JPS62170102A - Dielectric ceramic and making thereof - Google Patents

Dielectric ceramic and making thereof

Info

Publication number
JPS62170102A
JPS62170102A JP61010914A JP1091486A JPS62170102A JP S62170102 A JPS62170102 A JP S62170102A JP 61010914 A JP61010914 A JP 61010914A JP 1091486 A JP1091486 A JP 1091486A JP S62170102 A JPS62170102 A JP S62170102A
Authority
JP
Japan
Prior art keywords
temperature
porcelain
dielectric
low
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61010914A
Other languages
Japanese (ja)
Other versions
JPH0542762B2 (en
Inventor
和順 松本
日向 健裕
市村 博司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP61010914A priority Critical patent/JPS62170102A/en
Publication of JPS62170102A publication Critical patent/JPS62170102A/en
Publication of JPH0542762B2 publication Critical patent/JPH0542762B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は誘電体磁器に関し、特に無負荷Qが高い、低損
失の高周波用として好適である誘電体磁器に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to dielectric ceramics, and particularly to dielectric ceramics that have a high no-load Q and are suitable for low-loss high-frequency applications.

〔従来の技術〕[Conventional technology]

一般に、マイクロ波やミリ波などの高周波領域の信号回
路に使用される共振器の材料として用いられる誘電体磁
器には、比誘電率が大きく、共振周波数の温度係数が小
さいこととともに、高い無負荷Qを有することが望まれ
る。ところで、近年、通信に使用される周波数の高周波
化がとみに進み、SHF帯を用いた衛星放送も実用化の
段階に入りつつあるため一層高い無負荷Qを有する低損
失誘電体磁器の開発が強く求められている。
In general, dielectric ceramics used as materials for resonators used in signal circuits in high frequency ranges such as microwaves and millimeter waves have a high relative permittivity, a small temperature coefficient at the resonant frequency, and a high no-load resistance. It is desirable to have Q. By the way, in recent years, the frequency used for communication has rapidly increased, and satellite broadcasting using the SHF band is entering the stage of practical use, so there is a strong demand for the development of low-loss dielectric ceramics with even higher no-load Q. It has been demanded.

従来、高周波用の低損失誘電体磁器として用いられてい
るものの無負荷Qは3 、000〜7 、000程度で
あり、ようやく近年になって10,000以上のものが
製造されるようになったが、今後通信の高周波化がさら
に進むことが予想され、無負荷Qがさらに高い極めて低
損失の共振器材料が求められている。
Conventionally, the unloaded Q of the materials used as low-loss dielectric porcelain for high frequency applications was around 3,000 to 7,000, but only in recent years have more than 10,000 been manufactured. However, it is expected that communication frequencies will further advance in the future, and resonator materials with an even higher no-load Q and extremely low loss are required.

現在、このような非常に高い無負荷Qを有する低損失誘
電体磁器としては、AQ203で30,000(9GH
z)、MgTiO3で22,000(5GHz)という
ものが知られている。
Currently, as a low-loss dielectric porcelain with such a very high no-load Q, AQ203 has a price of 30,000 (9 GH).
z), 22,000 (5 GHz) for MgTiO3 is known.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの高い無負荷Qを有する材料は、いずれ
も比誘電率がそれぞれ9.8および17と低く、かつ、
共振周波数の温度係数が一55ppm/ ”Cおよび−
45ρpm/’Cと悪く、実用に供し難い欠点がある。
However, these materials with high unloaded Q have low dielectric constants of 9.8 and 17, respectively, and
Temperature coefficient of resonance frequency is 155 ppm/”C and -
It has a disadvantage of being as low as 45 ρpm/'C, making it difficult to put it into practical use.

そこで、本発明の目的は、18,000以上の非常に高
い無負荷Qとともに、大きい比誘電率および良好な共振
周波数の温度係数を兼ね備え、高周波用として好適であ
る低損失の誘電体磁器を提供することにある。
Therefore, an object of the present invention is to provide a low-loss dielectric ceramic suitable for high frequency use, which has a very high no-load Q of 18,000 or more, a large relative dielectric constant, and a good temperature coefficient of resonance frequency. It's about doing.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、かかる誘電体磁器として、組成が一般式: 
  xBaO・yMgO・zTa205    − (
1)〔ただし、0.5≦x≦0.7.0.15≦y≦0
.25.0.15≦z≦0.25で、x+y+z=1]
で表わされ、焼結密度が理論密度の90%以上で、複合
ペロブスカイト構造としての規則度が0.8以上である
誘電体磁器を提供するものである。
The present invention provides such dielectric ceramic having a composition of the general formula:
xBaO・yMgO・zTa205 − (
1) [However, 0.5≦x≦0.7.0.15≦y≦0
.. 25.0.15≦z≦0.25, and x+y+z=1]
The object of the present invention is to provide a dielectric ceramic having a sintered density of 90% or more of the theoretical density and a regularity of 0.8 or more as a composite perovskite structure.

前記の組成を表わす一般式(I)において、X、y、z
のいずれか1つでも前記の範囲内にない場合には、得ら
れる磁器は緻密でなく、機械的強度が低く、かつ比誘電
率も無負荷Qも小さいものとなる。x、yおよびZは、
好ましくは、それぞれ0.56≦x≦0.64.0.1
8≦y≦0.22および0.18≦z≦0.22の範囲
である。
In the general formula (I) representing the above composition, X, y, z
If any one of these is not within the above range, the resulting porcelain will not be dense, have low mechanical strength, and have low dielectric constant and low unloaded Q. x, y and Z are
Preferably, each 0.56≦x≦0.64.0.1
The range is 8≦y≦0.22 and 0.18≦z≦0.22.

本明細書において、複合ペロブスカイト構造としての規
則度とは次に説明する意義を有するものである。複合ペ
ロブスカイト型酸化物サイトイオン、即ち前記式におけ
るB1およびB2がBI  B2  B2の順に3層を
一周期として広い範囲にわたって繰返す周期的配列(長
周期配列)をとることが知られている。本明細書におけ
る前記規則度とは、製造した磁器が複合ペロブスカイ1
〜としてのこのような長周期配列の規則性をどの程度有
しているかを表わすもので、次式Sにより定義される。
In this specification, the regularity of a composite perovskite structure has the following meaning. It is known that the complex perovskite type oxide site ions, ie, B1 and B2 in the above formula, take a periodic arrangement (long period arrangement) in which three layers are repeated in the order BI B2 B2 over a wide range as one period. In this specification, the degree of regularity means that the manufactured porcelain has a composite perovsky 1
It represents the degree of regularity of such a long-period arrangement as ~, and is defined by the following formula S.

ここでLeaは長周期配列に基づく超格子の(100)
面のX線回折線の強度、111゜、1゜2は、(110
)面及び(102)面目折線の最強ピークの強度である
。また、分子は実際の観測値、分母は、Bサイトイオン
が完全に規則化したと仮定したときの六方晶の原子座標
を用いて強度計算した値で(工、。o/■、□。。
Here, Lea is (100) of a superlattice based on a long-period array.
The intensity of the X-ray diffraction line of the plane, 111°, 1°2, is (110
) plane and the intensity of the strongest peak of the (102) plane fold line. Also, the numerator is the actual observed value, and the denominator is the intensity calculated using the hexagonal atomic coordinates assuming that the B site ion is completely ordered (Engineering, .o/■, □).

toz)calc、 =0.083である。toz)calc, = 0.083.

製造された磁器中に複合ペロブスカイト型の規則的な長
周期配列の構造が存在するとこれに基づく超格子のX線
回折線(I、。。)が観測され、その規則性が完全であ
るとS=1となり、逆に完全に無秩序であるとS=Oと
なる。
When a complex perovskite-type regular long-period array structure exists in manufactured porcelain, superlattice X-ray diffraction lines (I,...) based on this are observed, and if the regularity is perfect, S = 1, and conversely, if it is completely disordered, S = O.

本発明の誘電体磁器においては、この複合ペロブスカイ
ト構造としての規則度が、0.8以上であることが必要
であり、好ましくは0.9以上である。この規則度が0
.8未満であると、たとえ緻密な磁器であっても無負荷
Qは向上しない。
In the dielectric ceramic of the present invention, the regularity of the composite perovskite structure is required to be 0.8 or more, preferably 0.9 or more. This regularity is 0
.. If it is less than 8, the no-load Q will not improve even if it is made of dense porcelain.

なお、本発明の磁器は、実質的には完全にペロブスカイ
ト型の相からなるが、微量の他の相が生成することもあ
る。しかし、磁器の特性上は何ら問題はない。
Although the porcelain of the present invention is substantially entirely composed of perovskite-type phases, trace amounts of other phases may be produced. However, there is no problem with the characteristics of porcelain.

また、本発明の誘電体磁器は焼結密度が理論密度の90
%以上であり、好ましくは95%以上である。
Furthermore, the dielectric ceramic of the present invention has a sintered density of 90% of the theoretical density.
% or more, preferably 95% or more.

焼結密度が理論密度の90%未満であると、無負荷Qの
向上は望めず、比誘電率も低くかつ機械的強度も低いた
め実用に供し鑑い。
If the sintered density is less than 90% of the theoretical density, no improvement in the no-load Q can be expected, and the dielectric constant and mechanical strength are also low, making it difficult to put into practical use.

本発明の誘電体磁器の製造は、例えば、前記一般式(I
)で表わされる所要組成を有する加圧成形物を、150
0℃以上の温度まで100〜b温速度で加熱し、150
0℃以上の温度に1分間以上保持し、次いで1200℃
以上の温度に3時間以上保持することにより行なうこと
ができる。
The production of the dielectric ceramic of the present invention can be carried out, for example, by the general formula (I
) A press-molded product having the required composition represented by 150
Heating at a temperature rate of 100 to 150℃ to a temperature of 0℃ or higher,
Hold at a temperature of 0℃ or higher for 1 minute or more, then 1200℃
This can be done by maintaining the above temperature for 3 hours or more.

この製法に用いられる加圧成形物は、常法にしたがって
、所要組成のIlaO−MgO−Ta205磁器が得ら
れるような割合で、例えば、炭酸バリウム、酸化マグネ
シウムおよび五酸化二タンタルを配合し、仮焼によりす
入て酸化物に転化したものを加圧成形したものである。
The press-molded product used in this manufacturing method is prepared by mixing, for example, barium carbonate, magnesium oxide, and ditantalum pentoxide in proportions such that IlaO-MgO-Ta205 porcelain of the required composition is obtained according to a conventional method. It is made by pressing and molding the oxide that has been converted into an oxide by sintering.

加圧成形方法には特に制限はないが1等方圧加圧による
方法が好ましい。また、加圧成形の圧力は特に限定はし
ないが1,000kg/cJ以上が好ましい。
There are no particular limitations on the pressure molding method, but a method using one isostatic pressure is preferred. Moreover, the pressure for pressure molding is not particularly limited, but is preferably 1,000 kg/cJ or more.

前記昇温過程における昇温速度は、100°〜1.60
0℃/分、好ましくは200〜1 、600807分で
あることが必要である。昇温速度が100℃/分未満で
は、焼結が不十分であるために得られる磁器の無負荷Q
が低く、比誘電率も低く、かつ機械的強度も低いため実
用に供し雅い。また1、600℃/分を超えると磁器が
割れてしまうに の急速昇温は種々の方法により実施することができる。
The temperature increase rate in the temperature increase process is 100° to 1.60°.
0°C/min, preferably 200-1.600807 min. If the heating rate is less than 100°C/min, sintering will be insufficient and the unloaded Q of the porcelain will decrease.
It has a low dielectric constant, a low dielectric constant, and a low mechanical strength, making it suitable for practical use. In addition, the rapid temperature increase can be carried out by various methods, since if the temperature exceeds 1,600° C./min, the porcelain will crack.

例えば、縦型炉の加熱された炉芯管内へ耐熱衝撃性を有
する白金製支持体(例、カゴ)を用いて上方から加圧成
形物を吊り下げ降ろす方法。
For example, a method in which a press-formed product is suspended from above into a heated furnace core tube of a vertical furnace using a platinum support (e.g., a cage) having thermal shock resistance.

同じく炉芯管内へ白金製支持台に載せて下方から押し上
げ入れる方法、赤外線もしくはキセノンランプもしくは
太陽光線などを用いたイメージ炉により急速加熱する方
法等を挙げることができる。
Similarly, examples include a method of pushing the material into the furnace core tube from below by placing it on a support made of platinum, and a method of rapidly heating with an image furnace using infrared rays, a xenon lamp, or sunlight.

中でも、最初に挙げた、加熱された炉心管内へ吊り下げ
降ろす方法が簡単で好適な方法である。
Among these, the first method of suspending and lowering into the heated furnace core tube is a simple and preferable method.

また、この方法における第1段目の加熱処理温度は1 
、500°C以上、好ましくは1,550〜l 、 6
50°Cの間でなければならない。この温度が1 、5
00℃未満であると焼結が不十分であるため、得られる
磁器の機械的強度が低く、無負荷Qも低い。なお焼成昆
度が1 、700℃を超えると、磁器の保持容器が高温
安定性が高いために焼成工程によく使用される白金製容
器である場合には、磁器が該容器と反応して得られる磁
器の特性が低下することがある。
In addition, the first stage heat treatment temperature in this method is 1
, 500°C or higher, preferably 1,550-1, 6
Must be between 50°C. This temperature is 1,5
If the temperature is less than 00°C, sintering will be insufficient, so the mechanical strength of the resulting porcelain will be low and the no-load Q will also be low. If the firing temperature exceeds 1,700°C, if the porcelain holding container is a platinum container, which is often used in the firing process because of its high temperature stability, the porcelain will react with the container and the resulting product will be damaged. The properties of the porcelain may deteriorate.

この第1段目の加熱処理には、成形物を1分間以上保持
することが必要であり、より具体的には、例えば、温度
が1500℃では4時間以上、 1650℃では3分間
以上、 1700℃では1分間以上保持するのが適切で
ある。この段階における加熱処理時間が短か過ぎると、
焼結が不十分となり、磁器の誘電特性と機械的強度が劣
る。この加熱処理は、窒泰、アルゴン等の不活性雰囲気
、酸素、空気等の酸化性雰囲気中において行なう。
In this first stage heat treatment, it is necessary to hold the molded product for at least 1 minute, and more specifically, for example, at a temperature of 1500°C, for at least 4 hours, at 1650°C, for at least 3 minutes, at 1700°C. It is appropriate to hold the temperature at ℃ for 1 minute or more. If the heat treatment time at this stage is too short,
Sintering becomes insufficient and the dielectric properties and mechanical strength of the porcelain are poor. This heat treatment is performed in an inert atmosphere such as nitrogen or argon, or an oxidizing atmosphere such as oxygen or air.

次に、第2段目の加熱処理は、1200°C以上、好ま
しくは、1〕00〜1650℃の温度において3時間以
上行なう必要がある。温度が1200℃未満であると、
規則度が不十分となり、無負荷Qの高い誘電体磁器が得
難い。
Next, the second stage heat treatment needs to be carried out at a temperature of 1200°C or higher, preferably 1]00 to 1650°C for 3 hours or more. When the temperature is less than 1200°C,
The degree of regularity is insufficient, making it difficult to obtain dielectric ceramics with a high no-load Q.

なお、温度が1700℃を超えると保持容器が白金製の
場合には前述のような問題がある。加熱時間は、より具
体的には、例えば温度が1200℃では200時間以上
、1500℃では12時間以上、1650℃では3時間
以上であることが適切である。この加熱時間が短か過ぎ
ると、規則度が不十分となり、無負荷Qの高い誘電体磁
器が得難い。この2段目の加熱処理は、酸素、空気、ア
ルゴン、窒素などの雰囲気中で行ない、特に酸素中が好
ましい。
Note that when the temperature exceeds 1700° C., the above-mentioned problem occurs when the holding container is made of platinum. More specifically, it is appropriate that the heating time is, for example, 200 hours or more when the temperature is 1200°C, 12 hours or more when the temperature is 1500°C, and 3 hours or more when the temperature is 1650°C. If this heating time is too short, the regularity will be insufficient and it will be difficult to obtain a dielectric ceramic with a high no-load Q. This second stage heat treatment is performed in an atmosphere of oxygen, air, argon, nitrogen, etc., and oxygen is particularly preferred.

なお、上記の製法を実施する際には、全工程を通じ、被
処理体である加圧成形物を耐火性粉末で包むことが好ま
しく、それにより得られる個々の磁器の各部分の焼成度
も、各製品間の焼成度も均一性の高いものが得られ、誘
電体特性等のバラツキが小さくなり、製品の歩留りも向
上する。用いることができる耐火性粉末としては、前記
組成の加圧成形物と焼成温度において反応しないもので
あれぽいずれの粉末も採用することができる。このよう
な反応しない耐火性粉末としては、例えばアルミナ、ジ
ルコニア、マグネシア、ハフニア、イツトリア等のセラ
ミック粉末を挙げることができる。これらの耐火性粉末
の粒度は特に限定されないが、好ましくは約10μm〜
約1mm程度の平均粒径を有するものが使用される。
In addition, when carrying out the above manufacturing method, it is preferable to wrap the press-molded object, which is the object to be treated, in refractory powder throughout the entire process, and the degree of firing of each part of the individual porcelain obtained thereby also depends on the A highly uniform degree of firing can be obtained between each product, and variations in dielectric properties, etc., can be reduced, and the yield of products can also be improved. As the refractory powder that can be used, any powder that does not react with the press-molded product having the above composition at the firing temperature can be used. Examples of such non-reactive refractory powders include ceramic powders such as alumina, zirconia, magnesia, hafnia, and ittria. The particle size of these refractory powders is not particularly limited, but is preferably about 10 μm to
Those having an average particle size of about 1 mm are used.

〔実施例〕〔Example〕

次に、本発明を実施例により具体的に説明する。 Next, the present invention will be specifically explained using examples.

原料として、それぞれ純度99.9重量%である炭酸バ
リウム、酸化マグネシウムおよび五酸化二タンタルの粉
末を使用し、まずこれら3種の物質を所定の割合で混合
した。すなわち、一般式(I)におけるx、yおよび2
がそれぞれ第1表に示す数値になるように秤取し、純水
とともにポリエチレン製ポットに入れ1表面を樹脂コー
トしたポールを用いて、16時時間式混合した。この混
合物をポットより取り出し、150°Cで5時間乾燥し
た後。
Powders of barium carbonate, magnesium oxide, and ditantalum pentoxide, each having a purity of 99.9% by weight, were used as raw materials, and these three substances were first mixed at a predetermined ratio. That is, x, y and 2 in general formula (I)
The samples were weighed so as to have the values shown in Table 1, and mixed together with pure water in a polyethylene pot for 16 hours using a pole whose surface was coated with resin. This mixture was removed from the pot and dried at 150°C for 5 hours.

700kg/ cnfの圧力で加圧成形して塊とし、混
合物中の炭酸塩を酸化物とするために、白金板上で空気
中900〜1〕00°Cで2時間仮焼した。仮焼後アル
ミナ乳鉢で塊を粉砕し、42メツシユのふるいを通して
粒度を揃えた。得られた粉末を圧力500kg/ cA
で直径10mm、厚さ約5mmの円板状に一次成形した
後、圧力2000kg/ cJの等方圧で圧縮し成形物
とした。
It was pressed into a lump at a pressure of 700 kg/cnf, and calcined on a platinum plate in air at 900-1]00°C for 2 hours in order to convert the carbonate in the mixture into an oxide. After calcining, the lump was crushed in an alumina mortar and passed through a 42-mesh sieve to make the particle size uniform. The obtained powder was heated to a pressure of 500 kg/cA.
The material was first formed into a disk shape with a diameter of 10 mm and a thickness of approximately 5 mm, and then compressed with isostatic pressure of 2000 kg/cJ to obtain a molded product.

この成形物を白金製ボート中でマグネシア粉末で包み焼
成に供した。
This molded product was wrapped in magnesia powder in a platinum boat and subjected to firing.

第1段目の加熱処理は、空気中での昇温速度100℃〜
1600℃/分の範囲内で焼成温度まで加熱し、焼成温
度を1500〜1700℃の範囲内として該温度におけ
る保持時間を3分〜12時間の範囲内で行なった。次に
第2段目の加熱処理を、1200〜1650℃の温度で
酸素、空気、窒素、またはアルゴン雰囲気にて行なった
。得られた磁器の比誘電率(Er)および無負荷Q(Q
u)を誘電体円柱共振器法によりllG11z付近の周
波数において測定した。
The first stage heat treatment is performed at a heating rate of 100℃ in air.
It was heated to the firing temperature within the range of 1600° C./min, the firing temperature was set within the range of 1500 to 1700° C., and the holding time at this temperature was within the range of 3 minutes to 12 hours. Next, a second heat treatment was performed at a temperature of 1200 to 1650° C. in an oxygen, air, nitrogen, or argon atmosphere. The relative dielectric constant (Er) and unloaded Q (Q
u) was measured at a frequency around llG11z by the dielectric cylindrical resonator method.

また、ペロブスカイト構造酸化物の超格子回折線強度の
測定は、磁器を粉砕して試料とし、銅ターゲツトを用い
、30kV −15mAでステップスキャンにより積分
強度を求めて行なった。
Further, the superlattice diffraction line intensity of the perovskite structure oxide was measured by using a pulverized ceramic sample, using a copper target, and determining the integrated intensity by step scanning at 30 kV - 15 mA.

第1表に示すように、規則度Sが0.8を超える場合は
、無負荷Qは18,000以上となり、l IGHzで
最高30 、600 、9GIIzでは36,000ま
で達している。これは、未だかつて例をみない値である
。規則JfSが0.8を超えない場合は、無負荷Qはこ
のような高い値にはならない。比較例の実験Nα16.
17および18は、焼結が不充分で相対密度が90%以
下と低いために誘電特性が悪い場合であり、比較例の実
験N(119〜24は、相対密度が95%程度以上の緻
密な磁器となっているのにもかかわらず、規則度が0.
8を下まわっているために無負荷Qが高くない場合であ
る。
As shown in Table 1, when the degree of regularity S exceeds 0.8, the unloaded Q becomes 18,000 or more, reaching a maximum of 30, 600 and 36,000 at 9 GIIz. This is an unprecedented value. If the rule JfS does not exceed 0.8, the no-load Q will not reach such a high value. Comparative Example Experiment Nα16.
17 and 18 are cases in which the dielectric properties are poor due to insufficient sintering and a low relative density of 90% or less, and experiments N (119 to 24 are cases in which the relative density is dense and has a relative density of about 95% or more), which is a comparative example. Even though it is made of porcelain, the regularity is 0.
This is a case where the no-load Q is not high because it is less than 8.

実施例の実験Nα1〜15は規則度が0.8以上である
ため、無負荷Qが非常に高くなることを示している。ま
た、これらは十分に!!&密な磁器であるから機械的強
度も十分に高く、かつ共振周波数の温度係数が第2表に
示すように4ppm/’Cと小さいため、温度変化に対
して安定で、共振器材料として良好な特性を有し実用性
が極めて高いことがわかる。
In experiments Nα1 to Nα15 of the example, the degree of regularity is 0.8 or more, which indicates that the no-load Q becomes very high. Also, these are enough! ! & Since it is a dense porcelain, its mechanical strength is sufficiently high, and the temperature coefficient of the resonance frequency is as small as 4 ppm/'C as shown in Table 2, so it is stable against temperature changes and is good as a resonator material. It can be seen that it has excellent characteristics and is extremely practical.

なお、実施例の実験Na 6で得られた磁器を粉砕して
X線回折に供したところ、第1図(、)に示す回折図が
得られた。長周期配列による超格子回折線(傘)が観測
された(図中、指数付けは六方晶で行なったものである
)。一方、実施例の実験Nα6において、第2段目の加
熱処理(1450℃×100時間)を行なわない以外は
同様に処理して得た磁器を粉砕して試料としてX線回折
に供したところ第1図(b)に示す回折図が得られた。
In addition, when the porcelain obtained in Experiment Na 6 of Examples was crushed and subjected to X-ray diffraction, the diffraction pattern shown in FIG. 1 (,) was obtained. Superlattice diffraction lines (umbrellas) due to long-period alignment were observed (in the figure, indexing is done using hexagonal crystals). On the other hand, in experiment Nα6 of the example, porcelain obtained by the same treatment except that the second heat treatment (1450°C x 100 hours) was not performed was crushed and subjected to X-ray diffraction as a sample. A diffraction pattern shown in FIG. 1(b) was obtained.

この回折図は立方晶を示しており、超格子回折線はほと
んどみられない。
This diffraction diagram shows a cubic crystal, with almost no superlattice diffraction lines seen.

第2表 〔発明の効果〕 本発明の誘電体磁器は、無負荷Q、比誘電率が大きく、
かつ共振周波数の温度係数が小さい低損失のものであり
、高周波用としての要求特性を兼ね備えたものである。
Table 2 [Effects of the Invention] The dielectric ceramic of the present invention has a large no-load Q and a large relative dielectric constant.
It also has a low loss with a small temperature coefficient of resonance frequency, and has the characteristics required for high frequency applications.

特に、無負荷Qは18,000以上と非常に大きく、3
5,000を超えるものも製造可能であり、今後の通信
における高周波化に十分に対応できる優れた誘電体磁器
である。
In particular, the no-load Q is extremely large, over 18,000, and 3
It is possible to manufacture more than 5,000 pieces of dielectric porcelain, and it is an excellent dielectric porcelain that can fully cope with the higher frequencies of communication in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図の(a)は本発明の実施例である誘電体磁器のX
線回折図であり、第1図の(b)は比較例のX線回折図
である。
FIG. 1(a) shows the X of dielectric ceramic which is an embodiment of the present invention.
FIG. 1(b) is an X-ray diffraction diagram of a comparative example.

Claims (1)

【特許請求の範囲】 1)組成が一般式:xBaO・yMgO・zTa_2O
_5〔ただし、0.5≦x≦0.7、0.15≦y≦0
.25、0.15≦z≦0.25で、x+y+z=1〕
で表わされ、焼結密度が理論密度の90%以上で、複合
ペロブスカイト構造としての規則度が0.8以上である
誘電体磁器。 2)一般式:xBaO・yMgO・zTa_2O_5〔
ただし、0.5≦x≦0.7、0.15≦y≦0.25
、0.15≦z≦0.25で、x+y+z=1〕で表わ
される組成を有する加圧成形物を、1500℃以上の温
度まで100〜1600℃/分の昇温速度で加熱し、1
500℃以上の温度に1分間以上保持し、次いで120
0℃以上の温度に3時間以上保持することからなる誘電
体磁器の製法。
[Claims] 1) The composition has the general formula: xBaO・yMgO・zTa_2O
_5 [However, 0.5≦x≦0.7, 0.15≦y≦0
.. 25, 0.15≦z≦0.25, x+y+z=1]
A dielectric porcelain represented by , having a sintered density of 90% or more of the theoretical density and a degree of order as a composite perovskite structure of 0.8 or more. 2) General formula: xBaO・yMgO・zTa_2O_5 [
However, 0.5≦x≦0.7, 0.15≦y≦0.25
.
Hold at a temperature of 500°C or higher for 1 minute or more, then 120°C
A method for manufacturing dielectric porcelain, which comprises maintaining the temperature at 0°C or higher for 3 hours or more.
JP61010914A 1986-01-21 1986-01-21 Dielectric ceramic and making thereof Granted JPS62170102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61010914A JPS62170102A (en) 1986-01-21 1986-01-21 Dielectric ceramic and making thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61010914A JPS62170102A (en) 1986-01-21 1986-01-21 Dielectric ceramic and making thereof

Publications (2)

Publication Number Publication Date
JPS62170102A true JPS62170102A (en) 1987-07-27
JPH0542762B2 JPH0542762B2 (en) 1993-06-29

Family

ID=11763529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61010914A Granted JPS62170102A (en) 1986-01-21 1986-01-21 Dielectric ceramic and making thereof

Country Status (1)

Country Link
JP (1) JPS62170102A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369768A2 (en) * 1988-11-16 1990-05-23 Sumitomo Metal Mining Company Limited Process for producing a dielectric ceramic
EP0400963A2 (en) * 1989-05-30 1990-12-05 Sumitomo Metal Mining Company Limited Resonant frequency-temperature characteristics compensatable high frequency circuit elemental device
JPH035357A (en) * 1989-05-30 1991-01-11 Sumitomo Metal Mining Co Ltd Dielectric ceramic and its production
US5057466A (en) * 1989-02-23 1991-10-15 Nippon Steel Corporation Dielectric ceramic material and method of producing same
US5246898A (en) * 1990-04-19 1993-09-21 Matsushita Electric Industrial Co., Ltd. Dielectric ceramics
EP3113188A1 (en) * 2015-06-29 2017-01-04 TDK Corporation Dielectric composition and electronic component
EP3113189A1 (en) * 2015-06-29 2017-01-04 TDK Corporation Dielectric composition and electronic component
JP2020158344A (en) * 2019-03-26 2020-10-01 Tdk株式会社 Dielectric film and electronic component

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0369768A2 (en) * 1988-11-16 1990-05-23 Sumitomo Metal Mining Company Limited Process for producing a dielectric ceramic
JPH02225367A (en) * 1988-11-16 1990-09-07 Sumitomo Metal Mining Co Ltd Production of dielectric ceramics
US5057466A (en) * 1989-02-23 1991-10-15 Nippon Steel Corporation Dielectric ceramic material and method of producing same
EP0400963A2 (en) * 1989-05-30 1990-12-05 Sumitomo Metal Mining Company Limited Resonant frequency-temperature characteristics compensatable high frequency circuit elemental device
JPH035357A (en) * 1989-05-30 1991-01-11 Sumitomo Metal Mining Co Ltd Dielectric ceramic and its production
US5246898A (en) * 1990-04-19 1993-09-21 Matsushita Electric Industrial Co., Ltd. Dielectric ceramics
EP3113188A1 (en) * 2015-06-29 2017-01-04 TDK Corporation Dielectric composition and electronic component
EP3113189A1 (en) * 2015-06-29 2017-01-04 TDK Corporation Dielectric composition and electronic component
JP2020158344A (en) * 2019-03-26 2020-10-01 Tdk株式会社 Dielectric film and electronic component

Also Published As

Publication number Publication date
JPH0542762B2 (en) 1993-06-29

Similar Documents

Publication Publication Date Title
CN111943671B (en) Wide-sintering temperature zone low-loss microwave dielectric ceramic and preparation method thereof
JPS61107609A (en) Manufacture of high frequency dielectric porcelain
CN108147809B (en) Medium-low temperature sintered barium-titanium series microwave dielectric material and preparation method thereof
CN104860672A (en) High dielectric microwave ceramic dielectric material and preparation method thereof
US4785375A (en) Temperature stable dielectric composition at high and low frequencies
JPS62170102A (en) Dielectric ceramic and making thereof
JPH05109318A (en) Dielectric porcelain for microwave
JPH02199052A (en) Dielectric ceramic composition for high frequency
US7368407B2 (en) High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
CN111825445B (en) High-dielectric-constant microwave dielectric ceramic material, preparation and application thereof
WO1996008019A1 (en) Dielectric procelain composition and its manufacture
JP2002068837A (en) Method for manufacturing dielectric ceramic composition
JP5134819B2 (en) High frequency dielectric ceramics
CN111018524A (en) Low-loss trigonal tungstate-based microwave dielectric ceramic and preparation method thereof
JPH11130544A (en) Dielectric ceramic composition and its production
JPH035357A (en) Dielectric ceramic and its production
JPS61181008A (en) Manufacture of dielectric ceramics
JP4959043B2 (en) Dielectric porcelain composition, method for producing the same, and dielectric resonator
JPH08325054A (en) Low dielectric loss body
JP2796905B2 (en) Method for producing transparent microwave dielectric
JPH05109316A (en) Manufacture of dielectric porcelain for microwave
CN113773054A (en) High Q x f gallate garnet structure microwave dielectric ceramic material and preparation method thereof
JPH0580764B2 (en)
CN116789448A (en) Medium-temperature sintering high-Q-value microwave dielectric material and preparation method and application thereof
CN116969760A (en) Ca-Sm-Al-Ti-based microwave dielectric ceramic material and preparation method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees