JP3584945B2 - Method for manufacturing SOI substrate - Google Patents

Method for manufacturing SOI substrate Download PDF

Info

Publication number
JP3584945B2
JP3584945B2 JP03649495A JP3649495A JP3584945B2 JP 3584945 B2 JP3584945 B2 JP 3584945B2 JP 03649495 A JP03649495 A JP 03649495A JP 3649495 A JP3649495 A JP 3649495A JP 3584945 B2 JP3584945 B2 JP 3584945B2
Authority
JP
Japan
Prior art keywords
silicon
soi
layer
silicon wafer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03649495A
Other languages
Japanese (ja)
Other versions
JPH08236735A (en
Inventor
俊一郎 石神
清一 堀口
久 降屋
Original Assignee
三菱住友シリコン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱住友シリコン株式会社 filed Critical 三菱住友シリコン株式会社
Priority to JP03649495A priority Critical patent/JP3584945B2/en
Publication of JPH08236735A publication Critical patent/JPH08236735A/en
Application granted granted Critical
Publication of JP3584945B2 publication Critical patent/JP3584945B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【産業上の利用分野】
本発明は、2枚のシリコンウェーハを絶縁層を介して貼り合わせて絶縁層上にシリコン層(以下、SOI層という)を形成したSOI Silicon−On−Insulator 基板の製造方法に関するものである。
【0002】
【従来の技術】
近年、高集積CMOS(Complementary Metal Oxide Semiconductor)、IC、高耐圧素子などがSOI基板を利用して製作されるようになってきている。絶縁層の上にデバイス作製領域として使用される単結晶シリコン層を形成したSOI基板は、高集積CMOSの場合にはラッチアップ(寄生回路による異常発振現象)の防止に、また高耐圧素子の場合にはベース基板との絶縁分離にそれぞれ有効である。このSOI基板の製造方法には、シリコンウェーハ同士を二酸化シリコン層(以下、シリコン酸化層という)、即ち絶縁層を介して貼り合わせる方法、絶縁性基板又は絶縁性薄膜を表面に有する基板の上にまず多結晶シリコン薄膜をCVD(Chemical Vapor Deposition)法により堆積させ、次いでレーザーアニールによって単結晶化するZMR法、シリコン基板内部に高濃度の酸素イオンを注入した後、高温でアニール処理してこのシリコン基板表面から所定の深さの領域に埋込みシリコン酸化層(絶縁層)を形成し、その表面側のシリコン層を活性領域とするSIMOX法などがある。これらの方法の中でも、貼り合わせ法により作製されたSOI基板は、SOI層の結晶性が極めて良好であることから、有望視されて来ている。
【0003】
このシリコンウェーハの貼り合わせ法は、具体的にはそれぞれ約600μmの2枚のシリコンウェーハをシリコン酸化層からなる絶縁層を介して接合し、酸素雰囲気中、1100℃で2時間熱処理した後、2枚のシリコンウェーハの一方のシリコンウェーハの表面を砥石で研削し、更に研磨布で研磨してこのシリコンウェーハの厚さを約1〜10μmの範囲にし、この研磨した側の厚さ約1〜10μmのシリコン層をデバイス形成用のSOI層としている。
【0004】
【発明が解決しようとする課題】
しかし、従来の方法では、1100℃で2時間熱処理する際に、シリコンウェーハ(Si)とシリコン酸化層(SiO)の1桁程度の熱膨張率の差等に起因して貼り合わせ界面に応力が集中する。貼り合わせ界面にウェーハ同士の未接着部(ボイド)が形成した場合には、この応力集中によりSOI層中にボイドを起点としてSOI層表面或いは埋込みSiO膜との界面まで貫通した転位(スリップ)が容易に発生する。従来のスリップラインの密度は5.0×10cm/cm程度と大きいため、このようなスリップライン密度が大きなSOI層においては、これらの転位がデバイス形成後にデバイスの電気的特性に直接的又は間接的に大きな影響を与えることがあった。
本発明の目的は、シリコンウェーハを2枚貼り合わせて作られる絶縁層上のSOI層のスリップラインの密度が小さく、スリップに起因したデバイスの電気的特性に悪影響を及ぼさないSOI基板の製造方法を提供することにある。
【0005】
【課題を解決するための手段】
【0006】
図1(a)〜図1(e)に示すように、本発明は第1シリコンウェーハ11と第2シリコンウェーハ12とを絶縁層13を介して接合する工程と、接合した第1及び第2シリコンウェーハ11,12を熱処理して貼り合わせる工程と、第1シリコンウェーハ11又は第2シリコンウェーハ12を所定の厚さに研削研磨してデバイス形成用のSOI層12aとする工程と、上記研削研磨した後で、乾燥酸素雰囲気又は窒素雰囲気中で1200〜1300℃の温度範囲、好ましくは1250℃で少なくとも10時間再度熱処理する工程とを含み、各工程が連続して行われることを特徴とするSOI基板の製造方法である。
【0007】
本発明の第1及び第2シリコンウェーハはCZ法、FZ法等の方法で、ともに同一の方法により得られたシリコン単結晶棒から作製される。絶縁層は第1シリコンウェーハ又は第2シリコンウェーハのいずれか一方又は双方の片面に形成される。接合を良好にするために、絶縁層はいずれか一方のシリコンウェーハの片面に形成されることが好ましい。図1(a)に示すように、図では第2シリコンウェーハ12の片面に絶縁層13が形成される。貼り合わせ後の絶縁層とSOI層との界面として、2枚のシリコンウェーハの接合界面(図1ではシリコンウェーハ11との界面)と、接合前に絶縁層を形成したシリコンウェーハとの界面(図1ではシリコンウェーハ12との界面)がある。
本発明のSOI層12aと絶縁層13との界面は、前者の接合界面であるよりも後者の絶縁層を形成したウェーハとの界面である方が、界面の連続性に優れているため好ましい。即ち、図1(e)に示すようにSOI層12aが形成されるシリコンウェーハ12をSOI層用のシリコン基板とし、別のシリコンウェーハ11をその支持基板とすることが好ましい。
【0008】
絶縁層の厚さは約0.5〜1.0μmの範囲にあり、絶縁層はシリコン酸化層(SiO層)であって、シリコンウェーハを熱酸化することにより、或いはCVD法によりウェーハの片面に形成される。図1(b)に示すように2枚のシリコンウェーハを絶縁層を介して接合する前に、接合しようとする表面を活性化するために所定の洗浄液でシリコンウェーハを洗浄することが好ましい。図1(c)に示すように、接合した後の熱処理は2枚のシリコンウェーハ11,12を接合した状態で乾燥酸素(dryO)雰囲気又は窒素(N)雰囲気中で1100℃の温度下、1〜3時間、好ましくは2時間程度行う。これにより接合界面でシリコンの共有結合が生じ、2枚のシリコンウェーハ11,12は貼り合わされ、両者の結晶格子は一体化する。
図1(d)に示すように、一体化した2枚のシリコンウェーハ11,12が放冷され室温になった後に、シリコン基板となる第2シリコンウェーハ12を砥石で研削し、その後研磨布で研磨して、約1〜10μmの厚さの薄膜に加工する。これにより厚さ約1〜10μmのデバイス形成用のSOI層12aが絶縁層13上に得られる。図1(e)に示すように研削研磨した後、乾燥酸素(dryO)雰囲気又は窒素(N)雰囲気中で1200〜1300℃の温度範囲、好ましくは1250℃の温度で少なくとも10時間、好ましくは10〜15時間程度再熱処理を行う。再熱処理が1200℃未満又は10時間未満ではスリップの消滅はそれ程顕著ではなく、1300℃を越えると熱処理炉の炉芯管が変形するなどの弊害を生じる。
【0009】
【作用】
前述したように、図1(c)で1100℃で2時間熱処理する際に、シリコンウェーハ(Si)12とシリコン酸化層(SiO)13の1桁程度の熱膨張率の差等に起因して貼り合わせ界面に応力が集中し、貼り合わせ界面にウェーハ同士の未接着部(ボイド)が形成された場合には、この応力集中によりSOI層12a中にボイドを起点としてSOI層表面或いは埋込みSiO膜との界面まで貫通した転位(スリップ)を生じると現在考えられている。このスリップは、上記応力集中により形成した転位(主として刃状転位)がシリコン単結晶中の{111}すべり面上を塑性変形の進行に伴って移動、或いは増殖した結果、形成されると一般に考えられており、この転位線をスリップラインという。
本発明では、転位消滅のメカニズムとして、研削研磨して得られたSOI基板を更に1200〜1300℃の温度範囲で少なくとも10時間再度熱処理すると、時間経過とともに刃状転位に対して大量の原子空孔が供給された結果、徐々に隣接したすべり面に転位線が移動する現象である「ジョグ(jog)」を起こし、転位がSOI層12aの表面ないしは埋込みSiO膜との界面に移行し、やがて消滅するというモデルが考えられる。
【0010】
【実施例】
次に、本発明の実施例を図面に基づいて詳しく説明する。
<実施例1>
図1(a)に示すように、CZ法で引上げたシリコン単結晶棒から作られたそれぞれ直径5インチで厚さ625μmの第1シリコンウェーハ11及び第2シリコンウェーハ12を用意した。第2シリコンウェーハ12の片面にはこのウェーハを湿潤酸素(wetO)雰囲気中、1000℃で3時間熱処理して厚さ0.5μmのシリコン酸化層からなる絶縁層13を形成した。2枚のシリコンウェーハ11,12をHOと比重1.1のH水溶液と比重0.9のNHOHの水溶液とをHO:H:NHOH=7:2:1の容量比で混合して調製したSC1(Standard Cleaning 1)の洗浄液で洗浄して2枚のシリコンウェーハの表面を活性化した。
【0011】
図1(b)に示すように、2枚のシリコンウェーハ11,12を絶縁層13を介して重ね合せ接合した。次いで図1(c)に示すように室温から800℃に設定された熱処理炉中に10〜15cm/分の速度で挿入し、窒素(N)雰囲気中で800℃から10℃/分の速度で昇温し、1100℃に達したところで2時間維持し、次いで4℃/分の速度で降温し、800℃まで冷却した後、10〜15cm/分の速度で炉から室温中に取り出した。続いて図1(d)に示すように、シリコンウェーハ12の表面を砥石で研削し、続いて柔らかい研磨布で研磨し、絶縁層13上に厚さ1〜10μmのSOI層12aを形成した。更に図1(e)に示すように、室温から900℃に設定された熱処理炉中に10〜15cm/分の速度で挿入し、乾燥酸素(dryO)雰囲気中で900℃から10℃/分の速度で昇温し、1250℃に達したところで10時間維持し、次いで4℃/分の速度で降温し、900℃まで冷却した後、10〜15cm/分の速度で炉から室温中に取り出した。
【0012】
<実施例2>
実施例1と同一ロットのシリコンウェーハを用いて、図1(e)に示す再熱処理の雰囲気を窒素(N)雰囲気にした以外は、実施例1と同様に再熱処理してSOI基板を得た。
【0013】
<比較例1>
実施例1と同一ロットのシリコンウェーハを用いて、図1(e)に示す再熱処理を省略した以外は、実施例1と同様にしてSOI基板を得た。
【0014】
<評価>
先ず、実施例1、実施例2及び比較例1のSOI基板をHO:HF=10:1の容量比の希フッ酸で洗浄した後、洗浄したSOI基板をHF溶液:0.15モルKCr水溶液=2:1のエッチャントに90秒間浸漬してSOI層を選択エッチングした。SOI基板をエッチャントから引上げ、純水で洗浄し乾燥した。
再熱処理前のスリップ状態を調べるために、比較例1のSOI基板についてX線トポグラフィで観察し写真撮影した。その結果を図2に示す。図2から明らかなように、SOI基板の左上の周縁部を中心に多数のスリップラインが見られた。
【0015】
また再熱処理後のサンプルの転位発生状況を調べるために、実施例1、実施例2及び比較例1の純水で洗浄し乾燥したSOI基板のSOI層について光学顕微鏡で観察し写真撮影した。その結果を図3〜図5に示す。図から明らかなように、比較例1のSOI基板のSOI層には顕著なスリップラインが現れていたもの(図3)が、実施例1及び実施例2のSOI基板のSOI層ではそのスリップラインは消滅していた(図4及び図5)。特に窒素雰囲気中で再熱処理した実施例2のSOI基板のSOI層では殆どのスリップラインが消滅していた(図5)。この実施例2の方が実施例1よりもスリップラインの消滅が著しいのは、実施例1の酸素雰囲気の熱処理では酸化反応に伴い大量の格子間シリコン原子も同時に転位に対して供給されるのに対して、実施例2の窒素雰囲気での熱処理では転位に対して原子空孔のみが供給されるため、この実施例2の熱処理の方がジョグ形成に効果的であったことに起因すると考えられる。
更に光学顕微鏡による観察からスリップラインの密度を測定した。その結果を図6に示す。比較例1のSOI層のスリップライン密度が約5.3×10cm/cmであったのに対して、実施例1のスリップライン密度は約2.3×10cm/cmであり、実施例2のスリップライン密度は約1.0×10cm/cmであった。これらのことから、実施例1及び実施例2のスリップライン密度は比較例1の半分以下であった。
【0016】
【発明の効果】
以上述べたように、本発明のSOI基板の製造方法によれば、熱処理して2枚のシリコンウェーハを貼り合わせ、研削研磨した後に1200〜1300℃で少なくとも10時間再度熱処理を行うことにより、貼り合わせ熱処理時に生じたSOI層の刃状転位(スリップ)を消滅し、SOI層のスリップライン密度を2.5×10cm/cm以下にすることができ、結果としてスリップに起因したデバイスの電気的特性に悪影響を及ぼさないSOI基板が得られる。
【図面の簡単な説明】
【図1】本発明実施例のSOI基板の製造方法を示す部分断面図。
【図2】比較例1の基板上に形成されたSOI層部分のX線によるトポグラフィ写真図。
【図3】比較例1の基板上に形成されたSOI層の光学顕微鏡写真図。
【図4】実施例1の基板上に形成されたSOI層の光学顕微鏡写真図。
【図5】実施例2の基板上に形成されたSOI層の光学顕微鏡写真図。
【図6】比較例1、実施例1及び実施例2のスリップライン密度を示す図。
【符号の説明】
11 第1シリコンウェーハ
12 第2シリコンウェーハ
12a SOI層
13 絶縁層(シリコン酸化層)
[0001]
[Industrial applications]
The present invention relates to a method for manufacturing an SOI ( Silicon-On-Insulator ) substrate in which two silicon wafers are bonded via an insulating layer to form a silicon layer (hereinafter referred to as an SOI layer) on the insulating layer. .
[0002]
[Prior art]
In recent years, highly integrated CMOS (Complementary Metal Oxide Semiconductor), ICs, high withstand voltage elements, and the like have been manufactured using an SOI substrate. An SOI substrate in which a single-crystal silicon layer used as a device fabrication region is formed on an insulating layer prevents latch-up (abnormal oscillation phenomenon due to a parasitic circuit) in the case of a highly integrated CMOS, and in the case of a high breakdown voltage element. Are effective for insulating and separating from the base substrate. This SOI substrate manufacturing method includes a method in which silicon wafers are bonded to each other via a silicon dioxide layer (hereinafter, referred to as a silicon oxide layer), that is, an insulating layer, on an insulating substrate or a substrate having an insulating thin film on its surface. First, a polycrystalline silicon thin film is deposited by a CVD (Chemical Vapor Deposition) method, then a single crystal is formed by laser annealing, a ZMR method is performed, high-concentration oxygen ions are implanted into a silicon substrate, and annealing is performed at a high temperature. There is a SIMOX method in which a buried silicon oxide layer (insulating layer) is formed in a region at a predetermined depth from the substrate surface, and the silicon layer on the surface side is used as an active region. Among these methods, an SOI substrate manufactured by a bonding method is promising because the SOI layer has extremely good crystallinity.
[0003]
Specifically, this silicon wafer bonding method involves bonding two silicon wafers each having a thickness of about 600 μm via an insulating layer made of a silicon oxide layer, and performing a heat treatment at 1100 ° C. for 2 hours in an oxygen atmosphere. The surface of one of the silicon wafers is ground with a grindstone and further polished with a polishing cloth so that the thickness of the silicon wafer is in the range of about 1 to 10 μm, and the thickness of the polished side is about 1 to 10 μm Are used as SOI layers for device formation.
[0004]
[Problems to be solved by the invention]
However, in the conventional method, when heat treatment is performed at 1100 ° C. for 2 hours, stress is applied to the bonding interface due to a difference in thermal expansion coefficient of the order of one digit between the silicon wafer (Si) and the silicon oxide layer (SiO 2 ). Is concentrated. When unbonded portions (voids) between wafers are formed at the bonding interface, dislocations (slips) penetrating from the voids to the SOI layer surface or the interface with the buried SiO 2 film from the voids in the SOI layer due to the stress concentration. Easily occur. Since the density of the conventional slip line is as large as about 5.0 × 10 7 cm / cm 3, in the SOI layer having such a high slip line density, these dislocations directly affect the electrical characteristics of the device after the device is formed. Or it could have a large effect indirectly.
An object of the present invention has a small density of slip lines in the SOI layer on an insulator layer made by bonding two silicon wafers, a manufacturing method of the SOI base plate that does not adversely affect the electrical characteristics of the device due to slippage Is to provide.
[0005]
[Means for Solving the Problems]
[0006]
As shown in FIGS. 1A to 1E, the present invention provides a step of bonding a first silicon wafer 11 and a second silicon wafer 12 via an insulating layer 13, and a method of bonding the first and second silicon wafers. a step of Ru bonding by heat-treating silicon wafers 11 and 12, the steps of the SOI layer 12a of the device formed by grinding and polishing the first silicon wafer 11 and the second silicon wafer 12 to a predetermined thickness, the grinding After polishing, a heat treatment again in a dry oxygen atmosphere or a nitrogen atmosphere in a temperature range of 1200 to 1300 ° C., preferably at 1250 ° C. for at least 10 hours , wherein each step is continuously performed. This is a method for manufacturing an SOI substrate.
[0007]
The first and second silicon wafers of the present invention are manufactured from a silicon single crystal rod obtained by the same method using a CZ method, an FZ method or the like. The insulating layer is formed on one or both of the first silicon wafer and the second silicon wafer. In order to improve the bonding, the insulating layer is preferably formed on one surface of one of the silicon wafers. As shown in FIG. 1A, an insulating layer 13 is formed on one surface of a second silicon wafer 12 in the figure. As the interface between the insulating layer and the SOI layer after the bonding, the interface between the two silicon wafers (the interface with the silicon wafer 11 in FIG. 1) and the interface between the silicon wafer on which the insulating layer was formed before the bonding (FIG. 1 has an interface with the silicon wafer 12).
It is preferable that the interface between the SOI layer 12a and the insulating layer 13 of the present invention be the interface with the wafer on which the insulating layer is formed, rather than the former bonding interface, because the interface is more excellent in continuity. That is, as shown in FIG. 1E, it is preferable that the silicon wafer 12 on which the SOI layer 12a is formed be used as a silicon substrate for the SOI layer and another silicon wafer 11 be used as its supporting substrate.
[0008]
The thickness of the insulating layer is in the range of about 0.5 to 1.0 μm, and the insulating layer is a silicon oxide layer (SiO 2 layer), which is obtained by thermally oxidizing a silicon wafer or by CVD. Formed. Before bonding the two silicon wafers via the insulating layer as shown in FIG. 1B, it is preferable to clean the silicon wafers with a predetermined cleaning liquid in order to activate the surface to be bonded. As shown in FIG. 1C, the heat treatment after the bonding is performed at a temperature of 1100 ° C. in a dry oxygen (dry O 2 ) atmosphere or a nitrogen (N 2 ) atmosphere in a state where the two silicon wafers 11 and 12 are bonded. , 1 to 3 hours, preferably about 2 hours. As a result, covalent bonding of silicon occurs at the bonding interface, and the two silicon wafers 11 and 12 are bonded to each other, and the crystal lattices of the two are integrated.
As shown in FIG. 1 (d), after the two integrated silicon wafers 11 and 12 are allowed to cool to room temperature, the second silicon wafer 12 serving as the silicon substrate is ground with a grindstone and then with a polishing cloth. It is polished and processed into a thin film having a thickness of about 1 to 10 μm. As a result, an SOI layer 12 a for device formation having a thickness of about 1 to 10 μm is obtained on the insulating layer 13. After grinding and polishing as shown in FIG. 1 (e), at a temperature range of 1200 to 1300 ° C., preferably at a temperature of 1250 ° C. for at least 10 hours in a dry oxygen (dry O 2 ) atmosphere or a nitrogen (N 2 ) atmosphere. Performs a reheat treatment for about 10 to 15 hours. If the reheat treatment is performed at less than 1200 ° C. or for less than 10 hours, the disappearance of the slip is not so remarkable. If the reheat treatment is performed at more than 1300 ° C., adverse effects such as deformation of the core tube of the heat treatment furnace occur.
[0009]
[Action]
As described above, when heat treatment is performed at 1100 ° C. for 2 hours in FIG. 1C, the heat expansion is caused by a difference of about one digit between the silicon wafer (Si) 12 and the silicon oxide layer (SiO 2 ) 13. When stress is concentrated at the bonding interface and an unbonded portion (void) between wafers is formed at the bonding interface, the stress concentration causes the SOI layer surface or the buried SiO 2 starting from the void in the SOI layer 12a. It is presently believed that dislocations (slips) penetrate to the interface with the two films. It is generally thought that this slip is formed as a result of the dislocations (mainly edge dislocations) formed by the above-mentioned stress concentration moving or growing on the {111} slip plane in the silicon single crystal with the progress of plastic deformation. This dislocation line is called a slip line.
In the present invention, as a mechanism of dislocation annihilation, when the SOI substrate obtained by grinding and polishing is heat-treated again in a temperature range of 1200 to 1300 ° C. for at least 10 hours , a large amount of atomic vacancies are generated with time with respect to the edge dislocation. Is supplied, a "jog", which is a phenomenon in which dislocation lines gradually move to an adjacent slip surface, occurs, and dislocations move to the surface of the SOI layer 12a or the interface with the embedded SiO 2 film, and eventually. A model that disappears is conceivable.
[0010]
【Example】
Next, embodiments of the present invention will be described in detail with reference to the drawings.
<Example 1>
As shown in FIG. 1A, a first silicon wafer 11 and a second silicon wafer 12 each having a diameter of 5 inches and a thickness of 625 μm made from a silicon single crystal rod pulled by the CZ method were prepared. On one side of the second silicon wafer 12, this wafer was heat-treated at 1000 ° C. for 3 hours in a wet oxygen (wetO 2 ) atmosphere to form an insulating layer 13 made of a 0.5 μm thick silicon oxide layer. The two silicon wafers 11 and 12 were prepared by mixing H 2 O and an aqueous solution of H 2 O 2 having a specific gravity of 1.1 and an aqueous solution of NH 4 OH having a specific gravity of 0.9 by H 2 O: H 2 O 2 : NH 4 OH = 7. : The cleaning solution of SC1 (Standard Cleaning 1) was prepared by mixing at a volume ratio of 2: 1, and the surfaces of the two silicon wafers were activated.
[0011]
As shown in FIG. 1B, two silicon wafers 11 and 12 were overlapped and joined via an insulating layer 13. Then, as shown in FIG. 1 (c), it is inserted at a rate of 10 to 15 cm / min into a heat treatment furnace set at a temperature from room temperature to 800 ° C., and a rate of 800 to 10 ° C./min in a nitrogen (N 2 ) atmosphere. At 1100 ° C., and maintained for 2 hours. Then, the temperature was lowered at a rate of 4 ° C./min, cooled to 800 ° C., and then taken out of the furnace at room temperature at a rate of 10 to 15 cm / min. Subsequently, as shown in FIG. 1D, the surface of the silicon wafer 12 was ground with a grindstone and then polished with a soft polishing cloth to form an SOI layer 12a having a thickness of 1 to 10 μm on the insulating layer 13. Further, as shown in FIG. 1 (e), it is inserted into a heat treatment furnace set at a temperature of from room temperature to 900 ° C. at a rate of 10 to 15 cm / min, and in a dry oxygen (dryO 2 ) atmosphere, from 900 ° C. to 10 ° C./min. When the temperature reaches 1250 ° C., the temperature is maintained for 10 hours, then the temperature is lowered at a rate of 4 ° C./min, cooled to 900 ° C., and taken out of the furnace at a rate of 10 to 15 cm / min to room temperature. Was.
[0012]
<Example 2>
Using a silicon wafer of the same lot as in Example 1, an SOI substrate was obtained by performing a reheat treatment in the same manner as in Example 1 except that the atmosphere of the reheat treatment shown in FIG. 1E was changed to a nitrogen (N 2 ) atmosphere. Was.
[0013]
<Comparative Example 1>
Using silicon wafers of the same lot as in Example 1, an SOI substrate was obtained in the same manner as in Example 1, except that the reheat treatment shown in FIG. 1E was omitted.
[0014]
<Evaluation>
First, the SOI substrates of Example 1, Example 2, and Comparative Example 1 were washed with dilute hydrofluoric acid having a volume ratio of H 2 O: HF = 10: 1, and the washed SOI substrates were washed with an HF solution: 0.15 mol. The SOI layer was selectively etched by dipping in an etchant of K 2 Cr 2 O 7 aqueous solution = 2: 1 for 90 seconds. The SOI substrate was pulled up from the etchant, washed with pure water and dried.
In order to examine the slip state before the reheat treatment, the SOI substrate of Comparative Example 1 was observed and photographed by X-ray topography. The result is shown in FIG. As is clear from FIG. 2, a number of slip lines were found around the upper left edge of the SOI substrate.
[0015]
Further, in order to examine the dislocation generation state of the sample after the reheat treatment, the SOI layer of the SOI substrate of Example 1, Example 2, and Comparative Example 1, which was washed with pure water and dried, was observed with an optical microscope and photographed. The results are shown in FIGS. As is clear from the figure, a remarkable slip line appeared in the SOI layer of the SOI substrate of Comparative Example 1 (FIG. 3), but the slip line was found in the SOI layers of the SOI substrates of Example 1 and Example 2. Has disappeared (FIGS. 4 and 5). In particular, most of the slip lines disappeared in the SOI layer of the SOI substrate of Example 2 which was heat-treated in a nitrogen atmosphere (FIG. 5). The reason that the slip line disappears more remarkably in the second embodiment than in the first embodiment is that in the heat treatment in the oxygen atmosphere of the first embodiment, a large amount of interstitial silicon atoms are simultaneously supplied to the dislocations due to the oxidation reaction. On the other hand, in the heat treatment in the nitrogen atmosphere of the second embodiment, only the vacancies are supplied to the dislocations. Therefore, it is considered that the heat treatment of the second embodiment is more effective in forming the jog. Can be
Further, the density of the slip line was measured by observation with an optical microscope. FIG. 6 shows the result. The slip line density of the SOI layer of Comparative Example 1 was about 5.3 × 10 7 cm / cm 3 , whereas the slip line density of Example 1 was about 2.3 × 10 7 cm / cm 3 . Yes, the slip line density of Example 2 was about 1.0 × 10 7 cm / cm 3 . For these reasons, the slip line densities of Examples 1 and 2 were less than half that of Comparative Example 1.
[0016]
【The invention's effect】
As described above, according to the method for manufacturing an SOI substrate of the present invention, two silicon wafers are bonded by heat treatment, and ground and polished, and then heat-treated again at 1200 to 1300 ° C. for at least 10 hours. The edge dislocations (slip) of the SOI layer generated during the heat treatment are eliminated, and the slip line density of the SOI layer can be reduced to 2.5 × 10 7 cm / cm 3 or less. An SOI substrate that does not adversely affect electric characteristics can be obtained.
[Brief description of the drawings]
FIG. 1 is a partial sectional view illustrating a method for manufacturing an SOI substrate according to an embodiment of the present invention.
FIG. 2 is an X-ray topography photograph of an SOI layer portion formed on a substrate of Comparative Example 1.
FIG. 3 is an optical microscope photograph of an SOI layer formed on a substrate of Comparative Example 1.
FIG. 4 is an optical micrograph of an SOI layer formed on the substrate of Example 1.
FIG. 5 is an optical micrograph of an SOI layer formed on the substrate of Example 2.
FIG. 6 is a diagram showing slip line densities of Comparative Example 1, Examples 1 and 2.
[Explanation of symbols]
11 first silicon wafer 12 second silicon wafer 12a SOI layer 13 insulating layer (silicon oxide layer)

Claims (1)

第1シリコンウェーハ(11)と第2シリコンウェーハ(12)とを絶縁層(13)を介して接合する工程と、
前記接合した第1及び第2シリコンウェーハ(11,12)を熱処理して貼り合わせる工程と、
前記第1シリコンウェーハ(11)又は第2シリコンウェーハ(12)を所定の厚さに研削研磨してデバイス形成用のSOI層(12a)とする工程と、
前記研削研磨した後で、乾燥酸素雰囲気又は窒素雰囲気中で1200〜1300℃の温度範囲で少なくとも10時間再度熱処理する工程と
を含み、
前記各工程が連続して行われることを特徴とするSOI基板の製造方法。
Bonding the first silicon wafer (11) and the second silicon wafer (12) via an insulating layer (13) ;
And Ru bonding step by heat-treating the first and second silicon wafers that the joint (11, 12),
Grinding and polishing the first silicon wafer (11) or the second silicon wafer (12) to a predetermined thickness to form an SOI layer (12a) for device formation ;
After the grinding and polishing, heat-treating again in a dry oxygen atmosphere or a nitrogen atmosphere in a temperature range of 1200 to 1300 ° C. for at least 10 hours ;
Including
A method for manufacturing an SOI substrate, wherein each of the steps is performed continuously .
JP03649495A 1995-02-24 1995-02-24 Method for manufacturing SOI substrate Expired - Fee Related JP3584945B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03649495A JP3584945B2 (en) 1995-02-24 1995-02-24 Method for manufacturing SOI substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03649495A JP3584945B2 (en) 1995-02-24 1995-02-24 Method for manufacturing SOI substrate

Publications (2)

Publication Number Publication Date
JPH08236735A JPH08236735A (en) 1996-09-13
JP3584945B2 true JP3584945B2 (en) 2004-11-04

Family

ID=12471389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03649495A Expired - Fee Related JP3584945B2 (en) 1995-02-24 1995-02-24 Method for manufacturing SOI substrate

Country Status (1)

Country Link
JP (1) JP3584945B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3451908B2 (en) * 1997-11-05 2003-09-29 信越半導体株式会社 SOI wafer heat treatment method and SOI wafer
JP2000315635A (en) * 1999-04-30 2000-11-14 Mitsubishi Materials Silicon Corp Silicon wafer for bonding and manufacture of bonded substrate using the same
FR2867607B1 (en) * 2004-03-10 2006-07-14 Soitec Silicon On Insulator METHOD FOR MANUFACTURING SUBSTRATE FOR MICROELECTRONICS, OPTO-ELECTRONICS AND OPTICS WITH LIMITATION OF SLIDING LINES AND CORRESPONDING SUBSTRATE
JP5752264B2 (en) 2010-12-27 2015-07-22 シャンハイ シングイ テクノロジー カンパニー リミテッドShanghai Simgui Technology Co., Ltd Method for manufacturing a semiconductor substrate with an insulating layer by an impurity gettering process
DE112012000210T5 (en) 2012-02-23 2014-01-16 Fuji Electric Co., Ltd Method for producing a semiconductor component
JP6135666B2 (en) 2012-05-31 2017-05-31 富士電機株式会社 Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
JPH08236735A (en) 1996-09-13

Similar Documents

Publication Publication Date Title
JP3762144B2 (en) Method for manufacturing SOI substrate
JP3237888B2 (en) Semiconductor substrate and method of manufacturing the same
JP3112126B2 (en) Semiconductor article manufacturing method
US7629666B2 (en) Method and structure for implanting bonded substrates for electrical conductivity
JPH05275329A (en) Method for forming semiconductor substrate
JP2002164520A (en) Method for manufacturing semiconductor wafer
JP2994837B2 (en) Semiconductor substrate flattening method, semiconductor substrate manufacturing method, and semiconductor substrate
JP4552856B2 (en) Manufacturing method of SOI wafer
JP5009124B2 (en) Manufacturing method of semiconductor substrate
JP3584945B2 (en) Method for manufacturing SOI substrate
JP3287524B2 (en) Method for manufacturing SOI substrate
EP1965413B1 (en) Method for manufacturing soi substrate
KR100596093B1 (en) A method of fabricating SOI wafer
JP3528880B2 (en) Method for manufacturing SOI substrate
JPH11354761A (en) Soi substrate and its production
JPH09162088A (en) Semiconductor substrate and production thereof
JPH10326883A (en) Substrate and manufacture thereof
JP3262190B2 (en) Method of manufacturing SOI substrate and SOI substrate manufactured by this method
JPH0964319A (en) Soi substrate and its manufacture
JPH04346418A (en) Manufacture of semiconductor substrate
JP2850502B2 (en) Method for manufacturing SOI substrate
JP3119384B2 (en) Semiconductor substrate and manufacturing method thereof
JPH08316442A (en) Soi substrate and its manufacture
JP3262945B2 (en) Method of manufacturing SOI substrate and SOI substrate manufactured by this method
JPH09186306A (en) Manufacture of soi substrate

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040727

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070813

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080813

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090813

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100813

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110813

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120813

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees