、0.5〜5μ
mの仮焼粉末を得た。
This calcined product was powdered by wet pulverization using a nylon pot and a nylon coated steel ball, and the powder was 0.5 to 5 μm.
A calcined powder of m was obtained.

一方、蒸留水にZr0i微粒子(住人セメント側製 粒
子径0.007〜0.01 μm)を混練(固形分3%
)しスラリー状としたものを準備した。
On the other hand, ZrOi fine particles (manufactured by Jujutsu Cement, particle size 0.007-0.01 μm) were mixed in distilled water (solid content 3%).
) and prepared a slurry.

ライカイ機で、このスラリーを少しずつ滴下しながら先
の仮焼粉末をかく拌し、Zr0i(焼成の際の粉末同士
の結合を弱める物質)を仮焼粉末表面に付着させ原料粉
末を作成した。
Using a Raikai machine, this slurry was dropped little by little while stirring the previously calcined powder, and ZrOi (a substance that weakens the bond between powders during firing) was attached to the surface of the calcined powder to create a raw material powder.

なお、スラ1)−の滴下量は、乾燥後のZr0z微粉末
付着量が仮焼粉末100重量部に対し0.5重量部にな
るようにした。
The amount of slurry 1) dropped was such that the amount of Zr0z fine powder deposited after drying was 0.5 parts by weight per 100 parts by weight of the calcined powder.

この原料粉末を100℃で乾燥させた後、ライカイ機で
一旦粉砕してから、ZrChルツボ中で1350′C1
3時間の本焼成を行い、蒸留水中に投入して急冷し焼成
物を得た。
After drying this raw material powder at 100°C, it was once ground in a Raikai machine, and then pulverized at 1350'C1 in a ZrCh crucible.
Main firing was performed for 3 hours, and then the product was poured into distilled water to be rapidly cooled to obtain a fired product.

この焼成物を、ナイロンポットとナイロンコーティング
鋼球を用いた湿式粉砕により粉末化し、平均粒径1.7
μmの無機誘電体粉末を得た。粉砕に要した時間は約1
0時間であった。
This fired product was pulverized by wet pulverization using a nylon pot and nylon coated steel balls, and the average particle size was 1.7.
A μm-sized inorganic dielectric powder was obtained. The time required for crushing is approximately 1
It was 0 hours.

この粉末25容量部とPPO樹脂75容量部の混合物を
作り、両面に35μmの厚みの銅薄が積層されたかたち
となるように金型にセットし、230℃の温度で加圧成
形し、圧力をかけたまま室温まで冷却するようにして複
合基板を得た。
A mixture of 25 parts by volume of this powder and 75 parts by volume of PPO resin was made, set in a mold so that a 35 μm thick copper thin layer was laminated on both sides, and pressure-molded at a temperature of 230°C. A composite substrate was obtained by cooling the substrate to room temperature.

一実施例2− 仮焼物の作成において以下の点が異なる他は、実施例1
と同様にして複合基板を得た。
Example 2 - Example 1 except for the following differences in the preparation of the calcined product.
A composite substrate was obtained in the same manner.

B a o 、 95P b o 、 o s T i
 O2組成になるように、Ti Ox 、Ba COs
およびPbOの各粉末を配合し良く混合した原料物を、
ZrO□ルツボ中、空気雰囲気の下、温度1150℃で
仮焼成するようにした。
B a o , 95P b o , o s T i
TiOx, BaCOs so as to have an O2 composition
and PbO powders and mixed well,
Temporary firing was carried out at a temperature of 1150° C. in a ZrO□ crucible in an air atmosphere.

一実施例3− 焼成物の作成において以下の点で異なる他は、実施例2
と同様にして複合基板を得た。
Example 3 - Example 2 except for the following differences in the preparation of the fired product
A composite substrate was obtained in the same manner.

ZrO2のスラリーの代わりに、Zrアルコキシド系コ
ーテイング材(高純度化学8MZrコーテイング材)8
%溶液をイソプロピルアルコールで1%溶液に希釈した
ものを準備し、ビー力に入れた仮焼粉末に注いで粉末を
十分に濡らしてから濾過して余分なコーテイング液を除
去分離した。つまり、Zrコーテイング材が焼成の際の
粉末同士の結合を弱める物質である。
Instead of ZrO2 slurry, Zr alkoxide coating material (high purity chemical 8M Zr coating material) 8
A 1% solution was prepared by diluting the 1% solution with isopropyl alcohol, and poured into the calcined powder in a beaker to sufficiently wet the powder, and then filtered to remove and separate the excess coating liquid. In other words, the Zr coating material is a substance that weakens the bond between powders during firing.

一実施例4− PPO樹脂の代わりに4フツ化エチレン(フッ素樹脂)
の25μm粉末を用い、350°Cで直圧成形した以外
は、実施例1と同様にして複合基板を得た。
Example 4 - Tetrafluoroethylene (fluororesin) instead of PPO resin
A composite substrate was obtained in the same manner as in Example 1, except that the 25 μm powder was used and direct pressure molding was performed at 350°C.

一実施例5− PPO樹脂の代わりに4フフ化エチレンの25μm粉末
を用い、350℃で直圧成形した以外は、実施例2と同
様にして複合基板を得た。
Example 5 - A composite substrate was obtained in the same manner as in Example 2, except that a 25 μm powder of tetrafluoroethylene was used instead of the PPO resin and direct pressure molding was performed at 350°C.

一実施例6− PPO+l脂の代わりに4フツ化エチレンの25μm粉
末を用い、350℃で直圧成形した以外は、実施例3と
同様にして複合基板を得た。
Example 6 - A composite substrate was obtained in the same manner as in Example 3, except that 25 μm powder of tetrafluoroethylene was used instead of PPO+1 fat and direct pressure molding was performed at 350°C.

−比較例1一 実施例2で得た仮焼粉末にZrO□微粉末を付着させる
ことなく本焼成し、その後に急冷せず徐冷するようにし
て焼成物を得るようにした他は実施例2と同様にして複
合基板を得た。なお、焼成物の粉砕に要した時間は約3
6時間であった。
- Comparative Example 1 - Example 2 except that the calcined powder obtained in Example 2 was subjected to main firing without attaching ZrO□ fine powder, and then the fired product was obtained by slow cooling instead of rapid cooling. A composite substrate was obtained in the same manner as in 2. The time required to crush the fired product was approximately 3
It was 6 hours.

−比較例2− PPO樹脂の代わりに4フツ化エチレンの25μm粉末
を用い、350℃で直圧成形した以外は、比較例1と同
様にして複合基板を得た。
-Comparative Example 2- A composite substrate was obtained in the same manner as in Comparative Example 1, except that 25 μm powder of tetrafluoroethylene was used instead of the PPO resin and direct pressure molding was performed at 350°C.

実施例1〜6および比較例1.2の複合基板について、
IMHz、および、IGHzにおける比誘電率εrと誘
電損失tanδ、さらに、−20〜80℃での比誘電率
εrの変化割合(IMHz)を測定した。測定結果を第
1表に示す。
Regarding the composite substrates of Examples 1 to 6 and Comparative Example 1.2,
The relative permittivity εr and dielectric loss tanδ at IMHz and IGHz, and the rate of change in the relative permittivity εr at −20 to 80° C. (IMHz) were measured. The measurement results are shown in Table 1.

第1表にみるように、実施例では、周波数が変わっても
、比誘電率および誘電損失が殆ど変化していない。−2
0〜80℃の大きな温度変化に対しても比誘電率の変化
は約3%程度であり、比較例の20%に比べて極めて小
さい。周波数特性および温度特性が著しく向上したこと
が良く分かる実施例1では粉砕に要した時間が約10時
間であったが、比較例1では約36時間と3倍の粉砕時
間を要している。粉砕時間短縮化効果の大きいことが良
く分かる。
As shown in Table 1, in the examples, the relative dielectric constant and dielectric loss hardly change even if the frequency changes. -2
Even with a large temperature change of 0 to 80°C, the change in relative dielectric constant is about 3%, which is extremely small compared to 20% in the comparative example. In Example 1, where it is clearly seen that the frequency characteristics and temperature characteristics were significantly improved, the time required for pulverization was about 10 hours, but in Comparative Example 1, the pulverization time was about 36 hours, which is three times as long. It can be clearly seen that the effect of shortening the grinding time is large.

この発明は、」1記実施例に限らない。焼成物の組成が
上記例示以外の組成であってもよいことはいうまでもな
い。
This invention is not limited to the first embodiment. It goes without saying that the composition of the fired product may be other than those exemplified above.

焼成物の粉砕も、振動ミルやジェットミルを用いて行う
ようにしてもよい。
The pulverization of the fired product may also be performed using a vibration mill or a jet mill.

複合基板における樹脂が不飽和ポリエステル樹脂やエポ
キシ樹脂等であってもよい。ただ、不飽和ポリエステル
樹脂を用いた複合基板では、誘電損失が大きくなる傾向
がある。
The resin in the composite substrate may be unsaturated polyester resin, epoxy resin, or the like. However, composite substrates using unsaturated polyester resin tend to have large dielectric loss.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、この発明の製法で得られた焼成物を
粉砕した誘電体粉末は常誘電体であるため、これを用い
た複合基板では、比誘電率の温度特性や周波数特性、お
よび、誘電損失の周波数特性が改善される。しかも、焼
成物の粉砕に要する時間が短くなり、粉末製造時間が短
く粉末コストが低い。
As mentioned above, since the dielectric powder obtained by pulverizing the fired product obtained by the manufacturing method of the present invention is a paraelectric material, a composite substrate using this powder has different temperature characteristics and frequency characteristics of the dielectric constant, and The frequency characteristics of dielectric loss are improved. Moreover, the time required for pulverizing the fired product is shortened, the powder production time is short, and the powder cost is low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、それぞれ、この発明の製法で用
いる原料粉末を模式的にあられす断面図である。 1・・・仮焼粉末  2.3・・・焼成の際の粉末同士
の結合を弱める物質 代理人 弁理士  松 本 武 彦
FIG. 1 and FIG. 2 are respectively schematic cross-sectional views of raw material powder used in the manufacturing method of the present invention. 1... Calcined powder 2.3... Substance agent that weakens the bond between powders during firing Patent attorney Takehiko Matsumoto

Claims (1)

【特許請求の範囲】[Claims] 1 原料粉末を焼成して無機誘電体粉末製造用焼成物を
得るにあたり、前記原料粉末として、焼成の際の粉末同
士の結合を弱める物質を表面に予め付着させた粉末を用
いるようにするとともに、焼成後、キュリー温度を下回
る温度まで急冷するようにすることを特徴とする無機誘
電体粉末製造用焼成物の製法。
1. When firing a raw material powder to obtain a fired product for producing an inorganic dielectric powder, the raw material powder is a powder on which a substance that weakens the bond between the powders during firing is attached in advance to the surface, and A method for producing a fired product for producing an inorganic dielectric powder, which comprises rapidly cooling the fired product to a temperature below the Curie temperature after firing.
JP63148711A 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder Pending JPH01317153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63148711A JPH01317153A (en) 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63148711A JPH01317153A (en) 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder

Publications (1)

Publication Number Publication Date
JPH01317153A true JPH01317153A (en) 1989-12-21

Family

ID=15458891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63148711A Pending JPH01317153A (en) 1988-06-15 1988-06-15 Production of calcined substance for producing inorganic dielectric powder

Country Status (1)

Country Link
JP (1) JPH01317153A (en)

Similar Documents

Publication Publication Date Title
US5771567A (en) Methods of fabricating continuous transverse stub radiating structures and antennas
CN111592348A (en) Low-dielectric-constant microwave dielectric ceramic with excellent temperature stability and preparation method thereof
CN111517789B (en) Low-dielectric microwave dielectric ceramic material and preparation method thereof
CN109928753A (en) A kind of low-k silicon substrate microwave dielectric ceramic materials and preparation method thereof
Selmi et al. Microwave calcination and sintering of barium strontium titanate
CN106747435B (en) A kind of preparation method for the core-shell structure microwave-medium ceramics that temperature is stable
CN111925207B (en) Mg3B2O6-Ba3(VO4)2Composite ceramic material and preparation method thereof
CN105693220B (en) Positive temperature coefficient silicate microwave dielectric ceramic material and preparation method thereof
US4277356A (en) Soft lithium-titanium-zinc ferrite
CN110845226A (en) Microwave dielectric ceramic material SrGa2O4And method for preparing the same
JPH01317153A (en) Production of calcined substance for producing inorganic dielectric powder
CN111943670B (en) LiWVO 6 -K 2 MoO 4 Base composite ceramic microwave material and preparation method thereof
JPS62170102A (en) Dielectric ceramic and making thereof
CN111018524B (en) Low-loss trigonal tungstate-based microwave dielectric ceramic and preparation method thereof
CN108675784B (en) Novel Fe-doped SrBi2Nb2O9Multiferroic ceramic material with Oriviris structure and preparation method thereof
CN113248243A (en) Microwave dielectric ceramic composite material and preparation method thereof
JPH01298053A (en) Production of sintered material for producing inorganic dielectric powder
WO1996008019A1 (en) Dielectric procelain composition and its manufacture
US20240067571A1 (en) Manufacturing composite electroceramics using waste electroceramics
JPH01317154A (en) Production of calcined substance for producing inorganic dielectric powder
JPH0840768A (en) Dielectric material for high frequency
JPH02225357A (en) Complex dielectric material
JPH01298004A (en) Production of calcined material for producing inorganic dielectric powder
FI129541B (en) Manufacturing composite electroceramics
JP2006265062A (en) Dielectric ceramic composition