JP3262190B2 - Method of manufacturing SOI substrate and SOI substrate manufactured by this method - Google Patents

Method of manufacturing SOI substrate and SOI substrate manufactured by this method

Info

Publication number
JP3262190B2
JP3262190B2 JP21104594A JP21104594A JP3262190B2 JP 3262190 B2 JP3262190 B2 JP 3262190B2 JP 21104594 A JP21104594 A JP 21104594A JP 21104594 A JP21104594 A JP 21104594A JP 3262190 B2 JP3262190 B2 JP 3262190B2
Authority
JP
Japan
Prior art keywords
silicon
soi
layer
substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21104594A
Other languages
Japanese (ja)
Other versions
JPH0878646A (en
Inventor
俊一郎 石神
久 降屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP21104594A priority Critical patent/JP3262190B2/en
Publication of JPH0878646A publication Critical patent/JPH0878646A/en
Application granted granted Critical
Publication of JP3262190B2 publication Critical patent/JP3262190B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は絶縁層上にシリコン層
(以下、SOI層という)を形成したSOI(Silicon-
On-Insulator)基板の製造方法及びこの方法から製造さ
れたSOI基板に関する。更に詳しくは、2枚のシリコ
ンウェーハを絶縁層を介して貼り合わせるSOI基板の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an SOI (Silicon-Ion) in which a silicon layer (hereinafter referred to as an SOI layer) is formed on an insulating layer.
The present invention relates to a method of manufacturing an On-Insulator substrate and an SOI substrate manufactured by the method. More specifically, the present invention relates to a method for manufacturing an SOI substrate in which two silicon wafers are bonded via an insulating layer.

【0002】[0002]

【従来の技術】近年、高集積CMOS(Complementary
Metal Oxide Semiconductor)、IC、高耐圧素子など
がSOI基板を利用して製作されるようになってきてい
る。絶縁層の上にデバイス作製領域として使用される単
結晶シリコン層を形成したSOI基板は、高集積CMO
Sの場合にはラッチアップ(寄生回路による異常発振現
象)の防止に、また高耐圧素子の場合にはベース基板と
の絶縁分離にそれぞれ有効である。このSOI基板の製
造方法には、シリコンウェーハ同士を二酸化シリコン層
(以下、シリコン酸化層という)、即ち絶縁層を介して
貼り合わせる方法、絶縁性基板又は絶縁性薄膜を表面に
有する基板の上にまず多結晶シリコン薄膜をCVD(Ch
emical Vapor Deposition)法により堆積させ、次いで
レーザーアニールによって単結晶化するZMR法、シリ
コン基板内部に高濃度の酸素イオンを注入した後、高温
でアニール処理してこのシリコン基板表面から所定の深
さの領域に埋込みシリコン酸化層(絶縁層)を形成し、
その表面側のシリコン層を活性領域とするSIMOX法
などがある。これらの方法の中でも、貼り合わせ法によ
り作製されたSOI基板は、SOI層の結晶性が極めて
良好であることから、有望視されて来ている。
2. Description of the Related Art In recent years, highly integrated CMOS (Complementary CMOS) has been developed.
Metal oxide semiconductors (ICs), ICs, high-voltage elements, and the like have been manufactured using SOI substrates. An SOI substrate in which a single-crystal silicon layer used as a device fabrication region is formed on an insulating layer is a highly integrated CMO.
In the case of S, it is effective for preventing latch-up (abnormal oscillation phenomenon due to a parasitic circuit), and in the case of a high breakdown voltage element, it is effective for insulation separation from the base substrate. This SOI substrate manufacturing method includes a method in which silicon wafers are bonded to each other via a silicon dioxide layer (hereinafter, referred to as a silicon oxide layer), that is, an insulating layer, on an insulating substrate or a substrate having an insulating thin film on its surface. First, a polycrystalline silicon thin film is deposited by CVD (Ch
ZMR, which is deposited by an emical vapor deposition method and then single-crystallized by laser annealing. After implanting high-concentration oxygen ions inside the silicon substrate, it is annealed at a high temperature and a predetermined depth from the silicon substrate surface. Forming a buried silicon oxide layer (insulating layer) in the region,
There is a SIMOX method using the silicon layer on the surface side as an active region. Among these methods, an SOI substrate manufactured by a bonding method is promising because the SOI layer has extremely good crystallinity.

【0003】このシリコンウェーハの貼り合わせ法は、
具体的にはそれぞれ約600μmの2枚のシリコンウェ
ーハをシリコン酸化層からなる絶縁層を介して接合し、
熱処理した後、2枚のシリコンウェーハの一方のシリコ
ンウェーハの表面を砥石で研削し、更に研磨布で研磨し
てこのシリコンウェーハの厚さを約1〜10μmの範囲
にし、この研磨した側の厚さ約1〜10μmのシリコン
層をデバイス形成用のSOI層としている。また、この
種のシリコンウェーハはチョクラルスキー法(以下、C
Z法という)で引上げたシリコン単結晶棒から作製され
た場合には、通常このシリコンウェーハの酸素濃度は
1.0〜1.5×1018/cm3(旧ASTM値:以下
同じ)である。これに対して、酸素に起因する結晶欠陥
を低減させるために、デバイス形成用の上記SOI層に
要求される酸素濃度は1.0×1017/cm3以下であ
る。しかし、上記従来の貼り合わせ法で作られた上記S
OI層では、酸素濃度が依然として1.0×1017/c
3を越えており、このSOI層のより一層の低酸素濃
度化が求められていた。
[0003] The bonding method of this silicon wafer is as follows.
Specifically, two silicon wafers of about 600 μm each are bonded via an insulating layer made of a silicon oxide layer,
After the heat treatment, the surface of one of the two silicon wafers is ground with a grindstone and further polished with a polishing cloth so that the thickness of the silicon wafer is in a range of about 1 to 10 μm. A silicon layer having a thickness of about 1 to 10 μm is used as an SOI layer for device formation. In addition, this kind of silicon wafer is obtained by the Czochralski method (hereinafter referred to as C
When produced from a silicon single crystal rod pulled up by the Z method), the oxygen concentration of this silicon wafer is usually 1.0 to 1.5 × 10 18 / cm 3 (former ASTM value: the same applies hereinafter). . On the other hand, in order to reduce crystal defects caused by oxygen, the oxygen concentration required for the SOI layer for device formation is 1.0 × 10 17 / cm 3 or less. However, the S
In the OI layer, the oxygen concentration is still 1.0 × 10 17 / c
It exceeds m 3 , and further reduction in the oxygen concentration of this SOI layer has been demanded.

【0004】この点を解決した半導体基板が特開平2−
46770号公報に提案されている。この半導体基板は
シリコン支持基板上にSiO2膜(絶縁層)が形成さ
れ、このSiO2膜上には0.1〜10μm程度のシリ
コン薄膜が形成されるSOI構造の基板であって、シリ
コン支持基板の酸素濃度が1017〜1019/cm3の範
囲にあり、デバイスを形成するその上層のシリコン薄膜
の酸素濃度が1017/cm3以下の濃度であることを特
徴とする。この半導体基板は酸素濃度1018/cm3
CZ成長シリコン基板と、表面を酸化してSiO2
(絶縁層)を形成した酸素濃度1018/cm3以下のF
Z成長シリコン基板とを接合し、熱処理して貼り合わせ
た後、FZ成長シリコン基板を研磨することにより0.
1〜10μm程度の厚さを有する1017/cm3以下の
酸素濃度のシリコン薄膜を得ている。FZ法(フローテ
ィングゾーン法)から作られたシリコン結晶棒は結晶育
成時に石英るつぼを使用せず、単結晶中への酸素の混入
を非常に小さくできるため、FZ成長シリコン基板はC
Zシリコン基板に比較して酸素の固溶量が少ない特長が
ある。
A semiconductor substrate which solves this problem is disclosed in Japanese Unexamined Patent Publication No. Hei.
No. 46770 has been proposed. The semiconductor substrate has an SOI structure in which an SiO 2 film (insulating layer) is formed on a silicon support substrate, and a silicon thin film of about 0.1 to 10 μm is formed on the SiO 2 film. The oxygen concentration of the substrate is in the range of 10 17 to 10 19 / cm 3 , and the oxygen concentration of the upper silicon thin film forming the device is 10 17 / cm 3 or less. This semiconductor substrate is composed of a CZ-grown silicon substrate having an oxygen concentration of 10 18 / cm 3, and a FZ having an oxygen concentration of 10 18 / cm 3 or less formed by oxidizing the surface to form a SiO 2 film (insulating layer).
After bonding with a Z-grown silicon substrate, heat-treating and bonding, the FZ-grown silicon substrate is polished to obtain a 0.1 mm thickness.
A silicon thin film having a thickness of about 1 to 10 μm and an oxygen concentration of 10 17 / cm 3 or less is obtained. Since a silicon crystal rod made by the FZ method (floating zone method) does not use a quartz crucible at the time of growing a crystal and can minimize the incorporation of oxygen into a single crystal, the FZ-grown silicon substrate is
There is a feature that the amount of dissolved oxygen is small as compared with the Z silicon substrate.

【0005】[0005]

【発明が解決しようとする課題】しかし、特開平2−4
6770号公報に示される半導体基板では、FZ成長シ
リコン基板に特有の結晶欠陥、例えば過剰な格子間シリ
コン原子により形成される、いわゆるA,Bスワール
や、凍結された原子空孔により形成される、いわゆるD
欠陥等が多く見られ、しかもCZ成長シリコン基板と接
合したときに酸素の固溶量が少ないことに起因してスリ
ップを生じ易く、依然として機械的強度が十分高くない
不具合があった。また現在CZ法では直径12インチ程
度の大口径のシリコン結晶棒が開発されつつあるのに対
して、FZ法では最大でも直径8インチ程度のシリコン
結晶棒しか作製できないため、FZ成長シリコン基板は
大径のものは得られず、DRAM等の高集積度に伴い大
口径化する半導体基板の量産性に劣る問題があった。
However, Japanese Patent Laid-Open No. 2-4 / 1990
In the semiconductor substrate disclosed in Japanese Patent No. 6770, crystal defects peculiar to the FZ-grown silicon substrate, for example, so-called A and B swirls formed by excessive interstitial silicon atoms, or formed by frozen atomic vacancies, So-called D
Many defects were observed, and slip was likely to occur due to a small amount of dissolved oxygen when bonded to a CZ-grown silicon substrate, and the mechanical strength was still not sufficiently high. At present, silicon crystal rods having a large diameter of about 12 inches are being developed by the CZ method, whereas silicon crystal rods having a diameter of at most about 8 inches can be produced by the FZ method. A diameter of the semiconductor substrate cannot be obtained, and there is a problem that the mass productivity of a semiconductor substrate having a large diameter with a high degree of integration of a DRAM or the like is inferior.

【0006】本発明の目的は、CZ成長シリコンウェー
ハを2枚貼り合わせて作られる絶縁層上のSOI層の全
域の酸素濃度が1.0×1017/cm3以下であるSO
I基板の製造方法及びこの方法により製造されたSOI
基板を提供することにある。本発明の別の目的は、2枚
のシリコンウェーハの接合時にスリップを生じないため
機械的強度が十分高く、量産に優れたSOI基板の製造
方法及びこの方法により製造されたSOI基板を提供す
ることにある。
An object of the present invention is to provide an SOI layer in which the entire area of an SOI layer on an insulating layer formed by bonding two CZ-grown silicon wafers has an oxygen concentration of 1.0 × 10 17 / cm 3 or less.
Method of manufacturing I substrate and SOI manufactured by this method
It is to provide a substrate . Another object of the present invention is to manufacture an SOI substrate which is sufficiently high in mechanical strength because no slip occurs at the time of bonding two silicon wafers, and which is excellent in mass production.
A method and an SOI substrate manufactured by the method .

【0007】[0007]

【課題を解決するための手段】本発明者らは、従来の熱
処理後の貼り合わせた2枚のシリコンウェーハの表面か
らシリコン酸化層(絶縁層)に向うに従って変化する酸
素濃度を調べたところ、表面側のSOI層と絶縁層との
界面に酸素の固溶限が示されることに着目し、この固溶
限をより小さくし、かつ絶縁層に面する所定の領域のS
OI層の酸素濃度を低減する条件を見出すことにより、
本発明に到達した。
Means for Solving the Problems The present inventors examined the oxygen concentration that changes from the surface of two bonded silicon wafers after the conventional heat treatment toward the silicon oxide layer (insulating layer). Paying attention to the fact that the solid solubility limit of oxygen is shown at the interface between the SOI layer and the insulating layer on the front surface side, the solid solubility limit is made smaller, and the S in a predetermined region facing the insulating layer is reduced.
By finding conditions for reducing the oxygen concentration in the OI layer,
The present invention has been reached.

【0008】図1(a)〜図1(e)に示すように、本
願請求項1に係る発明はCZ法で引上げたシリコン結晶
棒からそれぞれ作製されかつ酸素濃度がそれぞれ1.0
〜1.5×1018/cm3の範囲にある第1シリコンウ
ェーハ11と第2シリコンウェーハ12とを絶縁層13
を介して接合し、接合した第1及び第2シリコンウェー
ハ11,12を熱処理して貼り合わせた後、第1シリコ
ンウェーハ11又は第2シリコンウェーハ12を所定の
厚さに研削研磨してデバイス形成用のSOI層12aと
するSOI基板の製造方法の改良である。その特徴ある
構成は、上記接合した第1及び第2シリコンウェーハ1
1,12を1100〜1200℃、好ましくは1100
〜1150℃の温度範囲で1〜10時間熱処理して貼り
合わせた後、研削前に貼り合わせた第1及び第2シリコ
ンウェーハ11,12を700〜900℃、好ましくは
800〜900℃の温度範囲で2時間再度熱処理するこ
とによりSOI層12aの酸素濃度を0.5〜1.0×
1017/cm3の範囲にすることにある。
As shown in FIGS. 1 (a) to 1 (e), the invention according to claim 1 of the present invention is manufactured from silicon crystal rods pulled up by the CZ method and has an oxygen concentration of 1.0%.
The first silicon wafer 11 and the second silicon wafer 12 in the range of about 1.5 × 10 18 / cm 3
After bonding the first and second silicon wafers 11 and 12 by heat treatment and bonding, the first silicon wafer 11 or the second silicon wafer 12 is ground and polished to a predetermined thickness to form a device. This is an improvement in the method for manufacturing an SOI substrate that is to be used as the SOI layer 12a. The characteristic structure is that the bonded first and second silicon wafers 1
1,12 at 1100 to 1200 ° C, preferably 1100
After heat-treating and bonding at a temperature range of 1 to 1150 ° C for 1 to 10 hours, the first and second silicon wafers 11 and 12 bonded before grinding are subjected to a temperature range of 700 to 900 ° C, preferably 800 to 900 ° C. Heat treatment again for 2 hours to reduce the oxygen concentration of the SOI layer 12a to 0.5 to 1.0 ×.
It is to be in the range of 10 17 / cm 3 .

【0009】また図1(e)に示すように、本願請求項
2に係る発明は請求項1記載の製造方法により製造され
たSOI基板である。
Further, as shown in FIG. 1E, the invention according to claim 2 of the present application is manufactured by the manufacturing method according to claim 1.
Was a S OI board.

【0010】本発明の第1及び第2シリコンウェーハは
ともにCZ法で引上げたシリコン単結晶棒から作製され
る。このシリコン単結晶棒を切断して仕上げられたシリ
コンウェーハの酸素濃度は1.0〜1.5×1018/c
3の範囲にある。絶縁層は第1シリコンウェーハ又は
第2シリコンウェーハのいずれか一方又は双方の片面に
形成される。接合を良好にするために、絶縁層はいずれ
か一方のシリコンウェーハの片面に形成されることが好
ましい。図1(a)に示すように、図では第2シリコン
ウェーハ12の片面に絶縁層13が形成される。貼り合
わせ後の絶縁層とSOI層との界面として、2枚のシリ
コンウェーハの接合界面(図1ではシリコンウェーハ1
1との界面)と、接合前に絶縁層を形成したシリコンウ
ェーハとの界面(図1ではシリコンウェーハ12との界
面)がある。本発明のSOI層12aと絶縁層13との
界面は、前者の接合界面であるよりも後者の絶縁層を形
成したウェーハとの界面である方が、界面の連続性に優
れているため好ましい。即ち、図1(e)に示すように
SOI層12aが形成されるシリコンウェーハ12をS
OI層用のシリコン基板とし、別のシリコンウェーハ1
1をその支持基板とすることが好ましい。
The first and second silicon wafers of the present invention are both manufactured from a silicon single crystal rod pulled by the CZ method. The oxygen concentration of the silicon wafer finished by cutting this silicon single crystal rod is 1.0 to 1.5 × 10 18 / c.
m 3 . The insulating layer is formed on one surface of one or both of the first silicon wafer and the second silicon wafer. In order to improve the bonding, the insulating layer is preferably formed on one side of one of the silicon wafers. As shown in FIG. 1A, an insulating layer 13 is formed on one surface of a second silicon wafer 12 in the figure. As an interface between the insulating layer and the SOI layer after bonding, a bonding interface between two silicon wafers (in FIG.
1) and an interface with a silicon wafer on which an insulating layer is formed before bonding (an interface with the silicon wafer 12 in FIG. 1). The interface between the SOI layer 12a and the insulating layer 13 of the present invention is preferably the interface with the wafer on which the insulating layer is formed, rather than the former bonding interface, because the continuity of the interface is excellent. That is, the silicon wafer 12 on which the SOI layer 12a is formed as shown in FIG.
Another silicon wafer 1 is used as a silicon substrate for the OI layer.
Preferably, 1 is the supporting substrate.

【0011】絶縁層の厚さは約0.5〜1.0μmの範
囲にあり、絶縁層はシリコン酸化層(SiO2層)であ
って、シリコンウェーハを熱酸化することにより、或い
はCVD法によりウェーハの片面に形成される。図1
(b)に示すように2枚のシリコンウェーハを絶縁層を
介して接合する前に、接合しようとする表面を活性化す
るために所定の洗浄液でシリコンウェーハを洗浄するこ
とが好ましい。図1(c)に示すように、接合した後の
熱処理は2枚のシリコンウェーハ11,12を接合した
状態で窒素(N2)雰囲気又は酸素(O2)雰囲気中で1
100〜1200℃、好ましくは1100〜1150℃
の温度範囲で1〜10時間、好ましくは2〜5時間行
う。これにより接合界面でシリコンの共有結合が生じ、
2枚のシリコンウェーハ11,12は貼り合わされ、両
者の結晶格子は一体化する。図1(d)に示すように、
一体化した2枚のシリコンウェーハ11,12が放冷さ
れ室温になった後に、上記熱処理雰囲気と同一雰囲気中
で、700〜900℃、好ましくは800〜900℃の
温度範囲で再度熱処理する。この熱処理時間は目標とす
るSOI層の厚さと酸素の拡散距離との関係から求めれ
ば良いが、通常は2時間程度が好ましい。図1(e)に
示すように再熱処理後、シリコン基板となる第2シリコ
ンウェーハ12を砥石で研削し、その後研磨布で研磨し
て、約1〜10μmの厚さの薄膜に加工する。これによ
り厚さ約1〜10μmのデバイス形成用のSOI層12
aが絶縁層13上に得られる。
The thickness of the insulating layer is in the range of about 0.5 to 1.0 μm, and the insulating layer is a silicon oxide layer (SiO 2 layer), which is obtained by thermally oxidizing a silicon wafer or by a CVD method. Formed on one side of the wafer. FIG.
Before bonding the two silicon wafers via the insulating layer as shown in FIG. 2B, it is preferable to clean the silicon wafers with a predetermined cleaning liquid in order to activate the surface to be bonded. As shown in FIG. 1C, the heat treatment after the bonding is performed in a nitrogen (N 2 ) atmosphere or an oxygen (O 2 ) atmosphere in a state where the two silicon wafers 11 and 12 are bonded.
100-1200 ° C, preferably 1100-1150 ° C
For 1 to 10 hours, preferably 2 to 5 hours. This creates a covalent bond of silicon at the junction interface,
The two silicon wafers 11 and 12 are bonded together, and the two crystal lattices are integrated. As shown in FIG.
After the two integrated silicon wafers 11 and 12 are allowed to cool to room temperature, they are heat-treated again in the same heat treatment atmosphere at a temperature in the range of 700 to 900 ° C., preferably 800 to 900 ° C. This heat treatment time may be obtained from the relationship between the target thickness of the SOI layer and the oxygen diffusion distance, but is usually preferably about 2 hours. As shown in FIG. 1E, after the reheat treatment, the second silicon wafer 12 serving as the silicon substrate is ground with a grindstone, and then polished with a polishing cloth to be processed into a thin film having a thickness of about 1 to 10 μm. Thereby, the SOI layer 12 for forming a device having a thickness of about 1 to 10 μm is formed.
a is obtained on the insulating layer 13.

【0012】[0012]

【作用】接合した2枚のシリコンウェーハを1100〜
1200℃で1〜10時間熱処理すると、2枚のシリコ
ンウェーハ内の格子間酸素原子が外方拡散して、2枚の
シリコンウェーハ中の酸素濃度を低減させる。この状態
の2枚のシリコンウェーハを400〜900℃の温度範
囲で再度熱処理すると、絶縁層13であるシリコン酸化
層、或いはSOI層12aとの界面がゲッタリングサイ
ト(源)として機能し、SOI層12a中の酸素が絶縁
層13との接合界面に向かって拡散し、SOI層12a
と絶縁層13との界面における酸素の固溶限を更に低下
させる。再度の熱処理の温度が400℃未満では、上記
固溶限は低下するけれども、次の式(1)及び(2)の
関係から格子間酸素原子の拡散距離は短くなり、絶縁層
13近傍の極めて微小な範囲のSOI層12a内の酸素
のみが絶縁層13に届くだけであって、その濃度は低減
しない。 L = (D・t)1/2 …… (1) D = B・exp(−E/k・T)…… (2) ここで、Lは拡散距離、Dは拡散係数、tは時間、Bは
定数、Eは活性化エネルギー、kはボルツマン定数であ
る。代表的な値として、B=0.13[cm2/s]、
E = 2.53[eV]が知られている。また900
℃を越えると、酸素の固溶限は1017/cm3程度まで
上昇してしまうため、SOI層12aの酸素濃度はやは
り低減せず、上記再熱処理の温度範囲が決められる。
お、再度の熱処理の温度は700〜900℃が好まし
い。
[Function] The two bonded silicon wafers are put into a 1100-
When heat treatment is performed at 1200 ° C. for 1 to 10 hours, interstitial oxygen atoms in the two silicon wafers are diffused outward to reduce the oxygen concentration in the two silicon wafers. When the two silicon wafers in this state are heat-treated again in a temperature range of 400 to 900 ° C., the interface with the silicon oxide layer as the insulating layer 13 or the SOI layer 12a functions as a gettering site (source), and the SOI layer Oxygen in the SOI layer 12a diffuses toward the junction interface with the insulating layer 13 and
The solid solubility limit of oxygen at the interface between the silicon and the insulating layer 13 is further reduced. When the temperature of the second heat treatment is lower than 400 ° C., the solid solubility limit is reduced, but the diffusion distance of interstitial oxygen atoms becomes shorter from the relations of the following formulas (1) and (2), and the extremely close proximity of the insulating layer 13 Only oxygen in the SOI layer 12a in a minute range only reaches the insulating layer 13, and its concentration does not decrease. L = (D · t) 1/2 (1) D = B · exp (−E / k · T) (2) where L is a diffusion distance, D is a diffusion coefficient, t is time, B is a constant, E is activation energy, and k is Boltzmann's constant. As typical values, B = 0.13 [cm 2 / s],
E = 2.53 [eV] is known. Also 900
When the temperature exceeds ℃, the solid solubility limit of oxygen increases to about 10 17 / cm 3, so that the oxygen concentration of the SOI layer 12a does not decrease again, and the temperature range of the re-heat treatment is determined. What
In addition, the temperature of the heat treatment is preferably 700 to 900 ° C.
No.

【0013】[0013]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。 <実施例1> 図1(a)に示すように、それぞれ直径5インチで厚さ
625μmの第1シリコンウェーハ11及び第2シリコ
ンウェーハ12を用意した。第2シリコンウェーハ12
の片面にはこのウェーハを湿潤酸素(wetO2)雰囲
気中、1000℃で3時間熱処理してシリコン酸化層か
らなる絶縁層13を形成した。2枚のシリコンウェーハ
11,12をH2Oと比重1.1のH22水溶液と比重
0.9のNH4OHの水溶液とをH2O:H22:NH4
OH=7:2:1の容量比で混合して調製したSC1
(Standard Cleaning 1)の洗浄液で洗浄して2枚のシ
リコンウェーハの表面を活性化した。
Next, an embodiment of the present invention will be described in detail with reference to the drawings. Example 1 As shown in FIG. 1A, a first silicon wafer 11 and a second silicon wafer 12 each having a diameter of 5 inches and a thickness of 625 μm were prepared. Second silicon wafer 12
This wafer was heat-treated at 1000 ° C. for 3 hours in a wet oxygen (wetO 2 ) atmosphere to form an insulating layer 13 made of a silicon oxide layer on one side of the substrate. The two silicon wafers 11 and 12 were treated with H 2 O and an aqueous solution of H 2 O 2 having a specific gravity of 1.1 and an aqueous solution of NH 4 OH having a specific gravity of 0.9 with H 2 O: H 2 O 2 : NH 4.
SC1 prepared by mixing at a volume ratio of OH = 7: 2: 1
The surfaces of the two silicon wafers were activated by washing with the cleaning solution of (Standard Cleaning 1).

【0014】図1(b)に示すように、2枚のシリコン
ウェーハ11,12を絶縁層13を介して重ね合せ接合
した。次いで図1(c)に示すように室温から800℃
に設定された熱処理炉中に10〜15cm/分の速度で
挿入し、窒素雰囲気中で800℃から10℃/分の速度
で昇温し、1100℃に達したところで5時間維持し、
次いで4℃/分の速度で降温し、800℃まで冷却した
後、10〜15cm/分の速度で炉から室温中に取り出
した。続いて図1(d)に示すように、同じ窒素雰囲気
中で同様に昇温し、900℃に達したところで2時間維
持し、次いで同様に降温した。 更に図1(e)に示す
ように、シリコンウェーハ12の表面を砥石で研削し、
続いて柔らかい研磨布で研磨し、絶縁層13上に厚さ1
〜10μmのSOI層12aを形成した。
As shown in FIG. 1B, two silicon wafers 11 and 12 were overlapped and joined via an insulating layer 13. Next, as shown in FIG.
Is inserted at a rate of 10 to 15 cm / min into a heat treatment furnace set at a temperature of 800 ° C. in a nitrogen atmosphere at a rate of 10 ° C./min. When the temperature reaches 1100 ° C., the temperature is maintained for 5 hours.
Next, the temperature was lowered at a rate of 4 ° C./min, cooled to 800 ° C., and then taken out of the furnace at room temperature at a rate of 10 to 15 cm / min. Subsequently, as shown in FIG. 1 (d), the temperature was raised in the same nitrogen atmosphere in the same manner. When the temperature reached 900 ° C., the temperature was maintained for 2 hours, and then the temperature was similarly lowered. Further, as shown in FIG. 1E, the surface of the silicon wafer 12 is ground with a grindstone,
Then, the surface is polished with a soft polishing cloth to a thickness of 1
An SOI layer 12a of 10 to 10 μm was formed.

【0015】<比較例1> 図1(c)に示す熱処理において1100℃で2時間維
持し、かつ図1(d)に示す再熱処理を省略した以外
は、実施例1と同様にして絶縁層13上にSOI層12
aを形成した。
Comparative Example 1 An insulating layer was formed in the same manner as in Example 1 except that the heat treatment shown in FIG. 1C was maintained at 1100 ° C. for 2 hours and the reheat treatment shown in FIG. 1D was omitted. 13 on the SOI layer 12
a was formed.

【0016】<評価> 実施例1の研削研磨加工したSOI基板と、比較例1の
研削研磨加工したSOI基板について、それぞれ二次イ
オン質量分析(Secondary Ion Mass Spectroscopy, S
IMS)法にてそれぞれのSOI層12a及び絶縁層1
3の一部に固溶している格子間酸素濃度を測定した。こ
れらのSIMS法による測定結果を表1に示す。
<Evaluation> Each of the ground and polished SOI substrate of Example 1 and the ground and polished SOI substrate of Comparative Example 1 was subjected to secondary ion mass spectrometry (Secondary Ion Mass Spectroscopy, S
Each of the SOI layers 12a and the insulating layers 1
The concentration of interstitial oxygen dissolved in a part of Sample No. 3 was measured. Table 1 shows the results of these SIMS measurements.

【0017】[0017]

【表1】 [Table 1]

【0018】SIMS法による測定結果及び表1から、
比較例1の接合界面における固溶限が1017/cm3
越えているのに対して、実施例1の接合界面における固
溶限は1017/cm3以下であって、しかも絶縁層13
の界面から7.5μmの全領域のSOI層12aの酸素
濃度は0.5〜1.0×1017/cm3の範囲にあるこ
とが判明した。
From the SIMS measurement results and Table 1,
While the solid solubility limit at the bonding interface of Comparative Example 1 exceeds 10 17 / cm 3 , the solid solubility limit at the bonding interface of Example 1 is 10 17 / cm 3 or less, and the insulating layer 13
It has been found that the oxygen concentration of the SOI layer 12a in the entire area of 7.5 μm from the interface was in the range of 0.5 to 1.0 × 10 17 / cm 3 .

【0019】[0019]

【発明の効果】以上述べたように、本発明のSOI基板
の製造方法によれば、接合した2枚のシリコンウェーハ
を1100〜1200℃の温度範囲で1〜10時間熱処
理して貼り合わせた後に400〜900℃で再度熱処理
を行うことにより、ウェーハ中の酸素濃度を低下させた
後、絶縁層とSOI層との界面での酸素の固溶限を低下
させ、絶縁層に隣接するSOI層の全域の酸素濃度を1
17/cm3以下にすることができ、結果として酸素に
起因する結晶欠陥の発生が抑制された高品質のデバイス
形成用のSOI層が絶縁層上に得られる。
As described above, according to the method for manufacturing an SOI substrate of the present invention, two bonded silicon wafers are heat-treated in a temperature range of 1100 to 1200 ° C. for 1 to 10 hours, and then bonded. By performing the heat treatment again at 400 to 900 ° C., the oxygen concentration in the wafer is reduced, then the solid solubility limit of oxygen at the interface between the insulating layer and the SOI layer is reduced, and the SOI layer adjacent to the insulating layer is reduced. Oxygen concentration of 1
0 17 / cm 3 or less, and as a result, a high-quality SOI layer for forming a device in which generation of crystal defects caused by oxygen is suppressed is obtained on the insulating layer.

【0020】また2枚のシリコンウェーハはCZ成長の
シリコンウェーハであるため、本発明のSOI基板は特
開平2−46770号公報の半導体基板と異なり、接合
時にスリップを生じない。これにより本発明のSOI基
板は機械的強度が十分高く、量産性に優れる特長もあ
る。
Since the two silicon wafers are CZ-grown silicon wafers, the SOI substrate of the present invention does not cause a slip during bonding, unlike the semiconductor substrate of Japanese Patent Application Laid-Open No. 2-46770. Thus, the SOI substrate of the present invention also has features that the mechanical strength is sufficiently high and the mass productivity is excellent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明実施例のSOI基板の製造方法を示す部
分断面図。
FIG. 1 is a partial cross-sectional view illustrating a method for manufacturing an SOI substrate according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

11 第1シリコンウェーハ 12 第2シリコンウェーハ 12a SOI層 13 絶縁層(シリコン酸化層) Reference Signs List 11 first silicon wafer 12 second silicon wafer 12a SOI layer 13 insulating layer (silicon oxide layer)

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平1−259539(JP,A) 特開 平5−55230(JP,A) 特開 平4−72931(JP,A) 特開 平4−124874(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 27/12 H01L 21/02 H01L 21/26 - 21/268 H01L 21/322 - 21/326 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-1-259539 (JP, A) JP-A-5-55230 (JP, A) JP-A-4-72931 (JP, A) JP-A-4-1993 124874 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 27/12 H01L 21/02 H01L 21/26-21/268 H01L 21/322-21/326

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 CZ法で引上げたシリコン結晶棒からそ
れぞれ作製されかつ酸素濃度がそれぞれ1.0〜1.5
×1018/cm3の範囲にある第1シリコンウェーハ(1
1)と第2シリコンウェーハ(12)とを絶縁層(13)を介して
接合し、前記接合した第1及び第2シリコンウェーハ(1
1,12)を熱処理して貼り合わせた後、前記第1シリコン
ウェーハ(11)又は第2シリコンウェーハ(12)を所定の厚
さに研削研磨してデバイス形成用のSOI層(12a)とす
るSOI基板の製造方法において、 前記接合した第1及び第2シリコンウェーハ(11,12)を
1100〜1200℃の温度範囲で1〜10時間熱処理
して貼り合わせた後、研削前に前記貼り合わせた第1及
び第2シリコンウェーハ(11,12)を700〜900℃の
温度範囲で2時間再度熱処理することにより前記SOI
層(12a)の酸素濃度を0.5〜1.0×1017/cm3
範囲にすることを特徴とするSOI基板の製造方法。
2. The method according to claim 1, wherein each of the silicon rods is prepared from a silicon crystal rod pulled by a CZ method and has an oxygen concentration of 1.0 to 1.5.
1st silicon wafer (1 × 10 18 / cm 3 )
1) and a second silicon wafer (12) are bonded via an insulating layer (13), and the bonded first and second silicon wafers (1) are bonded together.
After heat-treating and bonding the first and second silicon wafers, the first silicon wafer (11) or the second silicon wafer (12) is ground and polished to a predetermined thickness to form an SOI layer (12a) for device formation. In the method for manufacturing an SOI substrate, the bonded first and second silicon wafers (11, 12) are heat-treated at a temperature range of 1100 to 1200 ° C. for 1 to 10 hours, and then bonded before grinding. The first and second silicon wafers (11, 12) are heat-treated again at a temperature in the range of 700 to 900 ° C. for 2 hours to obtain the SOI.
A method for manufacturing an SOI substrate, wherein the oxygen concentration of the layer (12a) is in the range of 0.5 to 1.0 × 10 17 / cm 3 .
【請求項2】 請求項1記載の製造方法により製造され
たSOI基板。
2. It is manufactured by the manufacturing method according to claim 1.
S OI substrate.
JP21104594A 1994-09-05 1994-09-05 Method of manufacturing SOI substrate and SOI substrate manufactured by this method Expired - Fee Related JP3262190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21104594A JP3262190B2 (en) 1994-09-05 1994-09-05 Method of manufacturing SOI substrate and SOI substrate manufactured by this method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21104594A JP3262190B2 (en) 1994-09-05 1994-09-05 Method of manufacturing SOI substrate and SOI substrate manufactured by this method

Publications (2)

Publication Number Publication Date
JPH0878646A JPH0878646A (en) 1996-03-22
JP3262190B2 true JP3262190B2 (en) 2002-03-04

Family

ID=16599472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21104594A Expired - Fee Related JP3262190B2 (en) 1994-09-05 1994-09-05 Method of manufacturing SOI substrate and SOI substrate manufactured by this method

Country Status (1)

Country Link
JP (1) JP3262190B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11307747A (en) * 1998-04-17 1999-11-05 Nec Corp Soi substrate and production thereof
US6224668B1 (en) * 1998-06-02 2001-05-01 Shin-Etsu Handotai Co., Ltd. Method for producing SOI substrate and SOI substrate
JP2006041135A (en) * 2004-07-26 2006-02-09 Sumitomo Bakelite Co Ltd Electronic device and manufacturing method thereof
WO2007072624A1 (en) 2005-12-19 2007-06-28 Shin-Etsu Handotai Co., Ltd. Method for manufacturing soi substrate, and soi substrate
JP6024400B2 (en) 2012-11-07 2016-11-16 ソニー株式会社 Semiconductor device, method for manufacturing semiconductor device, and antenna switch module
DE102014114683B4 (en) 2014-10-09 2016-08-04 Infineon Technologies Ag METHOD FOR PRODUCING A SEMICONDUCTOR WAFERS WITH A LOW CONCENTRATION OF INTERSTITIAL OXYGEN

Also Published As

Publication number Publication date
JPH0878646A (en) 1996-03-22

Similar Documents

Publication Publication Date Title
EP0966034B1 (en) Method of manufacturing silicon-on-insulator substrate
US6350703B1 (en) Semiconductor substrate and production method thereof
US6222253B1 (en) Buried oxide layer in silicon
JP2726583B2 (en) Semiconductor substrate
US20040175899A1 (en) Method for fabricating silicon-on-insulator material
US7910455B2 (en) Method for producing SOI wafer
KR101071509B1 (en) Method for producing a bonded wafer
TW201916251A (en) Methods of forming soi substrates
JP3262190B2 (en) Method of manufacturing SOI substrate and SOI substrate manufactured by this method
JP3287524B2 (en) Method for manufacturing SOI substrate
EP1120819A1 (en) Soi substrate and method for manufacturing the same
JP3528880B2 (en) Method for manufacturing SOI substrate
JP3262945B2 (en) Method of manufacturing SOI substrate and SOI substrate manufactured by this method
JPH09326396A (en) Semiconductor integrated circuit device and its manufacture
JP3584945B2 (en) Method for manufacturing SOI substrate
US7084459B2 (en) SOI substrate
JPH05326467A (en) Semiconductor substrate and its manufacturing method
JPH08316442A (en) Soi substrate and its manufacture
JP2009289948A (en) Laminated wafer manufacturing method
JPH09186306A (en) Manufacture of soi substrate
JP3412410B2 (en) Method for manufacturing SOI substrate
JP2004320050A (en) Soi substrate and method for manufacturing same
JPH1074918A (en) Soi substrate and its manufacturing method
JPH0878298A (en) Silicon semiconductor wafer and its production
JP2006245316A (en) Method of manufacturing semiconductor substrate

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010711

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20011204

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees