JPH01298726A - Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer - Google Patents

Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer

Info

Publication number
JPH01298726A
JPH01298726A JP12840588A JP12840588A JPH01298726A JP H01298726 A JPH01298726 A JP H01298726A JP 12840588 A JP12840588 A JP 12840588A JP 12840588 A JP12840588 A JP 12840588A JP H01298726 A JPH01298726 A JP H01298726A
Authority
JP
Japan
Prior art keywords
wafer
region
insulating film
semiconductor wafer
defective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12840588A
Other languages
Japanese (ja)
Inventor
Teruo Kato
加藤 照男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP12840588A priority Critical patent/JPH01298726A/en
Publication of JPH01298726A publication Critical patent/JPH01298726A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a wafer having no defective region of high quality and defective nucleus growth region by annealing the wafer made of high oxygen concentration silicon single crystal grown at a low temperature by a Czochralski method, and then forming a silicon epitaxial layer on its surface. CONSTITUTION:After the surface of a wafer is lapped, it is annealed at a low temperature, for example, 700 deg.C in a nitrogen atmosphere for 3 hours to form a defective nucleus in a whole interior. Then, after the surface of the wafer 1 is mirror-fihished, a P-type silicon epitaxial layer 2 is formed on the surface of the wafer by a CVD method. A thin insulating film 3 is formed by a thermally oxidizing method on its main surface, an Si3N4 film 4 covering the surface is etched to allow the film 4 to remain only on an active region, and a channel stopper region 5 is then formed from the surface of the layer 2. Then, the wafer 1 is oxidized with steam to form a field insulating film 6. In case of the steam oxidation, oxygen among lattice is precipitated in the defective nucleus in the wafer 1, and inner defects to become a gettering source such as SiO2 precipitate, laminated layer defects are grown.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体ウェハの製造技術およびその半導体ウ
ェハを用いた半導体装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor wafer manufacturing technique and a semiconductor device using the semiconductor wafer.

〔従来の技術〕[Conventional technology]

半導体ウェハ(以下、ウェハという)の内部に生じた酸
素析出欠陥を利用して汚染不純物を素子活性領域以外の
箇所に集め、その悪影響の除去を図ることを目的とする
イントリンシック・ゲッタリング(intrinsic
 Gettering;  以下、IGという)技術が
、ウェハ上に形成される集積回路の特性や歩留りを向上
させるための不可欠の技術になっている。
Intrinsic gettering is a method that uses oxygen precipitation defects that occur inside a semiconductor wafer (hereinafter referred to as a wafer) to collect contaminant impurities in areas other than the device active region and remove their negative effects.
BACKGROUND ART Gettering (hereinafter referred to as IG) technology has become an essential technology for improving the characteristics and yield of integrated circuits formed on wafers.

上記IGのプロセスは、例えば特開昭55−96641
号公報や特開昭56−80139号公報に記載があるよ
うに、■ウェハの表面近傍に無欠陥領域(デヌーデッド
・ゾーン;denuded zone)を形成するため
の高温アニール(約1050〜1200℃)、■ウェハ
の内部に欠陥核を形成するための低温アニール(約60
゛0〜800℃)、■ウェハ内部の微小欠陥を上記欠陥
核の周囲に集中させて高密度欠陥領域を形成するだめの
中温アニール(約1000℃前後)からなり、通常、ア
ニールを高温−低温−中温の順序で行うプロセス(特開
昭56−80139号)と、低温−高温−中温の順序で
行うプロセス(特開昭55−96641号公報)とが採
用されている。
The above IG process is described in, for example, Japanese Patent Application Laid-Open No. 55-96641.
As described in Japanese Patent Publication No. 56-80139, (1) high-temperature annealing (approximately 1050 to 1200°C) to form a defect-free region (denuded zone) near the surface of the wafer; ■Low temperature annealing (approximately 60
(0 to 800°C), (2) Medium temperature annealing (around 1000°C) to concentrate micro defects inside the wafer around the defect cores to form a high-density defect region. - A process performed in the order of medium temperature (Japanese Patent Application Laid-Open No. 56-80139) and a process performed in the order of low temperature-high temperature-medium temperature (Japanese Patent Application Laid-Open No. 55-96641) are adopted.

また、上記IGは、プロセス導入前の段階であらかじめ
行う場合と、プロセス中の熱処理工程を利用して行う場
合とがあるが、いずれの場合においても、チョクラルス
キー法(CZ法)による結晶育成時にドープされる酸素
濃度が、例えば9. OX 10” 〜1. I X 
10”原子/cd(日本電子工業振興協会換算係数、以
下同様)程度の高酸素濃度シリコン単結晶ウェハを使用
するのが通常である。
In addition, the above IG may be performed in advance at a stage before introducing the process, or may be performed using a heat treatment step during the process, but in either case, crystal growth using the Czochralski method (CZ method) is performed. Sometimes the concentration of oxygen doped is, for example, 9. OX 10" ~ 1.I
It is usual to use a silicon single crystal wafer with a high oxygen concentration of about 10'' atoms/cd (Japan Electronics Industry Promotion Association conversion factor, hereinafter the same).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明者の検討によれば、高酸素濃度シリコン単結晶ウ
ェハを用いて行われる従来のIC技術には、下記のよう
な問題がある。
According to studies by the present inventors, conventional IC technology using high oxygen concentration silicon single crystal wafers has the following problems.

まず、アニールを高温−低温−中温の順序で行うIGプ
ロセスでは、ウェハ表面に無欠陥領域を形成する高温ア
ニールを行った後に内部欠陥核を形成する低温アニール
を行うため、欠陥核が発生し難いという欠点があり、長
時間の低温アニールを行わなければならない。
First, in the IG process, in which annealing is performed in the order of high temperature, low temperature, and medium temperature, defect nuclei are unlikely to occur because high temperature annealing is performed to form a defect-free area on the wafer surface, and then low temperature annealing is performed to form internal defect nuclei. This has the disadvantage of requiring long-term low-temperature annealing.

待に、近年は、プロセスの低温指向が進展しているため
、高温アニールをプロセス中に行う場合には、アニール
時間が不足し、後の中温プロセスの際に内部欠陥がウェ
ハの表面に浮き上がってくる虞れがある。
In recent years, processes have become increasingly low-temperature-oriented, so if high-temperature annealing is performed during the process, the annealing time is insufficient, and internal defects may rise to the surface of the wafer during the subsequent medium-temperature process. There is a risk that this may occur.

一方、アニールを低温−高温−中温の順序で行うIGプ
ロセスでは、内部欠陥核を形成する低温アニールを行っ
た後に無欠陥領域を形成する高温アニールを行うため、
低温アニール時間を短縮できるという利点がある反面、
無欠陥領域内すなわち素子活性領域内に微小欠陥が残留
し易いという欠点がある。
On the other hand, in the IG process where annealing is performed in the order of low temperature - high temperature - medium temperature, low temperature annealing is performed to form internal defect nuclei, and then high temperature annealing is performed to form defect-free regions.
Although it has the advantage of shortening low-temperature annealing time,
There is a drawback that micro defects tend to remain in the defect-free region, that is, in the element active region.

また、高温アニールをプロセス中に行う場合には、前記
した理由により、後の中温プロセスの際に内部欠陥がウ
ェハの表面に浮き上がってくる虞れがある。
Furthermore, if high temperature annealing is performed during the process, there is a risk that internal defects will rise to the surface of the wafer during the subsequent medium temperature process for the reasons described above.

本発明は、上記した問題点に着目してなされたものであ
り、その目的は、高品質の無欠陥領域を有するシリコン
単結晶ウェハの製造方法およびそのウェハを用いた半導
体装置を提供することにある。
The present invention has been made in view of the above-mentioned problems, and its purpose is to provide a method for manufacturing a silicon single crystal wafer having a high-quality defect-free area and a semiconductor device using the wafer. be.

本発明の前記ならびにその他の目的と新規な特徴は、本
明細書の記述および添付図面から明らかになるであろう
The above and other objects and novel features of the present invention will become apparent from the description of this specification and the accompanying drawings.

〔課題を解決するための手段〕[Means to solve the problem]

本願において開示される発明のうち代表的なものの概要
を簡単に説明すれば、次の通りである。
A brief overview of typical inventions disclosed in this application is as follows.

すなわち、チョクラルスキー法によって育成された高酸
素濃度シリコン単結晶からなるウェハに低温アニール処
理を施した後、その表面にシリコンエピタキシャル層を
形成する方法である。
That is, this is a method in which a wafer made of high oxygen concentration silicon single crystal grown by the Czochralski method is subjected to low-temperature annealing treatment, and then a silicon epitaxial layer is formed on the surface of the wafer.

〔作用〕[Effect]

シリコンエピタキシャル層の格子間酸素濃度は、チョク
ラルスキー法によって得られるシリコン単結晶の格子間
酸素濃度よりも約−桁低いため、1000℃程度の中温
処理を施してもエピタキシャル層中に微小欠陥が発生す
ることはない。
The interstitial oxygen concentration in the silicon epitaxial layer is about an order of magnitude lower than the interstitial oxygen concentration in the silicon single crystal obtained by the Czochralski method, so even if medium temperature treatment of about 1000°C is performed, micro defects will not occur in the epitaxial layer. It will never occur.

すなわち、このエピタキシャル湿を無欠陥領域として利
用できるため、無欠陥領域の形成を目的とする高温アニ
ールを欠くか、または高温アニール時間が短い場合でも
、高品質の無欠陥領域を有するウェハが得られる。
In other words, since this epitaxial moisture can be used as a defect-free area, a wafer with a high-quality defect-free area can be obtained even if high-temperature annealing for the purpose of forming a defect-free area is omitted or the high-temperature annealing time is short. .

また、約600〜800℃の低温アニールを施した高酸
素濃度シリコン単結晶ウェハは、その後中温アニールを
施すことによって、内部欠陥核に酸素が析出して欠陥核
の成長が起こるため、ウェハ全体がゲッタリング作用を
持つようになる。
In addition, high oxygen concentration silicon single crystal wafers that have been annealed at a low temperature of about 600 to 800°C are then subjected to medium temperature annealing, which causes oxygen to precipitate into internal defect nuclei and cause the defect nuclei to grow. It has a gettering effect.

従って、低温アニールを施した後、その表面にエピタキ
シャル層を形成したウェハは、無欠陥領域の形成を目的
とする高温アニールを省略することができることから、
内部欠陥の成長が容易になるため、欠陥核形成のための
低温アニールも短時間で済む。
Therefore, for wafers on which an epitaxial layer is formed on the surface after low-temperature annealing, high-temperature annealing for the purpose of forming defect-free regions can be omitted.
Since growth of internal defects is facilitated, low-temperature annealing for defect nucleation can be done in a short time.

〔実施例〕〔Example〕

第1図(a)〜(6)は、本発明の一実施例である半導
体ウェハを用いた半導体装置の製造工程を示す半導体ウ
ェハの要部断面図である。
FIGS. 1(a) to 1(6) are cross-sectional views of essential parts of a semiconductor wafer showing the manufacturing process of a semiconductor device using a semiconductor wafer according to an embodiment of the present invention.

まず、チョクラルスキー法によって、例えば初期格子間
酸素濃度=10XlO”原子/crl(日本電子工業振
興協会換算係数)、抵抗率=約100・Cmのシリコン
単結晶インゴットを引き上げ、これを面方位が(100
)となるようにスライスしてウェハを作成する。
First, by the Czochralski method, for example, a silicon single crystal ingot with an initial interstitial oxygen concentration = 10XlO'' atoms/crl (Japan Electronics Industry Promotion Association conversion coefficient) and a resistivity = approximately 100 cm is pulled, and this is (100
) to create wafers.

次に、上記ウェハの表面をラッピングした後、例えば7
00℃の窒素雰囲気中で3時間低温アニールを施して内
部全体に欠陥核を形成する。
Next, after lapping the surface of the wafer, for example,
Low-temperature annealing is performed for 3 hours in a nitrogen atmosphere at 00° C. to form defect nuclei throughout the interior.

次に、ポリッシングを行って、ウェハの表面を鏡面仕上
げした後、CVD法によってウェハの表面に、例えば膜
厚=約10μm1抵抗率=約10Ω・amのp形シリコ
ンエピタキシャル層を形成し、このエピタキシャル層を
素子活性領域に用いてその表面に所望する集積回路を形
成する。
Next, after performing polishing to give the surface of the wafer a mirror finish, a p-type silicon epitaxial layer with a film thickness of approximately 10 μm and a resistivity of approximately 10 Ω・am, for example, is formed on the surface of the wafer using the CVD method. The layer is used as a device active region to form the desired integrated circuit on its surface.

まず、第1図(a)に示すように、ウェハ1の表面に形
成されたエピタキシャル層2の主面に熱酸化法で薄い絶
縁膜3を形成し、その表面にCVD法によって被着した
5isN4膜4をエツチングして能動領域にのみ5is
N<膜4を残した後、エピタキシャル層20表面から、
例えばホウ素(B)イオンを打ち込んでチャネルストッ
パ領域5を形成し、次いでウェハ1を、例えば1000
℃で5時間スチーム酸化してフィールド絶縁膜6を形成
する。
First, as shown in FIG. 1(a), a thin insulating film 3 is formed by thermal oxidation on the main surface of an epitaxial layer 2 formed on the surface of a wafer 1, and 5isN4 is deposited on the surface by CVD. Etching the membrane 4 and adding 5is only to the active area
N<After leaving the film 4, from the surface of the epitaxial layer 20,
For example, boron (B) ions are implanted to form the channel stopper region 5, and then the wafer 1 is
A field insulating film 6 is formed by steam oxidation at .degree. C. for 5 hours.

上記スチーム酸化の際、ウェハlの内部においては欠陥
核に格子間酸素が析出し、S i O,析出物や積層欠
陥などのゲッタリング源となる内部欠陥が成長する。
During the steam oxidation, interstitial oxygen precipitates at defect nuclei inside the wafer 1, and internal defects that become gettering sources such as SiO, precipitates, and stacking faults grow.

次に、能動領域の絶縁膜3とSl*Ns膜4とを除去し
て第一ゲート絶縁膜7を形成した後、ウェハ1の表面に
被着した、例えばポリシリコンからなる第一の導電層を
パターニングしてキャパシタ電極8を形成し、次いで、
第一ゲート絶縁膜7を除去した後、ウェハ1を熱酸化し
てトランジスタ形成領域には第二ゲート絶縁膜9を、ま
たキャパシタ電極80表面には絶縁膜lOをそれぞれ形
成する(第1図(b))。
Next, after removing the active region insulating film 3 and the Sl*Ns film 4 to form a first gate insulating film 7, a first conductive layer made of polysilicon, for example, is deposited on the surface of the wafer 1. is patterned to form a capacitor electrode 8, and then
After removing the first gate insulating film 7, the wafer 1 is thermally oxidized to form a second gate insulating film 9 in the transistor formation region and an insulating film 10 on the surface of the capacitor electrode 80 (see FIG. 1). b)).

次に、ウェハ1の表面に被着した、例えばポリシリコン
とタングステンシリサイド(WSi、)との二層からな
る第二の導電層をパターニングして第二ゲート絶縁膜9
0表面にゲート電極11を形成した後、ウェハ1の表面
にヒ素(As)などのn形不純物イオンを打ち込んでゲ
ート電極11の両側に自己整合的にソース・ドレイン領
域12を形成し、次いでウェハlの表面に、例えばリン
ケイ酸ガラス(PSG)やホウ素リンケイ酸ガラス(B
 P S G)からなる層間絶縁膜13を被着する(第
1図(C))。
Next, a second conductive layer consisting of two layers of, for example, polysilicon and tungsten silicide (WSi) adhered to the surface of the wafer 1 is patterned to form a second gate insulating film 9.
After forming a gate electrode 11 on the surface of the wafer 1, n-type impurity ions such as arsenic (As) are implanted into the surface of the wafer 1 to form source/drain regions 12 in a self-aligned manner on both sides of the gate electrode 11. For example, phosphosilicate glass (PSG) or boron phosphosilicate glass (B
An interlayer insulating film 13 made of PSG) is deposited (FIG. 1(C)).

次に、ソース・ドレイン領域12の上方領域を孔開けし
てコンタクトホール14を形成した後、ウェハ1の表面
に被着したAl膜をパターニングしてAI!配線15を
形成し、次いでウェハ1の表面をパッシベーション膜1
6で被覆した後、その所定箇所を孔開けして電極バッド
17を形成することにより、MO3O3セメモリ素子成
する(第1図(6))。
Next, after forming a contact hole 14 in the upper region of the source/drain region 12, the Al film deposited on the surface of the wafer 1 is patterned to form an AI! After forming the wiring 15, the surface of the wafer 1 is coated with a passivation film 1.
6, and then holes are formed at predetermined locations to form electrode pads 17, thereby forming an MO3O3 memory element (FIG. 1 (6)).

以上、本発明者によってなされた発明を実施例に基づき
具体的に説明したが、本発明は前記実施例に限定される
ものではなく、その要旨を逸脱しない範囲で種々変更可
能であることはいうまでもない。
As above, the invention made by the present inventor has been specifically explained based on Examples, but it should be noted that the present invention is not limited to the Examples and can be modified in various ways without departing from the gist thereof. Not even.

前記実施例では、ラフピング工程後に低温アニ l−ル
を行ったが、これに限るものではなく、例えばポリッシ
ングによる鏡面仕上げ工程の後、ウェハプロセス導入前
に低温アニールを行ってもよい。
In the above embodiment, low-temperature annealing was performed after the roughing process, but the present invention is not limited to this. For example, low-temperature annealing may be performed after a mirror finishing process by polishing and before introducing a wafer process.

さらに、MO3形半導体装置のみならず、バイポーラ形
半導体装置など、シリコン単結晶からなるウェハを用い
た各種半導体装置に適用することができる。
Furthermore, the present invention can be applied not only to MO3 type semiconductor devices but also to various semiconductor devices using a wafer made of silicon single crystal, such as bipolar type semiconductor devices.

〔発明の効果〕〔Effect of the invention〕

本願において開示される発明のうち代表的なものによっ
て得られる効果を簡単に説明すれば、下記の通りである
A brief explanation of the effects obtained by typical inventions disclosed in this application is as follows.

すなわち、チョクラルスキー法によって育成された高酸
素濃度シリコン単結晶からなるウェハに低温アニール処
理を施した後、その表面にシリコンエピタキシャル層を
形成することにより、高品質の無欠陥領域と欠陥核成長
領域とを有するウェハが得られるため、このウェハ上に
形成される集積回路およびそれを用いた半導体装置の信
頼性が向上する。
In other words, a wafer made of high oxygen concentration silicon single crystal grown by the Czochralski method is subjected to low-temperature annealing treatment, and then a silicon epitaxial layer is formed on the surface, resulting in high-quality defect-free areas and defect nucleus growth. Since a wafer having a region is obtained, the reliability of an integrated circuit formed on this wafer and a semiconductor device using the same is improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は、本発明の一実施例である半導
体ウェハを用いた半導体装置の製造工程を示す半導体ウ
ェハの要部断面図である。 1・・・シリコン単結晶ウェハ、2・・・エピタキシャ
ル層、3.10・・・絶縁膜、4・・・513N4膜、
5・・・チャネルストッパ領域、6・・・フィールド絶
縁膜、7・・・第一ゲート絶縁膜、8・・・キャパシタ
電極、9・・・第二ゲート絶縁膜、11・・・ゲート電
極、12・・・ソース・ドレイン領域、13・・・層間
絶縁膜、14・・・コンタクトホール、15・・・Al
配線、16・・・パッシベーション膜、17・・・電極
パッド。 第1図 1、シリコン曽佐品りシへ 2  工と09キンてル層
FIGS. 1(a) to 1(d) are sectional views of essential parts of a semiconductor wafer, showing the manufacturing process of a semiconductor device using a semiconductor wafer according to an embodiment of the present invention. 1... Silicon single crystal wafer, 2... Epitaxial layer, 3.10... Insulating film, 4... 513N4 film,
5... Channel stopper region, 6... Field insulating film, 7... First gate insulating film, 8... Capacitor electrode, 9... Second gate insulating film, 11... Gate electrode, 12... Source/drain region, 13... Interlayer insulating film, 14... Contact hole, 15... Al
Wiring, 16... Passivation film, 17... Electrode pad. Fig. 1 1, Silicon Sosagina Rishihe 2 engineering and 09 Kinteru layer

Claims (1)

【特許請求の範囲】 1、チョクラルスキー法によって育成された高酸素濃度
シリコン単結晶からなる半導体ウェハに低温アニール処
理を施した後、前記半導体ウェハの表面にシリコンエピ
タキシャル層を形成することを特徴とする半導体ウェハ
の製造方法。 2、請求項1記載の製造方法によって得られた半導体ウ
ェハ上に所定の集積回路を形成した半導体装置。
[Claims] 1. A semiconductor wafer made of high oxygen concentration silicon single crystal grown by the Czochralski method is subjected to low-temperature annealing treatment, and then a silicon epitaxial layer is formed on the surface of the semiconductor wafer. A method for manufacturing a semiconductor wafer. 2. A semiconductor device in which a predetermined integrated circuit is formed on a semiconductor wafer obtained by the manufacturing method according to claim 1.
JP12840588A 1988-05-27 1988-05-27 Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer Pending JPH01298726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12840588A JPH01298726A (en) 1988-05-27 1988-05-27 Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12840588A JPH01298726A (en) 1988-05-27 1988-05-27 Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer

Publications (1)

Publication Number Publication Date
JPH01298726A true JPH01298726A (en) 1989-12-01

Family

ID=14983974

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12840588A Pending JPH01298726A (en) 1988-05-27 1988-05-27 Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer

Country Status (1)

Country Link
JP (1) JPH01298726A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444001A (en) * 1992-12-25 1995-08-22 Nec Corporation Method of manufacturing a semiconductor device readily capable of removing contaminants from a silicon substrate
WO1998025299A1 (en) * 1996-12-03 1998-06-11 Sumitomo Metal Industries., Ltd. Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
JP2002076006A (en) * 2000-08-31 2002-03-15 Mitsubishi Materials Silicon Corp Method of manufacturing epitaxial wafer and epitaxial wafer manufactured by the method
JP2004224694A (en) * 1998-10-14 2004-08-12 Memc Electron Materials Inc Epitaxial silicon wafer not substantially having crystal growth transfer defect
KR100622622B1 (en) * 1998-05-22 2006-09-11 신에쯔 한도타이 가부시키가이샤 A method for producing an epitaxial silicon single crystal wafer and the epitaxial silicon single crystal wafer
WO2024208291A1 (en) * 2023-04-04 2024-10-10 Tcl科技集团股份有限公司 Photoelectric device manufacturing method, photoelectric device, and electronic device comprising photoelectric device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5444001A (en) * 1992-12-25 1995-08-22 Nec Corporation Method of manufacturing a semiconductor device readily capable of removing contaminants from a silicon substrate
WO1998025299A1 (en) * 1996-12-03 1998-06-11 Sumitomo Metal Industries., Ltd. Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
EP0954018A1 (en) * 1996-12-03 1999-11-03 Sumitomo Metal Industries Limited Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
US6277193B1 (en) 1996-12-03 2001-08-21 Sumitomo Metal Industries, Ltd. Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
KR100319413B1 (en) * 1996-12-03 2002-01-05 고지마 마타오 Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
EP0954018A4 (en) * 1996-12-03 2006-07-19 Sumitomo Mitsubishi Silicon Method for manufacturing semiconductor silicon epitaxial wafer and semiconductor device
KR100622622B1 (en) * 1998-05-22 2006-09-11 신에쯔 한도타이 가부시키가이샤 A method for producing an epitaxial silicon single crystal wafer and the epitaxial silicon single crystal wafer
JP2004224694A (en) * 1998-10-14 2004-08-12 Memc Electron Materials Inc Epitaxial silicon wafer not substantially having crystal growth transfer defect
JP2002076006A (en) * 2000-08-31 2002-03-15 Mitsubishi Materials Silicon Corp Method of manufacturing epitaxial wafer and epitaxial wafer manufactured by the method
WO2024208291A1 (en) * 2023-04-04 2024-10-10 Tcl科技集团股份有限公司 Photoelectric device manufacturing method, photoelectric device, and electronic device comprising photoelectric device

Similar Documents

Publication Publication Date Title
JPH0684925A (en) Semiconductor substrate and its treatment
JPH0680673B2 (en) Method for manufacturing semiconductor device
JPH0245327B2 (en)
US6040211A (en) Semiconductors having defect denuded zones
JPH03161964A (en) Compound type integrated circuit element
JPH01298726A (en) Manufacture of semiconductor wafer and semiconductor device using the semiconductor wafer
JPH04206766A (en) Manufacture of semiconductor device
JPH0518254B2 (en)
JP2811798B2 (en) Semiconductor substrate manufacturing method
JPH0964319A (en) Soi substrate and its manufacture
JP2001036078A (en) Mos-type transistor and manufacture thereof
JPH0878646A (en) Semiconductor substrate and manufacturing method
JPS5887833A (en) Manufacture of semiconductor device
JPS60198735A (en) Manufacture of semiconductor device
JPH10209170A (en) Semiconductor wafer, its manufacture, semiconductor integrated circuit device, and its manufacture
JPS60148127A (en) Manufacture of semiconductor substrate
JPS60176241A (en) Manufacture of semiconductor substrate
JPH01168031A (en) Manufacture of semiconductor device
JP3297091B2 (en) Semiconductor device
JP3139835B2 (en) Method for manufacturing semiconductor device
JPH0579184B2 (en)
JPH1079393A (en) Silicon wafer having epitaxial growth layer and its manufacturing method as well as semiconductor device using the water
JPS6074640A (en) Manufacture of semiconductor device
JPH0845943A (en) Gettering method and manufacture of soi semiconductor wafer used for this method
KR19980055707A (en) Gate oxide film formation method of a semiconductor device