JPH01300560A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH01300560A
JPH01300560A JP63130692A JP13069288A JPH01300560A JP H01300560 A JPH01300560 A JP H01300560A JP 63130692 A JP63130692 A JP 63130692A JP 13069288 A JP13069288 A JP 13069288A JP H01300560 A JPH01300560 A JP H01300560A
Authority
JP
Japan
Prior art keywords
region
conductivity type
transistor
emitter
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63130692A
Other languages
Japanese (ja)
Inventor
Kazuhiko Tsubaki
椿 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP63130692A priority Critical patent/JPH01300560A/en
Publication of JPH01300560A publication Critical patent/JPH01300560A/en
Pending legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To suppress the deterioration of the switching characteristic of a transistor and the decrease in the current amplification factor of a large current region by forming one conductivity type emitter region and additional region in a reverse conductivity type base region in a collector region. CONSTITUTION:One conductivity type collector region 14 formed on a semiconductor substrate 1, reverse conductivity type base regions 3, 4 formed in the collector region, emitter regions 5, 6 formed selectively in the regions 3, 4, an anode region 7 of the same conductivity type additional diode, and a reverse conductivity type cathode region 8 in the region 7 are provided. Thus, since a stable additional diode is provided between the base and the emitter of a power transistor, the current amplification factor of a large current and switching characteristic of the essential characteristics of the transistor are not resultantly deteriorated.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は半導体装置の構造およびその製造方法に関する
もので、特に高速スイッチングパワートランジスタに関
する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to the structure of a semiconductor device and its manufacturing method, and more particularly to a high-speed switching power transistor.

従来の技術 従来、高速スイッチングトランジスタにおいて、スイッ
チング特性を改善するために、半導体基板に用いる単結
晶ウェハーの高抵抗領域の抵抗を低(したり、高抵抗領
域の厚さを薄(することで高スイツチング特性を得てい
た。しかし前述の様な製造方法では、大幅にスイッチン
グ特性を改善することが出来ないだけでなく、トランジ
スタの主要電気特性の一つである高耐圧化も困難であっ
た。このような欠点を排除するため、トランジスタのベ
ース・エミッタ間にダイオードを形成し、素子に注入さ
れた電子や正孔などのマイノリティ・キャリアを素早(
吸収し、ライフタイムを短か(し、トランジスタのスイ
ッチング特性を短かくすることが行なわれてきた。例え
ば、高速スイッチング・ダーリントントランジスタでは
、駆動段トランジスタのベース領域とエミッタ領域との
間にダイオードを作り込んだ構造のものがある。この構
造を有するnpn型ダーリントントランジスタは、例え
ば、第4図の断面図で示すように、NN構造の半導体基
板1の上面を覆う二酸化シリコン膜2をマスクとして利
用する選択拡散処理によって、P型のベース領域3,4
とN型のエミッタ領域5,6およびアノード領域7とP
型のカソード領域8を作り込み、さらに、ベース電極9
および駆動段トランジスタのエミッタ領域5と出力段ト
ランジスタのベース領域4とカソード領域8を接続する
電極lOおよびエミッタ電極11を図示するように形成
するとともに、コレクタ電極12を形成した構造である
。なお、13はチャネルしゃ所領域である。
Conventional technology Conventionally, in order to improve the switching characteristics of high-speed switching transistors, the resistance of the high-resistance region of a single-crystal wafer used as a semiconductor substrate has been lowered or the thickness of the high-resistance region has been thinned. However, with the manufacturing method described above, not only was it not possible to significantly improve the switching characteristics, but it was also difficult to increase the breakdown voltage, which is one of the main electrical characteristics of a transistor. In order to eliminate these drawbacks, a diode is formed between the base and emitter of the transistor to quickly remove minority carriers such as electrons and holes injected into the device.
Efforts have been made to reduce absorption, shorten the lifetime (and shorten the switching characteristics of transistors. For example, in the high-speed switching Darlington transistor, a diode is placed between the base region and emitter region of the drive stage transistor. For example, as shown in the cross-sectional view of FIG. 4, an npn-type Darlington transistor with this structure uses a silicon dioxide film 2 covering the upper surface of a semiconductor substrate 1 with an NN structure as a mask. Through the selective diffusion process, the P-type base regions 3, 4
and N-type emitter regions 5, 6 and anode regions 7 and P
A mold cathode region 8 is formed, and a base electrode 9 is formed.
An electrode lO and an emitter electrode 11 connecting the emitter region 5 of the drive stage transistor and the base region 4 and cathode region 8 of the output stage transistor are formed as shown, and a collector electrode 12 is also formed. Note that 13 is a channel blocking area.

第5図は、かかる構造を有するnpn型ダーリントント
ランジスタの等価回路であり、n型アノード領域7とP
型カソード領域8で付与されるダイオードDiが駆動段
トランジスタのベース・エミッタ間に接続された回路構
造になっている。
FIG. 5 is an equivalent circuit of an npn type Darlington transistor having such a structure, in which the n type anode region 7 and the P
The circuit structure is such that a diode Di provided in the type cathode region 8 is connected between the base and emitter of the drive stage transistor.

発明が解決しようとする課題 しかしながら、第4図の様な構造で、ベース電極9.駆
動段トランジスタと出力段トランジスタの接続および付
加領域ダイオード電極10.エミッタ電極11を形成し
た場合、第6図の付加ダイオード領域の断面構成図に示
すようなシリコンとアルミニウムとの合金層15が形成
される。付加ダイオードのカソード領域8の拡散深さが
浅い場合、シリコンとアルミニウムとの合金層15の深
さが、カソード領域8より深(なり、ダイオードとして
の効果を持たなくなってしまう。また、シリコンとアル
ミニウムとの合金層ができなければ、接触抵抗が大きく
なり、パワートランジスタの主要特性である大電流の電
流増幅率の低下やコレクタ、抵抗が太き(なるという欠
点を有していた。
Problems to be Solved by the Invention However, in the structure shown in FIG. 4, the base electrode 9. Connection of drive stage transistor and output stage transistor and additional region diode electrode 10. When the emitter electrode 11 is formed, an alloy layer 15 of silicon and aluminum is formed as shown in the cross-sectional diagram of the additional diode region in FIG. When the diffusion depth of the cathode region 8 of the additional diode is shallow, the depth of the alloy layer 15 of silicon and aluminum is deeper than the cathode region 8 (and it no longer has the effect as a diode. If an alloy layer is not formed, the contact resistance will increase, resulting in a decrease in the current amplification factor for large currents, which are the main characteristics of power transistors, and a thick collector and resistance.

本発明は、トランジスタのスイッチング特性の悪化と大
電流領域の電流増幅率の低下を抑えるため、付加領域内
に形成する反対導電型領域の拡散長の最適値を提供する
ものである。
The present invention provides an optimum value for the diffusion length of the opposite conductivity type region formed in the additional region in order to suppress the deterioration of the switching characteristics of the transistor and the decrease in the current amplification factor in the large current region.

課題を解決するための手段 この目的を達成するために本発明は、半導体基板上に形
成された一導電型のコレクタ領域とそのコレクタ領域内
に反対導電型のベース領域と、前記ベース領域内に選択
的に形成したエミッタ領域および同導電型付加ダイオー
ドのアノード領域と、アノード領域内に反対導電型のカ
ソード領域とをそなえ、前記カソード領域の拡散深さを
、2.0μm以上に形成することを特徴とした半導体装
置とその製造方法である。
Means for Solving the Problems To achieve this object, the present invention provides a collector region of one conductivity type formed on a semiconductor substrate, a base region of the opposite conductivity type in the collector region, and a base region of the opposite conductivity type in the base region. An emitter region and an anode region of an additional diode of the same conductivity type are selectively formed, and a cathode region of an opposite conductivity type is provided in the anode region, and the diffusion depth of the cathode region is formed to be 2.0 μm or more. This is a featured semiconductor device and its manufacturing method.

作用 本発明によれば、パワートランジスタのベース・エミッ
タ間に安定した付加ダイオードをそなえるもので、その
結果パワートランジスタの主要特性である大電流の電流
増幅率やスイッチング特性を悪化させることのないパワ
ートランジスタを提供するものである。
According to the present invention, a power transistor is provided with a stable additional diode between the base and emitter of a power transistor, and as a result, the main characteristics of a power transistor, such as current amplification factor and switching characteristics for large currents, are not deteriorated. It provides:

実施例 以下本発明の一実施例について、図面を参照しながら説
明する。例えば、高速スイッチングダーリントントラン
ジスタでは、駆動段トランジスタのベース・エミッタ間
にダイオードを作り込んだnpn型トランジスタの工程
流れ図を第1図に示す。
EXAMPLE An example of the present invention will be described below with reference to the drawings. For example, in the case of a high-speed switching Darlington transistor, FIG. 1 shows a process flowchart of an npn type transistor in which a diode is built between the base and emitter of a drive stage transistor.

まず、第1図(a)のように、燐を添加した厚み280
μmのN型半導体基板1(90Ωcm )を酸化し、二
酸化シリコン膜を形成する。しかるのち、片面の二酸化
シリコン膜を除去したのち、その面に燐を拡散し、表面
濃度I X 10”c+a−3,拡散深さ180μmの
高濃度(N+)のコレクタ領域14を形成する。次に、
このコレクタ領域14とは反対の表面に形成された二酸
化シリコン膜を、周知のフォトリソグラフィ技術によっ
て開口し、この開口を通じて、P型不純物のボロンを拡
散導入し、第1図(b)のように、表面濃度5×IQI
IIc11−3.拡散深さ20μmのベース領域3゜4
を形成する。その後再びフォトグラフィ技術により、ベ
ース領域上の二酸化シリコン膜にエミッタ領域と付加領
域を開口を行なう。この開口を通じて、第1図(C)の
ように、N型不純物の燐を拡散し、表面濃度がI X 
1020備−3,拡散深さ10μmのエミッタ領域5,
6と付加領域7を形成する。ついで、付加領域上の二酸
化シリコン膜に選択的に開口し、P型不純物であるボロ
ンを拡散し、第1図(d)のように、表面濃度5 X 
1020cl!1−3のカソード領域8を形成する。本
実施例では、カソード領域の拡散深さが、2.0μm、
4.0μm。
First, as shown in Figure 1(a), the thickness of the phosphorus-added layer is 280 mm.
A .mu.m N-type semiconductor substrate 1 (90 .OMEGA.cm.sup.2) is oxidized to form a silicon dioxide film. Thereafter, after removing the silicon dioxide film on one side, phosphorus is diffused on that surface to form a highly concentrated (N+) collector region 14 with a surface concentration of I x 10''c+a-3 and a diffusion depth of 180 μm.Next. To,
The silicon dioxide film formed on the surface opposite to the collector region 14 is opened by a well-known photolithography technique, and boron, which is a P-type impurity, is diffused and introduced through this opening, as shown in FIG. 1(b). , surface concentration 5×IQI
IIc11-3. Base region 3°4 with diffusion depth 20μm
form. Thereafter, an emitter region and an additional region are formed in the silicon dioxide film on the base region by using the photolithography technique again. Through this opening, as shown in FIG.
1020 equipment-3, emitter region 5 with a diffusion depth of 10 μm,
6 and an additional region 7 are formed. Next, the silicon dioxide film on the additional region is selectively opened and boron, which is a P-type impurity, is diffused to a surface concentration of 5× as shown in FIG. 1(d).
1020cl! 1-3 cathode regions 8 are formed. In this example, the diffusion depth of the cathode region is 2.0 μm,
4.0 μm.

6.0μmになるように拡散時間を任意に選択し形成し
た。以上のように拡散工程の完了した半導体基板上に、
ベース電極領域およびエミッタ電極領域および駆動段ト
ランジスタのエミッタ領域と出力段トランジスタのベー
ス領域とカソード領域とを接続する電極領域の窓あけを
行なった後、第1図(e)のように、ベース電極9およ
びエミッタ電極11および駆動段トランジスタのエミッ
タ領域と出力段トランジスタのベース領域とカソード領
域とを接続する電極10を形成し、さらに裏面の高濃度
コレクタ領域にも接着可能なコレクタ電極12を形成し
た。第2図には、典型的本発明実施例装置の要部ダイオ
ード領域の断面図である。電極材料とカソード領域内の
シリコンとの合金層I5に対して、カソード領域8の拡
散深さを深く設けることにより、スイッチング特性と主
要電気特性を損うことのないパワートランジスタを提供
することができる。
The diffusion time was arbitrarily selected so that the thickness was 6.0 μm. On the semiconductor substrate where the diffusion process has been completed as described above,
After opening the base electrode region, the emitter electrode region, and the electrode region connecting the emitter region of the drive stage transistor and the base region and cathode region of the output stage transistor, as shown in FIG. 9 and an emitter electrode 11 and an electrode 10 connecting the emitter region of the drive stage transistor and the base region and cathode region of the output stage transistor were formed, and a collector electrode 12 which could be bonded to the high concentration collector region on the back side was also formed. . FIG. 2 is a cross-sectional view of the main diode region of a typical device according to the present invention. By providing a deep diffusion depth in the cathode region 8 with respect to the alloy layer I5 of the electrode material and silicon in the cathode region, it is possible to provide a power transistor that does not impair switching characteristics and main electrical characteristics. .

前述のように構成されたトランジスタと従来のカソード
領域が0.5μm、1.5μmを有するトランジスタの
特性比較を第3図に示した。第3図(a)は、小電流領
域でのhFE特性分布、同(b)には直流電流増幅率、
(C)にはスイッチング特性を示す。
FIG. 3 shows a comparison of characteristics between the transistor configured as described above and a conventional transistor having a cathode region of 0.5 μm and 1.5 μm. Figure 3 (a) shows the hFE characteristic distribution in the small current region, and Figure 3 (b) shows the DC current amplification factor,
(C) shows the switching characteristics.

また、第3図(d)に本実施例で示したパワートランジ
スタのエミッタ・ベース間に付加領域のダイオードを形
成した場合、カソード領域の拡散深さとスイッチング特
性(tf)および電流定格(Ic)(直流電流増幅率の
ピーク値が半分に低下した時のコレクタ電流値)の関係
を示した。スイッチング特性およびコレクタ電流定格と
も、拡散深さ2.0μm以上で良好領域になる。以上の
事から、−導電型付加領域内に形成した反対導電型領域
の最適拡散深さ2.0μm以上を選定すれば、スイッチ
ング特性および電流増幅率の低下のないトランジスタを
実現することができる。図から明らかなように、本実施
例によれば、小電流でのhFEのばらつきを減少させ、
直流電流増幅率やスイッチング特性を悪化させることの
ないトランジスタを提供することができる。
Furthermore, when a diode is formed as an additional region between the emitter and the base of the power transistor shown in this example as shown in FIG. 3(d), the diffusion depth of the cathode region, the switching characteristics (tf), and the current rating (Ic) The relationship between the collector current value when the peak value of the DC current amplification factor is reduced by half is shown. Both the switching characteristics and the collector current rating are in the good range when the diffusion depth is 2.0 μm or more. From the above, if the optimal diffusion depth of the opposite conductivity type region formed in the -conductivity type additional region is selected to be 2.0 μm or more, a transistor without deterioration in switching characteristics and current amplification factor can be realized. As is clear from the figure, according to this example, the variation in hFE at a small current is reduced,
A transistor that does not deteriorate the DC current amplification factor or switching characteristics can be provided.

以上の実施例では、npnダーリントントランジスタに
ついてであるが、pnpダーリントントランジスタおよ
びシングルトランジスタ等のベース・エミッタ間に付加
領域を形成するトランジスタにおいて、同一の効果が得
られることは言うまでもない。
Although the above embodiments relate to npn darlington transistors, it goes without saying that the same effect can be obtained in transistors in which an additional region is formed between the base and emitter, such as pnp darlington transistors and single transistors.

発明の・効果 以上に説明した本発明の半導体装置とその製造方法によ
れば、従来法に比べ、小電流でのhFEのばらつきを減
少させ、電流増幅率やスイッチング特性を低下させるこ
とのないトランジスタを提供することができる。
Effects of the Invention According to the semiconductor device and its manufacturing method of the present invention described above, the variation in hFE at a small current is reduced compared to the conventional method, and the transistor is produced without deteriorating the current amplification factor or switching characteristics. can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(e)は本発明実施例トランジスタの製
造過程を示す工程順断面図、第2図は本発明実施例トラ
ンジスタの要部ダイオード領域の断面図、第3図(a)
〜(d)は本発明実施例装置の緒特性を従来例装置と対
比した各特性図、第4図〜第6図は従来例装置の断面図
2等価回路図および要部ダイオード領域断面図である。 1・・・・・・N型シリコン、2・・・・・・二酸化シ
リコン膜、3・・・・・・駆動段(トランジスタ)ベー
ス領域、4・・・・・・出力段(トランジスタ)ベース
領域、5・・・・・・駆動段エミッタ領域、6・・・・
・・出力段エミッタ領域、7・・・・・・付加領域、8
・・・・・・カソード領域、9・・・・・・ベース電極
、10・・・・・・駆動段と出力段接続電極、11・・
・・・・エミッタ電極、12・・・・・・コレクタ電極
、13・・・・・・チャンネルストッパー、14・・・
・・・高濃度コレクタ領域、15・・・・・・カソード
領域内のシリコンと電極材料との合金層。 代理人の氏名 弁理士 中尾敏男 はか1名第1図 第2図 第3図 I((A) m=1′−T′ 本刊造  4走秒 第3図
1(a) to (e) are step-by-step sectional views showing the manufacturing process of a transistor according to an embodiment of the present invention, FIG. 2 is a sectional view of the main diode region of a transistor according to an embodiment of the present invention, and FIG. 3(a)
- (d) are characteristic diagrams comparing the characteristics of the device according to the present invention with those of the conventional device, and Figs. be. 1...N-type silicon, 2...Silicon dioxide film, 3...Drive stage (transistor) base region, 4...Output stage (transistor) base Region, 5... Drive stage emitter region, 6...
...Output stage emitter region, 7...Additional region, 8
... Cathode region, 9 ... Base electrode, 10 ... Drive stage and output stage connection electrode, 11 ...
...Emitter electrode, 12...Collector electrode, 13...Channel stopper, 14...
. . . High concentration collector region, 15 . . . An alloy layer of silicon and electrode material in the cathode region. Name of agent: Patent attorney Toshio Nakao (1 person) Figure 1 Figure 2 Figure 3 Figure I ((A) m=1'-T' Honkanzo 4 running seconds Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に形成された一導電型のコレクタ領
域とそのコレクタ領域内に形成された反対導電型のベー
ス領域とそのベース領域内に形成した一導電型のエミッ
タ領域および付加領域とをそなえた半導体装置。
(1) A collector region of one conductivity type formed on a semiconductor substrate, a base region of the opposite conductivity type formed in the collector region, an emitter region and an additional region of one conductivity type formed in the base region. Equipped with semiconductor devices.
(2)半導体基板上のコレクタ領域内ベース領域中に、
エミッタ領域と共に、同エミッタ領域と同導電型の深い
付加領域を形成し、この付加領域内に反対導電型領域の
拡散深さが2.0μm以上の第2領域を形成することを
特徴とする半導体装置の製造方法。
(2) In the base region within the collector region on the semiconductor substrate,
A semiconductor characterized in that a deep additional region of the same conductivity type as the emitter region is formed together with the emitter region, and a second region having a diffusion depth of an opposite conductivity type region of 2.0 μm or more is formed within the additional region. Method of manufacturing the device.
JP63130692A 1988-05-27 1988-05-27 Semiconductor device and manufacture thereof Pending JPH01300560A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63130692A JPH01300560A (en) 1988-05-27 1988-05-27 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63130692A JPH01300560A (en) 1988-05-27 1988-05-27 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01300560A true JPH01300560A (en) 1989-12-05

Family

ID=15040339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63130692A Pending JPH01300560A (en) 1988-05-27 1988-05-27 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01300560A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365076A (en) * 1976-11-22 1978-06-10 Nec Corp Semiconductor device
JPS62263674A (en) * 1986-05-12 1987-11-16 Toshiba Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5365076A (en) * 1976-11-22 1978-06-10 Nec Corp Semiconductor device
JPS62263674A (en) * 1986-05-12 1987-11-16 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
JP2663679B2 (en) Conductivity modulation type MOSFET
US5079602A (en) Insulated gate bipolar transistor
JPH05347413A (en) Manufacture of semiconductor device
JPH01198076A (en) Semiconductor device
JPH06244430A (en) Semiconductor device
JPH07312370A (en) Semiconductor device
JPH0888290A (en) Semiconductor device and using method therefor
JPH01300560A (en) Semiconductor device and manufacture thereof
JPH05283622A (en) Semiconductor device
JP2561963B2 (en) Insulated gate bipolar transistor and manufacturing method thereof
JP2808882B2 (en) Insulated gate bipolar transistor
JPH0521442A (en) Semiconductor device
JP2856257B2 (en) P-channel insulated gate bipolar transistor
JPH0416443Y2 (en)
JPH06163908A (en) Double gate mos device
JPS6258678A (en) Transistor
JPH06120523A (en) Semiconductor device
JPS6241427B2 (en)
JPH0783121B2 (en) Field effect semiconductor device
JPS62104068A (en) Semiconductor integrated circuit device
JP3356523B2 (en) Transistor
JPS6084878A (en) Semiconductor device having negative resistance characteristic and manufacture thereof
JPH05109745A (en) Semiconductor device
JPS58220471A (en) Lateral transistor
JPH0654798B2 (en) Method for manufacturing semiconductor integrated circuit device