JPH09235160A - Ceramics composition and production of ceramics ware - Google Patents

Ceramics composition and production of ceramics ware

Info

Publication number
JPH09235160A
JPH09235160A JP8042524A JP4252496A JPH09235160A JP H09235160 A JPH09235160 A JP H09235160A JP 8042524 A JP8042524 A JP 8042524A JP 4252496 A JP4252496 A JP 4252496A JP H09235160 A JPH09235160 A JP H09235160A
Authority
JP
Japan
Prior art keywords
crystal phase
weight
dielectric constant
composition
ceramics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8042524A
Other languages
Japanese (ja)
Other versions
JP3311924B2 (en
Inventor
Yoshitake Terashi
吉健 寺師
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP04252496A priority Critical patent/JP3311924B2/en
Publication of JPH09235160A publication Critical patent/JPH09235160A/en
Application granted granted Critical
Publication of JP3311924B2 publication Critical patent/JP3311924B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain ceramics composition bakable at 800-1000 deg.C, having high relative dielectric constant and low dielectric loss tangent even in a high-frequency region of >=1GHz and exhibiting high strength and provide a process for the production of the ceramics composition. SOLUTION: This ceramics composition is composed of 10-40wt.% of a crystallized glass containing at least B2 O3 , SiO2 , Al2 O3 and ZnO, 5-70wt.% of SrTiO3 and 1-70wt.% of Al2 O3 . A powdery mixture of the above composition is formed and baked in a non-oxidizing atmosphere at 800-1000 deg.C to obtain ceramics containing a perovskite-type crystal phase containing at least Sr and Ti, a spinel-type crystal phase containing at least Zn and Al, a rutile-type crystal phase and an Al2 O3 crystal phase as the constituent crystal phases and having a dielectric constant of >=10 and a transverse rupture strength of >=20kg/mm<2> .

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、低温での焼成が可
能で、特に銅を配線とする多層基板に適した磁器組成物
に関するものであり、例えば高周波で用いられるマイク
ロ波、ミリ波用の配線基板や、マイクロ波、ミリ波領域
で用いられる誘電体共振器、誘電体導波路、誘電体アン
テナに用いられる磁器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a porcelain composition which can be fired at a low temperature and is particularly suitable for a multi-layer substrate having copper as a wiring. The present invention relates to a wiring board, a dielectric resonator used in a microwave or millimeter wave region, a dielectric waveguide, and a porcelain used for a dielectric antenna.

【0002】[0002]

【従来技術】近年、高度情報化時代を迎え、情報伝送は
より高速化・高周波化が進行する傾向にある。自動車電
話やパーソナル無線等の移動無線、衛星放送、衛星通信
やCATV等のニューメディアでは、機器のコンパクト
化が推し進められており、これに伴い誘電体共振器等の
マイクロ波用回路素子に対しても小型化が強く望まれて
いる。
2. Description of the Related Art In recent years, with the era of advanced information technology, information transmission tends to be faster and higher in frequency. Mobile media such as mobile phones and personal radios, satellite broadcasting, satellite communications, and new media such as CATV have been working to reduce the size of their devices. As a result, microwave circuit elements such as dielectric resonators have been required. In addition, miniaturization is strongly desired.

【0003】このようなマイクロ波用回路素子の大きさ
は、使用電磁波の波長が基準となる。比誘電率εrの誘
電体中を伝播する電磁波の波長λは、真空中の伝播波長
をλ0 とするとλ=λ0 /(εr)1/2 となる。したが
って、回路素子は、使用される回路用基板の誘電率が大
きい程、小型になる。
[0003] The size of such a microwave circuit element is based on the wavelength of the electromagnetic wave used. The wavelength λ of an electromagnetic wave propagating in a dielectric having a relative permittivity εr is λ = λ 0 / (εr) 1/2 , where λ 0 is the propagation wavelength in vacuum. Therefore, the circuit element becomes smaller as the permittivity of the circuit board used increases.

【0004】さらに、多層回路基板に種々の電子部品や
入出力端子等を接続する工程上で基板に加わる応力から
基板が破壊したり、欠けを生じたりすることを防止する
為に材料の機械的強度が高いことも要求されている。
Further, in order to prevent the substrate from being broken or chipped due to the stress applied to the substrate in the process of connecting various electronic parts, input / output terminals, etc. to the multilayer circuit board, a mechanical material is used. High strength is also required.

【0005】そこで、上述した高誘電率化および高強度
化等の要求を満足するため、例えば、特開平06−13
2621号公報には、樹脂中に無機誘電体粒子を分散
し、また高誘電率ガラス繊維で強化された回路用基板が
提案されている。この回路基板では比誘電率が高いため
機器の小型化を促進でき、また、高誘電率ガラス繊維で
強化されているため高強度である。
Therefore, in order to satisfy the above-mentioned requirements for higher dielectric constant and higher strength, for example, Japanese Patent Laid-Open No. 06-13
Japanese Patent No. 2621 proposes a circuit board in which inorganic dielectric particles are dispersed in a resin and which is reinforced with a high dielectric constant glass fiber. Since this circuit board has a high relative dielectric constant, it can promote miniaturization of equipment, and has high strength because it is reinforced with a high dielectric constant glass fiber.

【0006】また、銅を配線層とする回路基板に適した
絶縁材料として、800〜1000℃で焼成可能なガラ
スセラミックス材料が知られている。このガラスセラミ
ック材料は、硼珪酸ガラスなどのガラス粉末に、Al2
3 、石英などのセラミックなどのフィラー粉末を添加
して焼成したものであり、銅配線との同時焼成による多
層化が可能である点で有利である。
As an insulating material suitable for a circuit board having copper as a wiring layer, a glass ceramic material which can be fired at 800 to 1000 ° C. is known. This glass-ceramic material is used for glass powder such as borosilicate glass and Al 2
This is fired by adding a filler powder such as ceramics such as O 3 and quartz, and is advantageous in that a multilayer can be formed by simultaneous firing with copper wiring.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、特開平
06−132621号公報に示された回路基板では、焼
成温度が400℃程度であり銅等を配線導体として用い
ての多層化、微細な配線化ができないという問題があっ
た。
However, in the circuit board disclosed in Japanese Unexamined Patent Publication No. 06-132621, the firing temperature is about 400 ° C., and copper or the like is used as the wiring conductor to form a multilayered wiring and fine wiring. There was a problem that I could not do it.

【0008】また、従来のガラスセラミック材料は、そ
の誘電率は、そのほとんどが誘電率10より低い低誘電
率のものであり、高周波用の機器の小型化のための高誘
電率化の点では十分に検討されておらず、また、強度の
点でもせいぜい20kg/mm2 程度であり、さらなる
強度の向上が望まれている。
Further, most of the conventional glass ceramic materials have a low dielectric constant lower than the dielectric constant of 10. Therefore, in terms of increasing the dielectric constant for downsizing high frequency equipment. It has not been sufficiently studied, and the strength is at most about 20 kg / mm 2 , and further improvement in strength is desired.

【0009】従って、本発明は、800〜1000℃で
焼成することが可能であり、1GHz以上の高周波領域
においても高い比誘電率と、低い誘電正接を有するとと
もに高強度の磁器組成物と、その製造方法を提供するこ
とを目的とする。
Therefore, according to the present invention, a porcelain composition which can be fired at 800 to 1000 ° C. and has a high relative dielectric constant and a low dielectric loss tangent and a high strength even in a high frequency region of 1 GHz or more, and It is intended to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】本発明者は、上記問題点
を鋭意検討した結果、ガラスの軟化流動を利用して80
0〜1000℃で焼成することにより、配線導体として
金、銀及び銅を用いた多層化、微細配線化が可能である
こと、また、高誘電率のSrTiO3 、Al23 、お
よびこれと特定のガラスを組み合わせて、結晶相として
SrTiO3 等のペロブスカイト型酸化物結晶相、Ti
2 (ルチル型)結晶相と、Al2 3結晶相を析出さ
せることにより、高い比誘電率を得ることができるこ
と、さらに結晶相として、スピネル型結晶相(ZnO・
Al2 3 、MgO・Al2 3 )を析出させてガラス
相を完全に結晶化させることにより高強度化を達成する
ことができることを知見し、本発明に至った。
DISCLOSURE OF THE INVENTION As a result of earnest studies on the above-mentioned problems, the present inventor made use of the softening flow of glass to obtain 80
By firing at 0 to 1000 ° C., it is possible to use gold, silver, and copper as wiring conductors for multilayering and fine wiring, and high-dielectric constant SrTiO 3 , Al 2 O 3 , and As a crystal phase, a perovskite type oxide crystal phase such as SrTiO 3 or Ti
By precipitating an O 2 (rutile type) crystal phase and an Al 2 O 3 crystal phase, it is possible to obtain a high relative dielectric constant, and as a crystal phase, a spinel type crystal phase (ZnO.
Al 2 O 3, MgO · Al 2 O 3) was allowed to precipitate by finding that it is possible to achieve a high strength by completely crystallized glass phase, leading to the present invention.

【0011】即ち、本発明の磁器組成物は、少なくとも
2 3 、SiO2 、Al2 3 およびZnOを含むガ
ラスを10〜40重量%と、SrTiO3 を5〜70重
量%と、Al2 3 を1〜70重量%とからなることを
特徴とするもので、かかる組成物からなる混合粉末を成
形後、非酸化性雰囲気中、800℃〜1000℃で焼成
することによって、構成結晶相として、少なくともSr
とTiを含むペロブスカイト型結晶相と、少なくともZ
nおよびAlを含むスピネル型結晶相と、ルチル型結晶
相と、Al2 3 結晶相を含み、誘電率が10以上、抗
折強度が20kg/mm2 以上の磁器を得ることを特徴
とするものである。
That is, the porcelain composition of the present invention comprises 10 to 40% by weight of glass containing at least B 2 O 3 , SiO 2 , Al 2 O 3 and ZnO, 5 to 70% by weight of SrTiO 3 , and Al. 2 O 3 is composed of 1 to 70% by weight, and a constituent crystal is obtained by molding a mixed powder of such a composition and then firing the mixture at 800 ° C. to 1000 ° C. in a non-oxidizing atmosphere. As a phase, at least Sr
And a perovskite-type crystal phase containing Ti, and at least Z
A porcelain containing a spinel type crystal phase containing n and Al, a rutile type crystal phase and an Al 2 O 3 crystal phase and having a dielectric constant of 10 or more and a bending strength of 20 kg / mm 2 or more is obtained. It is a thing.

【0012】[0012]

【発明の実施の形態】本発明の磁器組成物は、少なくと
もB2 3 、SiO2 、Al2 3 およびZnOを含む
ガラス成分を10〜40重量%と、フィラー成分とし
て、SrTiO3 を5〜70重量%と、Al2 3 を1
〜70重量%の割合で含むものである。
BEST MODE FOR CARRYING OUT THE INVENTION The porcelain composition of the present invention comprises 10 to 40% by weight of a glass component containing at least B 2 O 3 , SiO 2 , Al 2 O 3 and ZnO, and 5% SrTiO 3 as a filler component. ~ 70 wt% and 1 Al 2 O 3
It is contained in a proportion of ˜70% by weight.

【0013】ここで、組成を上記の範囲に限定したの
は、少なくともB2 3 、SiO2 、Al2 3 および
ZnOを含むガラス成分量が10重量%より少ないか、
言い換えればSrTiO3 、Al2 3 とからなるフィ
ラー成分量が90重量%より多いと、800〜1000
℃の温度で磁器が十分に緻密化することができず、逆
に、上記ガラス量が40重量%より多いか、言い換えれ
ば上記フィラー量が60重量%より少ないと、700℃
以下の低温で緻密化してしまい、銅等の配線導体と同時
に焼成することができないためである。上記ガラスの望
ましい範囲は10〜30重量%である。
Here, the composition is limited to the above range because the glass component containing at least B 2 O 3 , SiO 2 , Al 2 O 3 and ZnO is less than 10% by weight,
In other words, when the amount of the filler component composed of SrTiO 3 and Al 2 O 3 is more than 90% by weight, it is 800 to 1000.
At a temperature of ℃, the porcelain cannot be sufficiently densified, and conversely, if the glass amount is more than 40% by weight, in other words, the filler amount is less than 60% by weight, 700 ° C.
This is because it becomes dense at the following low temperature and cannot be fired at the same time as the wiring conductor such as copper. The desirable range of the glass is 10 to 30% by weight.

【0014】一方、フィラー成分において、SrTiO
3 の量が5重量%より少なく、またはAl2 3 量が7
0重量%より多いと、誘電率は10より低くなり、Sr
TiO3 が70重量%より多いか、またはAl2 3
が1重量%より少ないと、誘電率が50より大きくな
り、10〜20GHz以上の高周波領域では導体損失が
50dB/m以上となり、信号の伝搬が困難となってし
まうためである。特に、SrTiO3 は10〜50重量
%、Al2 3 は20〜50重量%であることが望まし
い。
On the other hand, in the filler component, SrTiO 3
The amount of 3 is less than 5% by weight, or the amount of Al 2 O 3 is 7
When it is more than 0% by weight, the dielectric constant becomes lower than 10, and Sr
When the content of TiO 3 is more than 70% by weight or the amount of Al 2 O 3 is less than 1% by weight, the dielectric constant is more than 50, and the conductor loss becomes 50 dB / m or more in the high frequency region of 10 to 20 GHz or more, Is difficult to propagate. Particularly, it is desirable that SrTiO 3 is 10 to 50% by weight and Al 2 O 3 is 20 to 50% by weight.

【0015】また、上記ガラス成分の具体的な組成とし
ては、B2 3 42〜50重量%、SiO2 8〜15重
量%、Al2 3 1.5〜3重量%、ZnO32〜40
重量%の割合で含み、他の成分としてNa2 O、Li2
O、K2 Oなどのアルカリ金属酸化物を5.5〜7.5
重量%の割合で含んでもよい。
The specific composition of the above glass component is as follows: B 2 O 3 42-50% by weight, SiO 2 8-15% by weight, Al 2 O 3 1.5-3% by weight, ZnO 32-40.
It is contained in a weight percentage, and other components such as Na 2 O and Li 2 are included.
O, K 2 O and other alkali metal oxides of 5.5 to 7.5
You may contain in the ratio of weight%.

【0016】この磁器組成物は、800〜1000℃の
温度範囲での焼成によって相対密度95%以上まで緻密
化することができる。具体的な磁器の製造方法として
は、上記の組成物を所望の成形手段、例えば、金型プレ
ス,冷間静水圧プレス,押出し成形、ドクターブレード
法、圧延法等により任意の形状に成形後、大気中やN
やAr等の非酸化性雰囲気中で800〜1000℃、特
に900〜1000℃の温度で焼成する。
This porcelain composition can be densified to a relative density of 95% or more by firing in a temperature range of 800 to 1000 ° C. As a specific method for producing a porcelain, the above composition is molded into an arbitrary shape by a desired molding means, for example, a mold press, a cold isostatic press, an extrusion molding, a doctor blade method, a rolling method, or the like, Atmosphere and N 2
Firing is performed at a temperature of 800 to 1000 ° C., particularly 900 to 1000 ° C. in a non-oxidizing atmosphere such as Ar or Ar.

【0017】この焼成によって得られる磁器は、構成結
晶相として、SrおよびTiを含む、例えばSrTiO
等のペロブスカイト型酸化物結晶相、ZnおよびA
lを含む、例えば、ZnAl2 4 (ガーナイト)等の
スピネル型結晶相と、TiO2(ルチル型)結晶相と、
Al2 3 結晶相を含むものである。
The porcelain obtained by this firing contains Sr and Ti as constituent crystal phases, for example, SrTiO 3.
Perovskite type oxide crystal phase such as 3 and Zn and A
a spinel type crystal phase such as ZnAl 2 O 4 (gurnite) and a TiO 2 (rutile type) crystal phase containing 1
It contains an Al 2 O 3 crystal phase.

【0018】そこで、図1に焼成により得られた磁器の
組織の概略図を示した。図1に示すように、本発明にお
ける磁器は、ペロブスカイト型酸化物(SrTiO3
結晶相1、スピネル型(ガーナイト:ZnAl2 4
結晶相2と、TiO2 (ルチル型)結晶相3と、Al2
3 結晶相4と、ガラス相5とから構成されている。
Therefore, FIG. 1 shows a schematic view of the structure of the porcelain obtained by firing. As shown in FIG. 1, the porcelain according to the present invention is a perovskite type oxide (SrTiO 3 ).
Crystal phase 1, spinel type (Gurnite: ZnAl 2 O 4 )
Crystal phase 2, TiO 2 (rutile type) crystal phase 3, Al 2
It is composed of an O 3 crystal phase 4 and a glass phase 5.

【0019】ペロブスカイト型酸化物(SrTiO3
結晶相1は磁器中における主結晶相として存在する。な
お、スピネル型結晶相はZnO・Al2 3 やMgO・
Al23 の結晶相である。また、ガラスはほとんど結
晶化し、残ったガラス相5は三重点に存在するが、まれ
に確認できる程度である。
Perovskite type oxide (SrTiO 3 ).
Crystal phase 1 exists as the main crystal phase in the porcelain. The spinel type crystal phase is ZnO.Al 2 O 3 or MgO.
It is a crystal phase of Al 2 O 3 . Further, the glass is almost crystallized, and the remaining glass phase 5 exists at the triple point, but it is rarely confirmed.

【0020】この組織においては、ペロブスカイト型酸
化物結晶、スピネル型結晶、Al23 結晶、TiO2
(ルチル)結晶の順でその存在割合が少なくなるのが望
ましい。なお、ペロブスカイト型酸化物結晶相1は、平
均粒径0.1〜1μmの粒子として、スピネル型結晶相
2は、平均粒径0.1〜1μmの粒子として、TiO2
(ルチル型)結晶相3は、平均粒径0.1〜1μmの粒
子として、さらにAl2 3 結晶相4は平均粒径0.1
〜1μmの粒子として存在することが望ましい。なお、
上記平均粒径はいずれも長径における平均値である。
In this structure, perovskite type oxide crystals, spinel type crystals, Al 2 O 3 crystals, TiO 2
It is desirable that the abundance ratio of the (rutile) crystals decreases in the order. Note that perovskite oxide crystal phase 1, as particles with an average particle diameter of 0.1 to 1 [mu] m, the spinel-type crystalline phase 2, as particles having an average particle size of 0.1 to 1 [mu] m, TiO 2
The (rutile type) crystal phase 3 has a mean particle size of 0.1 to 1 μm, and the Al 2 O 3 crystal phase 4 has a mean particle size of 0.1.
It is desirable to exist as particles of ˜1 μm. In addition,
The above average particle diameters are all average values in the major axis.

【0021】このように本発明によれば、焼結体中にペ
ロブスカイト型酸化物(SrTiO3 )結晶相を存在さ
せ、同時にTiO2 (ルチル型)結晶相を存在させるこ
とにより比誘電率を向上することができる。また、焼成
温度を調整してガラスをほとんど反応させ、焼結体中に
スピネル型結晶相を析出させる。これらの結晶相は各結
晶相のネットワークを補強する形態で存在するため、機
械的強度の高い焼結体を得ることができる。
As described above, according to the present invention, the relative dielectric constant is improved by allowing the perovskite type oxide (SrTiO 3 ) crystal phase to exist in the sintered body and the TiO 2 (rutile type) crystal phase at the same time. can do. Further, the firing temperature is adjusted to cause most of the glass to react, and a spinel type crystal phase is precipitated in the sintered body. Since these crystal phases exist in a form that reinforces the network of each crystal phase, a sintered body having high mechanical strength can be obtained.

【0022】本発明における磁器組成物は、特に金、
銀、銅などを配線する絶縁基板として用いることができ
るが、具体的には、出発原料として、B2 3 ーSiO
2 ーAl2 3 ーZnO系ガラス粉末、フィラー成分と
してSrTiO3 粉末、Al23 粉末を前述した組成
を満足するように混合する。
The porcelain composition according to the present invention is preferably gold,
It can be used as an insulating substrate for wiring silver, copper, etc. Specifically, as a starting material, B 2 O 3 —SiO 2 is used.
2 -Al 2 O 3 -ZnO glass powder, SrTiO 3 powder as a filler component, and Al 2 O 3 powder are mixed so as to satisfy the above-mentioned composition.

【0023】上記フィラー成分としては、各金属の酸化
物粉末のほかに、焼結過程で酸化物を形成し得る炭酸
塩、酢酸塩、硝酸塩等の形態でも添加できる。なお、調
合組成において、SrTiO3 粉末は分散性を高め高い
誘電率や低い誘電正接を得るために1.5μm以下、特
に1.0μm以下の微粉末であることが望ましい。ま
た、Al2 3 粉末も、分散性を高め高誘電率のSrT
iO3 との組み合わせにより安定して目的の誘電率を得
られるために1.5μm以下、特に1.0μm以下の微
粉末であることが望ましい。
In addition to the oxide powder of each metal, the filler component may be added in the form of carbonate, acetate, nitrate or the like which can form an oxide during the sintering process. In the composition, the SrTiO 3 powder is preferably a fine powder having a particle size of 1.5 μm or less, particularly 1.0 μm or less in order to enhance the dispersibility and obtain a high dielectric constant and a low dielectric loss tangent. Al 2 O 3 powder also has high dispersibility and high dielectric constant SrT.
It is desirable that the fine powder has a particle size of 1.5 μm or less, particularly 1.0 μm or less so that the desired dielectric constant can be stably obtained by combination with iO 3 .

【0024】上記のような割合で添加混合した混合粉末
に適宜バインダ−を添加した後、所定形状に成形し、N
2 、Ar等の非酸化性雰囲気、又は大気中において80
0℃〜1000℃で0.1〜5時間焼成することにより
得られるものである。この時の焼成温度が800℃より
低いと、磁器が十分に緻密化せず、1000℃を越える
と銅導体を用いることが出来なくなるためである。
After appropriately adding a binder to the mixed powder mixed and mixed in the above proportions, the mixture is molded into a predetermined shape and N
2 , 80 in a non-oxidizing atmosphere such as Ar or in the air
It is obtained by firing at 0 ° C to 1000 ° C for 0.1 to 5 hours. If the firing temperature at this time is lower than 800 ° C, the porcelain will not be sufficiently densified, and if it exceeds 1000 ° C, the copper conductor cannot be used.

【0025】また、かかる磁器組成物を用いて配線基板
を作製する場合には、例えば、上記のようにして調合し
た混合粉末を公知のテープ成形法、例えばドクターブレ
ード法、圧延法等に従い、絶縁層形成用のグリーンシー
トを作製した後、そのシートの表面に配線層用のメタラ
イズとして、銀、金、銅の粉末、特に望ましくは銅粉末
を含む金属ペーストを用いて、グリーンシート表面に配
線パターンにスクリーン印刷し、場合によってはシート
にスルーホールを形成してホール内に上記ペーストを充
填する。その後、複数のシートを積層圧着した後、
2 、Ar等の非酸化性雰囲気中で800〜1000℃
の温度で焼成することにより、配線層と絶縁層とを同時
に焼成することができる。
When a wiring board is manufactured using such a porcelain composition, for example, the mixed powder prepared as described above is insulated by a known tape molding method such as a doctor blade method or a rolling method. After producing a green sheet for forming a layer, a metal paste containing silver, gold, copper powder, particularly preferably copper powder is used as a metallization for a wiring layer on the surface of the sheet, and a wiring pattern is formed on the surface of the green sheet. Screen printing is performed on the sheet, and in some cases, a through hole is formed in the sheet, and the paste is filled in the hole. Then, after laminating and pressing multiple sheets,
800 to 1000 ° C in a non-oxidizing atmosphere such as N 2 or Ar
By firing at the temperature of, the wiring layer and the insulating layer can be fired at the same time.

【0026】以下、本発明を次の例で説明する。The present invention will be described below with reference to the following examples.

【0027】[0027]

【実施例】【Example】

実施例1 ガラスとして表1の5種の組成のガラスを準備した。 Example 1 As the glass, glass having five compositions shown in Table 1 was prepared.

【0028】[0028]

【表1】 [Table 1]

【0029】また、フィラー成分として、平均粒径が1
μm以下のSrTiO3 、平均粒が0.3μm、1μm
および2μmのAl2 3 粉末を表2の組成に従い混合
した。そして、この混合物に有機バインダー、可塑剤、
トルエンを添加し、ドクターブレード法により厚さ30
0μmのグリーンシートを作製した。そして、このグリ
ーンシートを5枚積層し、50℃の温度で100kg/
cm2 の圧力を加えて熱圧着した。得られた積層体を水
蒸気含有/窒素雰囲気中で、700℃で脱バインダーし
た後、乾燥窒素中で表2の条件において焼成して多層基
板用磁器組成物の焼結体を得た。
As the filler component, the average particle size is 1
SrTiO 3 of less than μm, average particle size is 0.3 μm, 1 μm
And 2 μm Al 2 O 3 powder were mixed according to the composition of Table 2. Then, an organic binder, a plasticizer,
Toluene is added and the thickness is 30 by the doctor blade method.
A 0 μm green sheet was prepared. Then, five green sheets are laminated, and at a temperature of 50 ° C., 100 kg /
Thermocompression bonding was performed by applying a pressure of 2 cm 2 . The obtained laminate was debindered at 700 ° C. in a water vapor-containing / nitrogen atmosphere, and then fired in dry nitrogen under the conditions shown in Table 2 to obtain a sintered body of the ceramic composition for a multilayer substrate.

【0030】得られた焼結体について誘電率、抗折強度
を以下の方法で評価した。誘電率は、試料形状 直径5
0mm、厚み1mmの試料を切り出し、10GHzにて
ネットワークアナライザー、シンセサイズドスイーパー
を用いて誘電体円柱共振器法により測定した。測定で
は、φ50のCu板治具の間に試料の誘電体基板を挟ん
で測定した。共振器のTE011 モードの共振特性より、
誘電率を算出した。抗折強度は、試料形状長さ70m
m,厚さ3mm,幅4mmとし、JIS−C−2141
の規定に準じて3点曲げ試験を行った。測定の結果は表
2に示した。
The dielectric constant and flexural strength of the obtained sintered body were evaluated by the following methods. Dielectric constant is 5 for sample shape
A sample with a thickness of 0 mm and a thickness of 1 mm was cut out and measured at 10 GHz by a dielectric cylinder resonator method using a network analyzer and a synthesized sweeper. In the measurement, a dielectric substrate of a sample was sandwiched between φ50 Cu plate jigs. From the resonance characteristics of the TE011 mode of the resonator,
The dielectric constant was calculated. The bending strength is 70m for the sample shape.
m, thickness 3 mm, width 4 mm, JIS-C-2141
A three-point bending test was carried out in accordance with the regulations of. The measurement results are shown in Table 2.

【0031】また、比較例として、フィラー成分とし
て、SrTiO3 に代わり、TiO2を用いて同様に焼
結体を作製し評価した(試料No.23、24)。また、
試料No.19〜22は、ガラスC,Dを用いて、フィラ
ーとして平均粒径が1.0μmのSrTiO3 粉末と平
均粒径が0.3μmのAl2 3 粉末を用いて同様に評
価した。
As a comparative example, TiO 2 was used as a filler component instead of SrTiO 3 , and a sintered body was similarly prepared and evaluated (Samples Nos. 23 and 24). Also,
Samples Nos. 19 to 22 were evaluated in the same manner by using glasses C and D using SrTiO 3 powder having an average particle size of 1.0 μm and Al 2 O 3 powder having an average particle size of 0.3 μm as fillers. .

【0032】[0032]

【表2】 [Table 2]

【0033】表2の結果から明らかなように、結晶相と
してペロブスカイト型酸化物(SrTiO3 )結晶相、
スピネル型(ガーナイト:ZnAl2 4 )結晶相と、
TiO2 (ルチル型)結晶相と、Al2 3 相が析出し
た本発明は、いずれも誘電率が10以上、10GHzで
の誘電正接が15×10-4以下、強度が20kg/mm
2 以上の高い値を示した。
As is clear from the results shown in Table 2, the perovskite type oxide (SrTiO 3 ) crystal phase as the crystal phase,
A spinel type (Gurnite: ZnAl 2 O 4 ) crystal phase,
In the present invention in which a TiO 2 (rutile type) crystal phase and an Al 2 O 3 phase are precipitated, the dielectric constant is 10 or more, the dielectric loss tangent at 10 GHz is 15 × 10 −4 or less, and the strength is 20 kg / mm.
A high value of 2 or more was shown.

【0034】これに対して、ガラス量が10重量%未満
である試料No.1では、焼成温度を1400℃まで高め
ないと緻密化することができず、比誘電率は50より高
く誘電正接が高いものであった。
On the other hand, in sample No. 1 containing less than 10% by weight of glass, densification cannot be achieved unless the firing temperature is raised to 1400 ° C., and the relative dielectric constant is higher than 50 and the dielectric loss tangent is It was expensive.

【0035】また、比較例として、フィラーとしてTi
2 を用いた試料No.23、No.24では、それぞれ誘
電正接が100と120で、かなり高くなった。また、
結晶化ガラスCおよびDを用いた試料No.19〜22で
は、ガラスの軟化点が高いため800℃〜1000℃で
十分に緻密化できず、いずれも高誘電率、低誘電正接、
高強度の焼結体は得ることができなかった。
As a comparative example, Ti is used as a filler.
In samples No. 23 and No. 24 using O 2 , the dielectric loss tangents were 100 and 120, respectively, which were considerably high. Also,
In Samples Nos. 19 to 22 using the crystallized glasses C and D, the glass had a high softening point, so that it could not be sufficiently densified at 800 ° C. to 1000 ° C.
It was not possible to obtain a high-strength sintered body.

【0036】[0036]

【発明の効果】以上詳述した通り、本発明の低温焼成磁
器組成物は、1.0GHz以上のの高周波帯において高
い誘電率と低い誘電正接を示し、かつ高強度を有するた
めに、マイクロ波用回路素子等において小型化が可能と
なり、さらに、基板材料の高強度化により入出力端子部
に施すリードの接合や実装における基板の信頼性を向上
できる。しかも、800〜1000℃で焼成できるた
め、Au、Ag、Cu等による配線を同時焼成により形
成することができる。
As described above in detail, the low temperature fired porcelain composition of the present invention exhibits a high dielectric constant and a low dielectric loss tangent in a high frequency band of 1.0 GHz or higher, and has a high strength. The circuit element for use can be downsized, and the strength of the board material can be increased, and the reliability of the board in the bonding of leads to the input / output terminal and the mounting can be improved. Moreover, since the firing can be performed at 800 to 1000 ° C., the wiring made of Au, Ag, Cu or the like can be formed by the simultaneous firing.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の磁器組成物の組織の概略図である。FIG. 1 is a schematic view of the structure of the porcelain composition of the present invention.

【符号の説明】[Explanation of symbols]

1 ペロブスカイト型酸化物結晶相 2 スピネル型結晶相 3 TiO2 (ルチル型)結晶相 4 Al2 3 結晶相 5 ガラス相1 Perovskite type oxide crystal phase 2 Spinel type crystal phase 3 TiO 2 (rutile type) crystal phase 4 Al 2 O 3 crystal phase 5 glass phase

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 // H01L 23/15 H01L 23/14 C ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication // H01L 23/15 H01L 23/14 C

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】少なくともB2 3 、SiO2 、Al2
3 およびZnOを含むガラス10〜40重量%と、Sr
TiO3 5〜70重量%と、Al2 3 1〜70重量%
とからなることを特徴とする磁器組成物。
1. At least B 2 O 3 , SiO 2 , Al 2 O
10-40% by weight of glass containing 3 and ZnO, and Sr
5 to 70% by weight of TiO 3 and 1 to 70% by weight of Al 2 O 3
A porcelain composition comprising:
【請求項2】構成結晶相として、少なくともSrとTi
を含むペロブスカイト型結晶相と、少なくともZnおよ
びAlを含むスピネル型結晶相と、ルチル型結晶相と、
Al2 3 結晶相を含み、誘電率が10以上、抗折強度
が20kg/mm2 以上であることを特徴とする磁器組
成物。
2. At least Sr and Ti as constituent crystal phases.
A perovskite-type crystal phase, a spinel-type crystal phase containing at least Zn and Al, and a rutile-type crystal phase,
A porcelain composition containing an Al 2 O 3 crystal phase, having a dielectric constant of 10 or more and a bending strength of 20 kg / mm 2 or more.
【請求項3】少なくともB2 3 、SiO2 、Al2
3 およびZnOを含むガラスを10〜40重量%と、S
rTiO3 を5〜70重量%と、Al2 3 を1〜70
重量%の割合で含む混合粉末を成形後、非酸化性雰囲気
中、800℃〜1000℃で焼成することを特徴とする
磁器の製造方法。
3. At least B 2 O 3 , SiO 2 , Al 2 O
10-40% by weight of glass containing 3 and ZnO, S
5 to 70 wt% of rTiO 3 and 1 to 70 of Al 2 O 3
A method for manufacturing a porcelain, which comprises firing a mixed powder containing the powder in a weight percentage of 800% to 1000 ° C in a non-oxidizing atmosphere after molding.
JP04252496A 1996-02-29 1996-02-29 Porcelain composition and method for producing porcelain Expired - Fee Related JP3311924B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04252496A JP3311924B2 (en) 1996-02-29 1996-02-29 Porcelain composition and method for producing porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04252496A JP3311924B2 (en) 1996-02-29 1996-02-29 Porcelain composition and method for producing porcelain

Publications (2)

Publication Number Publication Date
JPH09235160A true JPH09235160A (en) 1997-09-09
JP3311924B2 JP3311924B2 (en) 2002-08-05

Family

ID=12638479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04252496A Expired - Fee Related JP3311924B2 (en) 1996-02-29 1996-02-29 Porcelain composition and method for producing porcelain

Country Status (1)

Country Link
JP (1) JP3311924B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567233B1 (en) * 1999-10-12 2006-04-04 가부시키가이샤 무라타 세이사쿠쇼 Piezoelectric ceramic material, Electric part using the ceramic
WO2011138915A1 (en) * 2010-05-07 2011-11-10 株式会社 村田製作所 High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
JP2017200872A (en) * 2016-04-28 2017-11-09 京セラ株式会社 Porous ceramic body, member for adsorption and method for producing porous ceramic body
US20210032167A1 (en) * 2019-07-11 2021-02-04 Skyworks Solutions, Inc. Temperature-stable, low-dielectric constant material with an ultra-low loss tangent

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100567233B1 (en) * 1999-10-12 2006-04-04 가부시키가이샤 무라타 세이사쿠쇼 Piezoelectric ceramic material, Electric part using the ceramic
WO2011138915A1 (en) * 2010-05-07 2011-11-10 株式会社 村田製作所 High-temperature structural material, structural body for solid electrolyte fuel cell, and solid electrolyte fuel cell
GB2495639A (en) * 2010-05-07 2013-04-17 Murata Manufacturing Co High-temperature structural material, structural body for soli electrolyte fuel cell, and solid electrolyte fuel cell
JP2017200872A (en) * 2016-04-28 2017-11-09 京セラ株式会社 Porous ceramic body, member for adsorption and method for producing porous ceramic body
US20210032167A1 (en) * 2019-07-11 2021-02-04 Skyworks Solutions, Inc. Temperature-stable, low-dielectric constant material with an ultra-low loss tangent

Also Published As

Publication number Publication date
JP3311924B2 (en) 2002-08-05

Similar Documents

Publication Publication Date Title
JP3297569B2 (en) Low temperature firing porcelain composition
JP3311924B2 (en) Porcelain composition and method for producing porcelain
JP2003063861A (en) Composite laminated ceramic electronic part and method for producing the same
JP3101970B2 (en) Glass-ceramic sintered body and method for producing the same
JP3550270B2 (en) Low temperature fired porcelain composition and method for producing low temperature fired porcelain
JP3101971B2 (en) Glass-ceramic sintered body and method for producing the same
JP3406787B2 (en) Manufacturing method of dielectric porcelain
JP3527818B2 (en) Low-temperature firing porcelain and method of manufacturing the same
JPH09175853A (en) Low-temperature-baked ceramic composition
JP3314130B2 (en) Low temperature firing porcelain composition
JP3085636B2 (en) Glass-ceramic sintered body and method for producing the same
JP3101967B2 (en) Glass-ceramic sintered body and method for producing the same
JP3441940B2 (en) High frequency porcelain composition and method for producing high frequency porcelain
JP2002053368A (en) Porcelain excellent in high-frequency characteristic and its manufacturing method
JP3754778B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3754798B2 (en) High frequency porcelain composition, high frequency porcelain and method for producing the same
JP3406786B2 (en) Manufacturing method of dielectric porcelain
JPH09175855A (en) Low-temperature-baked ceramic composition
JP3792355B2 (en) High-strength ceramic sintered body, method for producing the same, and wiring board
JP3833340B2 (en) Low-temperature fired porcelain composition, low-temperature fired porcelain and method for producing low-temperature fired porcelain
JP3754827B2 (en) High frequency dielectric ceramic composition and laminate
JP3628146B2 (en) Low temperature fired ceramic composition and low temperature fired ceramic
JP3754782B2 (en) High frequency wiring board and manufacturing method thereof
JP3905993B2 (en) High frequency dielectric ceramic composition and laminated part using the same
JPH10212163A (en) Porcelain composition for high frequency and production of porcelain for high frequency

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees