JPS59978B2 - Manufacturing method of semiconductor integrated circuit - Google Patents

Manufacturing method of semiconductor integrated circuit

Info

Publication number
JPS59978B2
JPS59978B2 JP4585776A JP4585776A JPS59978B2 JP S59978 B2 JPS59978 B2 JP S59978B2 JP 4585776 A JP4585776 A JP 4585776A JP 4585776 A JP4585776 A JP 4585776A JP S59978 B2 JPS59978 B2 JP S59978B2
Authority
JP
Japan
Prior art keywords
layer
poly
region
type
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4585776A
Other languages
Japanese (ja)
Other versions
JPS52129288A (en
Inventor
忠晴 露木
昭明 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP4585776A priority Critical patent/JPS59978B2/en
Publication of JPS52129288A publication Critical patent/JPS52129288A/en
Publication of JPS59978B2 publication Critical patent/JPS59978B2/en
Expired legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0641Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region without components of the field effect type
    • H01L27/0647Bipolar transistors in combination with diodes, or capacitors, or resistors, e.g. vertical bipolar transistor and bipolar lateral transistor and resistor
    • H01L27/0652Vertical bipolar transistor in combination with diodes, or capacitors, or resistors
    • H01L27/0658Vertical bipolar transistor in combination with resistors or capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Bipolar Transistors (AREA)
  • Formation Of Insulating Films (AREA)
  • Bipolar Integrated Circuits (AREA)

Description

【発明の詳細な説明】 本発明はバイポーラ形の半導体集積回路の製造方法に関
するものであり、特に不純物拡散に用いるマスクをパッ
シベーション膜としても用いるよ5 うにしたプレーナ
型のダイオード、トランジスタ等のICに適用するのに
最適な製造方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing bipolar semiconductor integrated circuits, and particularly to ICs such as planar diodes and transistors in which a mask used for impurity diffusion is also used as a passivation film. This provides the most suitable manufacturing method for this application.

従来此種の半導体装置の製造に際し不純物拡散マスクと
してはSiO2が用いられておV)この10SiO2膜
はそのまゝ表面パッシベーション膜として基板表面に残
される。
Conventionally, SiO2 is used as an impurity diffusion mask when manufacturing this type of semiconductor device, and this 10SiO2 film is left as is on the substrate surface as a surface passivation film.

しかしこの方法により製造された装置の特性をみると、
SiO2中に存在する電荷による一種のメモリ作用が生
じて耐圧低下が起こり易く、また湿気に対する安定性が
十J5分でなく、多湿な条件下でテストすればリーケー
ジ電流の変化が見られ、信頼性が悪い。然もまた電気的
なバイアス、温度に変動があれば劣化し易いという欠点
がある。このような欠陥を是正した半導体装置を本出願
20人は特願昭49−36175号(特公昭53一25
52号)として既に提案した。
However, when looking at the characteristics of the device manufactured using this method,
A type of memory effect occurs due to the electric charge present in SiO2, which tends to cause a drop in breakdown voltage.Also, stability against humidity is not good enough for 5 minutes, and changes in leakage current are observed when tested under humid conditions, reducing reliability. It's bad. However, it also has the disadvantage of being susceptible to deterioration if there are fluctuations in electrical bias or temperature. The 20 applicants have filed a patent application No. 49-36175 (Japanese Patent Publication No. 53-25) to develop a semiconductor device with such defects corrected.
No. 52).

これによれば酸素を含有する多結晶シリコン層を半導体
基板上に形成するようにしている。この多結晶シリコン
層(以下単にポリSi層という。)はSiO2よ25り
も抵抗小であるから、パッシベーション膜として用いる
と、SiO2におけるようなメモリ作用がなくなつて耐
圧向上、半導体基板表面での反転現象の防止、リーケー
ジ電流の減少を夫々達成することが出来る。そしてまた
本出願人が既に提案30した特願昭49−123765
号(特開昭51一49686)によれば、酸素を含有す
るポリSi層上に、第2の安定化層としてSiO2より
も耐湿性に優れた例えば窒素を含有するポリSi層を形
成するようにしている。これによつて特に耐湿35性を
改善することが可能である。こうした半導体装置の一例
としてトランジスタを製造するには、半導体基板表面に
形成したSiO2膜をマスクとしてペース及びエミツタ
拡散を行い、次いでこのSiO2膜を除去した後に酸素
を含有するポリSi層を気相成長させ、次いでこの安定
化層を部分的にエツチング除去して電極被着用の開口を
形成するようにしている。
According to this, a polycrystalline silicon layer containing oxygen is formed on a semiconductor substrate. This polycrystalline silicon layer (hereinafter simply referred to as poly-Si layer) has a lower resistance than SiO2, so when used as a passivation film, it eliminates the memory effect like SiO2, improving the breakdown voltage and increasing the resistance on the semiconductor substrate surface. It is possible to prevent the reversal phenomenon and reduce leakage current. Furthermore, the present applicant has already proposed 30 patent application No. 123765/1983.
According to JP-A No. 51-49686, a poly-Si layer containing, for example, nitrogen, which has better moisture resistance than SiO2, is formed as a second stabilizing layer on a poly-Si layer containing oxygen. I have to. This makes it possible to particularly improve the moisture resistance. To manufacture a transistor as an example of such a semiconductor device, paste and emitter diffusion are performed using a SiO2 film formed on the surface of a semiconductor substrate as a mask, and then, after removing this SiO2 film, a poly-Si layer containing oxygen is grown by vapor phase growth. The stabilizing layer is then partially etched away to form openings for electrode attachment.

しかしこの方法によれば特にICの製造に適用したとき
工程が複雑化するという欠点がある。本発明は上述の如
き欠陥を是正しかつ前記特願昭49−36175号の特
長を具備せしめつつ発明されたものであつて、バイポー
ラ形の半導体集積回路を製造するにあたり、複数の半導
体素子((例えばトランジスタ、抵抗等)を設けるため
の半導体層(例えばN型エピタキシヤル層)を半導体基
板(例えばP型シリコン基板)上に形成する程と、前記
半導体層の表面から前記半導体基板+にまで達する分離
拡散領域(例えばP型の分離拡散領域)を前記半導体層
に形成する程と、酸素を含有する多結晶シリコン層(ポ
リSi層)を前記半導体層の前記表面に被着する程と、
前記分離拡散領域によつて分離された前記半導体層の分
離領域に対し前記多結晶シリコン層をマスクとして不純
物拡散を行うことによつて前記分離領域内にベース領域
を形成する工程と、前記ベース領域形成時にこのベース
領域上に形成された酸化膜をマスクとして前記ベース領
域に対し不純物拡散を行うことによつて前記ベース領域
内にエミツタ領域を形成する程とを夫々具倫し、これら
の不純物拡散後に前記多結晶シリコン層及び前記酸化膜
を夫々そのまま残すようにしたことを特徴とする半導体
集積回路の製造方法に係るものである。
However, this method has the disadvantage of complicating the process, especially when applied to IC manufacturing. The present invention was invented to correct the above-mentioned defects and to provide the features of the above-mentioned Japanese Patent Application No. 49-36175. For example, a semiconductor layer (for example, an N-type epitaxial layer) for providing a transistor, a resistor, etc.) is formed on a semiconductor substrate (for example, a P-type silicon substrate), and the layer reaches from the surface of the semiconductor layer to the semiconductor substrate +. forming an isolation diffusion region (for example, a P-type isolation diffusion region) in the semiconductor layer; and depositing an oxygen-containing polycrystalline silicon layer (poly-Si layer) on the surface of the semiconductor layer;
forming a base region in the isolation region by performing impurity diffusion using the polycrystalline silicon layer as a mask in the isolation region of the semiconductor layer separated by the isolation diffusion region; At the time of formation, an emitter region is formed in the base region by diffusing impurities into the base region using the oxide film formed on the base region as a mask, and these impurity diffusions are performed. The method of manufacturing a semiconductor integrated circuit is characterized in that the polycrystalline silicon layer and the oxide film are left as they are afterwards.

この方法によつて、バイポーラICの製造程が極めて簡
略化されると共に、信頼性が高くて特性が良好なバイポ
ーラICを製造することができる。次に本発明の実施例
を図面に付き述べる。第1図及び第2図は本発明をバイ
ポーラICに適用した第1の実施例を示すものである。
By this method, the manufacturing process of bipolar ICs is extremely simplified, and bipolar ICs with high reliability and good characteristics can be manufactured. Next, embodiments of the present invention will be described with reference to the drawings. 1 and 2 show a first embodiment in which the present invention is applied to a bipolar IC.

まず第1A図に示す如く、3〜5Ω?で111結晶のP
型シリコン基板1の表面を1130℃で30分間熱酸化
し、これによつて形成された厚さ36007C程度の熱
酸化SiO2層2に開口3,4を夫々エツチングで形成
し、これら開口を通じてN型不純物(例えばSb)をρ
8=25Ω/口、X.=2.0μで拡散し、N+型半導
体領域5,6jを夫々形成する。
First, as shown in Figure 1A, 3~5Ω? 111 crystal P
The surface of the mold silicon substrate 1 is thermally oxidized at 1130°C for 30 minutes, and openings 3 and 4 are formed in the thermally oxidized SiO2 layer 2 with a thickness of about 36007C by etching, and N-type silicon is formed through these openings. Impurities (e.g. Sb) are
8=25Ω/mouth, X. =2.0μ to form N+ type semiconductor regions 5 and 6j, respectively.

次いで第1B図に示す如く、基板1上のSiO,層2を
エツチングで除去し、続いて基板1の表面に4〜7Ωα
のN型エピタキシヤル層7を厚さ10μ程度に成長させ
る。
Next, as shown in FIG. 1B, the SiO layer 2 on the substrate 1 is removed by etching, and then the surface of the substrate 1 is coated with 4 to 7 Ωα.
An N-type epitaxial layer 7 is grown to a thickness of about 10 μm.

次いで第1C図に示す如く、N型エピタキシヤル層7の
表面に、後述の装置を1いて酸素を含有するポリSi層
8を厚さ0,5μ〜2.0μ(例えば1.0μ程度)に
成長させる。
Next, as shown in FIG. 1C, an oxygen-containing poly-Si layer 8 is formed on the surface of the N-type epitaxial layer 7 to a thickness of 0.5 μm to 2.0 μm (for example, about 1.0 μm) using an apparatus to be described later. Make it grow.

このポリSi層は後述の拡散工程で表面が酸化されるが
、全体が酸化されることなく基板1側にもとのポリSi
が少なくとも0.1μ(1000λ)は残るようにする
のが望ましい。また最終工程における電極形成時の電極
の段切れを防止するためにポリSi層8の厚みは2.0
μ以下であることが好ましい。またポリSi層8は後述
するように酸素の含有によつてパツシペーシヨン効果に
優れているが、この酸素含有量は2〜45at%である
のが好ましく、15〜35at%であるのが更に好まし
い。次いで第+1D図に示す如く、N型半導体領域5,
6間に存在するポリSi層8の所定部分をプラズマエツ
チング又は熱リン酸でエツチング除去して開口910,
15を夫々形成し、これら開口を通じてP型不純物(例
えばB)を基板1に至るまで1240℃で150分間厚
み方向に拡散し、これによつてp+型分離拡散領域12
,13,14を形成する。
Although the surface of this poly-Si layer is oxidized in the diffusion process described later, the entire poly-Si layer is not oxidized and the original poly-Si layer remains on the substrate 1 side.
It is desirable that at least 0.1μ (1000λ) remain. In addition, the thickness of the poly-Si layer 8 is set to 2.0 mm in order to prevent the electrode from breaking when forming the electrode in the final process.
It is preferably less than μ. Further, as will be described later, the poly-Si layer 8 has an excellent passivation effect due to the oxygen content, and the oxygen content is preferably 2 to 45 at %, more preferably 15 to 35 at %. Next, as shown in Figure +1D, N-type semiconductor regions 5,
A predetermined portion of the poly-Si layer 8 existing between the openings 910 and 6 is removed by plasma etching or etching with hot phosphoric acid.
Through these openings, a P-type impurity (for example, B) is diffused in the thickness direction at 1240° C. for 150 minutes into the substrate 1, thereby forming p + type isolation diffusion regions 12.
, 13, 14 are formed.

これら分離拡散領域は互いに連結された一体のものであ
つてよく、夫々ρ8=10Ω/口である。この分離拡散
と同時に、ポリSi層8の表面は薄く酸化されてSiO
2に変化し、開口9,10,15にもSiO2が成長し
、従つて基板1を含めてポリSi層8は薄いSiO2層
11によつて覆われた状態になる。また分離拡散によつ
てN型エピタキシャル層7下のN+型半導体領域5,6
中の不純物は低濃度のエピタキシヤル層7内に拡散し、
N型エピタキシヤル層7と基板1との間にN+型埋込み
領域16,17が形成されるごとになる。次いで第1E
図に示す如く、上述の分離拡散によつて分離形成された
N型半導体領域18,19上のSiO2層11及びポリ
Si層8の所定部分をエツチング除去して開口20,2
1を形成する。このエツチングにはSiO2層11及び
ポリSi層8の両者に対して同一のエツチング液を使用
出来る。そして開口20,21を通じてP型不純物(例
えばB)を1100℃で100分間拡散し、これによつ
て左側のコレクタ領域となるN型半導体領域18にはP
+型ベース領域22を、右側のN型半導体領域19には
p+型抵抗領域23を夫夫形成する。これらベース領域
22及び抵抗領域23は夫々ρ8=250Ω/口、Xj
=1.8μである。この拡散によつて開口20,21に
はSiO2層11に連続するSiO2層24,25が夫
々成長する。次いで第1F図に示す如く、SiO2層2
4とN型半導体領域18上のポリSi層8及びSiO2
層11との所定部分をエツチング除去して開口26,2
7を形成し、これら開口を通じてN型不純物(例えばP
)を1000℃で35分間拡散する。
These separate diffusion regions may be integrally connected to each other, each with ρ8=10Ω/port. At the same time as this separation and diffusion, the surface of the poly-Si layer 8 is thinly oxidized to contain SiO2.
2, SiO2 also grows in the openings 9, 10, and 15, so that the poly-Si layer 8 including the substrate 1 is covered with a thin SiO2 layer 11. Also, by separation diffusion, the N+ type semiconductor regions 5 and 6 under the N type epitaxial layer 7 are
The impurities inside diffuse into the low concentration epitaxial layer 7,
Each time N+ type buried regions 16 and 17 are formed between N type epitaxial layer 7 and substrate 1. Then the 1st E
As shown in the figure, predetermined portions of the SiO2 layer 11 and the poly-Si layer 8 on the N-type semiconductor regions 18 and 19 that have been separated and formed by the above-described separation and diffusion are removed by etching to form openings 20 and 2.
form 1. For this etching, the same etching solution can be used for both the SiO2 layer 11 and the poly-Si layer 8. Then, a P-type impurity (for example, B) is diffused at 1100° C. for 100 minutes through the openings 20 and 21, so that the N-type semiconductor region 18, which will become the collector region on the left side, is filled with P-type impurities.
A + type base region 22 and a p + type resistance region 23 are formed in the N type semiconductor region 19 on the right side. These base region 22 and resistance region 23 are each ρ8=250Ω/mouth, Xj
=1.8μ. Due to this diffusion, SiO2 layers 24 and 25 which are continuous to the SiO2 layer 11 grow in the openings 20 and 21, respectively. Next, as shown in FIG. 1F, the SiO2 layer 2
4 and the poly-Si layer 8 and SiO2 on the N-type semiconductor region 18.
Predetermined portions of the layer 11 are etched away to form openings 26 and 2.
7, and conduct N-type impurities (for example, P
) for 35 minutes at 1000°C.

この結果、開口26下にはN+型エミツタ領域28が、
開口27下にはコレクタ電極取出し用のN+型半導体領
域29が夫々形成される。次いで第1G図に示す如く、
上述のベース拡散時に形成された薄いSiO2層30,
31及びSiO2層24,25の所定部分を夫々エツチ
ング除去して、エミツタ電極32、ベース電極33、コ
レクタ電極34、抵抗用の電極35,36を被着する。
As a result, an N+ type emitter region 28 is formed below the opening 26.
N+ type semiconductor regions 29 for extracting collector electrodes are formed under the openings 27, respectively. Then, as shown in Figure 1G,
The thin SiO2 layer 30 formed during the base diffusion described above,
Predetermined portions of 31 and SiO2 layers 24 and 25 are removed by etching, and emitter electrode 32, base electrode 33, collector electrode 34, and resistor electrodes 35 and 36 are deposited.

以上のようにしてN型エピタキシャル層7を分離して形
成される各N型半導体領域18,19に例えばNPN型
バイポーラトランジスタと抵抗とを有するICを製造す
ることが出米る。
As described above, it is possible to manufacture an IC having, for example, an NPN type bipolar transistor and a resistor in each of the N type semiconductor regions 18 and 19 formed by separating the N type epitaxial layer 7.

本実施例によれば、分離拡散領域12,13,14で分
離された各N型半導体領域18,19に対し、エピタキ
シヤル層7表面に被着したポリSi層8をマスクとして
不純物拡散を行うことによつて、前記N型半導体領域1
9内には抵抗領域23を夫々形成し、この不純物拡散後
に前記ポリSi層8をそのまま残しようにしているので
、一旦各拡散領域をSiO2をマスクとして形成した後
にポリSi層を被着する場合に比べ、工数が少なくなり
、製造工程を著しく簡略化することが出来る。
According to this embodiment, impurity diffusion is performed in each of the N-type semiconductor regions 18 and 19 separated by the isolation diffusion regions 12, 13, and 14 using the poly-Si layer 8 deposited on the surface of the epitaxial layer 7 as a mask. Particularly, the N-type semiconductor region 1
Resistance regions 23 are formed in each of the regions 9 and the poly-Si layer 8 is left as is after impurity diffusion. Therefore, when each diffusion region is formed using SiO2 as a mask and then the poly-Si layer is deposited Compared to this, the number of man-hours is reduced and the manufacturing process can be significantly simplified.

なおベース拡散(第1E図)時にはポリSi層8はP型
不純物に対するストツパ一として作用し、またエミツタ
拡散(第1F図)時にはポリSSi層8表面のSiO2
層11及び開口20のSiO2層24がN型不純物に対
するストツパ一として作用する。このようにポリSi層
8が拡散マスクとして作用するのは、このポリSi層が
650℃程度と低温で成長し得てその拡散係数が小さく
なるからである。
During base diffusion (Fig. 1E), the poly-Si layer 8 acts as a stopper for P-type impurities, and during emitter diffusion (Fig. 1F), the poly-Si layer 8 acts as a stopper for the SiO2 on the surface of the poly-SSi layer 8.
The layer 11 and the SiO2 layer 24 in the opening 20 act as a stopper for N-type impurities. The reason why the poly-Si layer 8 acts as a diffusion mask in this way is that this poly-Si layer can be grown at a low temperature of about 650° C. and its diffusion coefficient becomes small.

即ち、ポリSi層8は第2図に示す装置により形成され
、炉37には調整バルブ、流量計等を介して気体源38
,39,40,41が接続され、このうち気体源38か
らモノシラン(SiH4)を、気体源39から酸化窒素
例えば一酸化二窒素(N2O)を、気体源41からキヤ
リヤガスとしての窒素を炉37内に夫々送り込む。なお
気体源40にはアンモニア(NH,)が収容され、本実
施例ではこれを使用しない。操作に当つては、炉37内
に基板1を配し、炉37の温度をヒータによつて約65
0℃に保持するが、この温度はシリコンの供給源として
SiH4を用いる場合の分解温度である。ぞして気体源
38,39からSiH4及びN2Oをキヤリヤガスと供
に送り込むと、これらが熱分解して酸素を所定量含有す
るポリSiが成長する。この場合SiH4とN2Oとの
流量比を適当に選ぶとよいが、N2O/SiH4で表わ
す流量比が約%のときにはポリSi層8中の酸素含有量
が約15at%となる。酸素の供給源としてN2O以外
に、NO,NO2等を用いると、酸素Q量の制御が容易
となる。なお酸素を含有しないポリSi中の不純物原子
の拡散係数を単結晶シリコン中のそれとほぼ同じである
のに、酸素が僅かでも入ると拡散係数が急激に小さくな
るので拡散マスクとして極めて有利である。
That is, the poly-Si layer 8 is formed by the apparatus shown in FIG.
, 39, 40, and 41 are connected, and among these, monosilane (SiH4) is supplied from a gas source 38, nitrogen oxide such as dinitrogen monoxide (N2O) is supplied from a gas source 39, and nitrogen as a carrier gas is supplied from a gas source 41 to the furnace 37. send them to each. Note that the gas source 40 contains ammonia (NH,), which is not used in this embodiment. In operation, the substrate 1 is placed in the furnace 37, and the temperature of the furnace 37 is set to about 65°C using a heater.
It is held at 0° C., which is the decomposition temperature when using SiH4 as the silicon source. When SiH4 and N2O are fed together with the carrier gas from gas sources 38 and 39, they are thermally decomposed to grow poly-Si containing a predetermined amount of oxygen. In this case, the flow rate ratio of SiH4 and N2O may be appropriately selected, but when the flow rate ratio expressed as N2O/SiH4 is approximately %, the oxygen content in the poly-Si layer 8 will be approximately 15 at%. If NO, NO2, etc. are used as an oxygen supply source in addition to N2O, the amount of oxygen Q can be easily controlled. Although the diffusion coefficient of impurity atoms in poly-Si, which does not contain oxygen, is almost the same as that in single-crystal silicon, if even a small amount of oxygen enters, the diffusion coefficient decreases rapidly, making it extremely advantageous as a diffusion mask.

比較のためにポリSiをSiCl4の熱分解(850℃
程度)で形成すると拡散係数が大であるために不適当で
ある。また本実弛例において、分離拡散領域12,13
,14を形成する際にはポリS1層8を被着せず(即ち
分離拡散用のマスクとして用いず)、これをベース拡散
時から以降に存在させるようにすれば、分離拡散による
熱によつてポリSi層8が変質したクすることが避けら
れる。
For comparison, poly-Si was subjected to thermal decomposition of SiCl4 (850°C
It is unsuitable to form the film with a large diffusion coefficient because the diffusion coefficient is large. In addition, in this practical example, the separation diffusion regions 12, 13
. Deterioration of the poly-Si layer 8 can be avoided.

またポリSi層8の表面は拡散時にSiO2層11とな
るので、このSiO2層の表面にインターコネクシヨン
を通すことも出来る。またベース領域22とコレクタ領
域18との逆バイアス接合、及び低濃度のN型半導体領
域18,19上をポリSi層8が覆つているので、表面
パツシペーシヨン効果が非常に優れている。
Furthermore, since the surface of the poly-Si layer 8 becomes the SiO2 layer 11 during diffusion, interconnections can also be passed through the surface of this SiO2 layer. Furthermore, since the poly-Si layer 8 covers the reverse bias junction between the base region 22 and the collector region 18 and the lightly doped N-type semiconductor regions 18 and 19, the surface passivation effect is very excellent.

即ち従来法のようにSiO2膜をパツシベーシヨン膜と
して用いる場合には、SlO2中に存在する電荷によつ
て一種のメモリー作用が生じて半導体領域18,19側
にチヤンネルが形成され、然もシールド用の樹脂中の分
極により電荷が固定されてしまい、この結果接合面での
耐圧低下、外部電界及び温度による影響が起こり易い。
しかしポリSi層8はSiO2よリも抵抗小であるから
上記のような現象は起こらず、耐圧が向上し、反転が防
止され、従つて高電源電圧での使用に有利である。また
酸素を適量含有することから純粋な多結晶シリコンより
も抵抗が大きいので、ポリSi層8中を通じての電荷の
移動が生じず、逆方向リーク電流が極めて少なくなる。
他方、エミツ汐領域28とベース領域22との接合上は
SiO2層24で覆われていることから、酸素を含むポ
リSiで覆う場合に比べてHFEが低下する恐れがない
。またポリSi層8とエピタキシャル層7との熱膨張係
数は近似していて、熱歪による密着不良がなくなり、上
述したことをを合せてパツシペーシヨン効果が極めて良
好である。
That is, when a SiO2 film is used as a passivation film as in the conventional method, a kind of memory effect occurs due to the charges existing in the SiO2, and a channel is formed on the semiconductor regions 18 and 19 side. The electric charge is fixed due to polarization in the resin, and as a result, the withstand voltage at the bonding surface is likely to drop, and the effects of external electric fields and temperature are likely to occur.
However, since the poly-Si layer 8 has a lower resistance than SiO2, the above-mentioned phenomenon does not occur, the withstand voltage is improved, and inversion is prevented, so that it is advantageous for use at a high power supply voltage. Furthermore, since it contains an appropriate amount of oxygen, it has a higher resistance than pure polycrystalline silicon, so no charge transfer occurs through the poly-Si layer 8, and reverse leakage current is extremely reduced.
On the other hand, since the junction between the emitter region 28 and the base region 22 is covered with the SiO2 layer 24, there is no fear that the HFE will be lowered compared to the case where it is covered with oxygen-containing poly-Si. Further, the coefficients of thermal expansion of the poly-Si layer 8 and the epitaxial layer 7 are similar, eliminating poor adhesion due to thermal strain, and combining the above-mentioned factors, the passipation effect is extremely good.

なおポリSi層8中の酸素含有量を2〜45at(f)
としたが、酸素の量が少なすぎると逆方向のリーク電流
が生じる恐れがあり、多すぎるとSlO2と殆んど同程
度の効果しか得られない。
Note that the oxygen content in the poly-Si layer 8 is 2 to 45 at(f).
However, if the amount of oxygen is too small, a leakage current in the opposite direction may occur, and if it is too large, the effect is almost the same as that of SlO2.

なおこのポリSiは微細な結晶のものが望ましく、粒径
1000Å以下(実際には100〜200λ;とする。
この粒径が大きすぎると層中に電荷が捕獲蓄積されてメ
モリー現象が現われ、十分な安定化の効果を得るには不
十分となる。なおポリSi層8の厚さT1は0.1μ=
〈T1く2.0μであるのが好ましく、0.1μより薄
いと熱処理後の逆方向電流の特性が劣化し易く、また2
.0μより厚くするとその上面に電極を延在させるとき
に電1極の段切れの問題が生じ易い。
Note that this poly-Si preferably has fine crystals, with a grain size of 1000 Å or less (actually 100 to 200 λ).
If this particle size is too large, charges will be trapped and accumulated in the layer, causing a memory phenomenon, and it will be insufficient to obtain a sufficient stabilizing effect. Note that the thickness T1 of the poly-Si layer 8 is 0.1μ=
<T1 is preferably 2.0μ; if it is thinner than 0.1μ, the reverse current characteristics after heat treatment are likely to deteriorate;
.. If it is thicker than 0μ, the problem of breakage of the electrode tends to occur when extending the electrode on the upper surface.

次に本発明を高耐圧のLECICに適用した第2の実施
例を第3図に付き述べる。まず第3A図に示す如く、P
型シリコン基板41上に第1のN型エピタキシヤル層4
7を形成し、このエピタキシャル層の表面に熱酸化によ
つてSiO2層40を形成し、このSiO2層に設けた
開口42,43,44,45からP型不純物を高濃度拡
散し、これによつて基板41にまで達しかつN型エピタ
キシャル層47を幾つかのN型半導体領域48,49,
50に夫々分離するためのp+型分離拡散領域51,5
2,53,54を形成する。
Next, a second embodiment in which the present invention is applied to a high voltage LECIC will be described with reference to FIG. First, as shown in Figure 3A, P
A first N-type epitaxial layer 4 is formed on a type silicon substrate 41.
A SiO2 layer 40 is formed on the surface of this epitaxial layer by thermal oxidation, and P-type impurities are diffused at a high concentration through openings 42, 43, 44, and 45 provided in this SiO2 layer. The N-type epitaxial layer 47 reaches the substrate 41 and is connected to several N-type semiconductor regions 48, 49,
p+ type isolation diffusion regions 51, 5 for isolation into 50, respectively.
2, 53, 54 are formed.

この際前記第1の実施例で述べたと同様基板41に予め
形成していたN+型半導体領域の不純物がエピタキシャ
ル層47に拡散し、各分離領域48,49,50と基板
1との間にN+型埋込み領域55,56,57が形成さ
れ、また各開口42〜45にはSiO2層40に連なる
SiO2層が成長する。次いで第3B図に示す如く、左
側のN型半導体領域48上のSiO2層40の所定部分
をエツチング除去して開口46を形成し、この開口を通
じてP型不純物(例えばB)を拡散し、p+型半導体領
域58を形成する。
At this time, as described in the first embodiment, the impurities in the N+ type semiconductor region previously formed in the substrate 41 diffuse into the epitaxial layer 47, and the N+ Mold buried regions 55, 56, and 57 are formed, and an SiO2 layer continuous to the SiO2 layer 40 is grown in each opening 42-45. Next, as shown in FIG. 3B, a predetermined portion of the SiO2 layer 40 on the left N-type semiconductor region 48 is etched away to form an opening 46, and a P-type impurity (for example, B) is diffused through this opening to form a p+-type A semiconductor region 58 is formed.

次いで第3C図に示す如く、エピタキシヤル層47上の
SiO2層40をエツチングで除去し、露出したエピタ
キシャル層47の表面に第2のN型エピタキシヤル層6
7を成長させる。
Next, as shown in FIG. 3C, the SiO2 layer 40 on the epitaxial layer 47 is removed by etching, and a second N-type epitaxial layer 6 is formed on the exposed surface of the epitaxial layer 47.
Grow 7.

次いで第3D図に示す如く、N一型エヒメキシヤル層6
7の表面に熱酸化によつてSiO2層59を形成し、こ
のSiO2層をエツチングして後述するLECトランジ
スタのエミツタに対応する部分を残して他は除去する。
Next, as shown in FIG. 3D, an N-type epithelial layer 6 is formed.
A SiO2 layer 59 is formed on the surface of the semiconductor substrate 7 by thermal oxidation, and this SiO2 layer is etched to leave a portion corresponding to the emitter of an LEC transistor, which will be described later, and remove the rest.

次いで第3E図に示す如く、エピタキシヤル層67の表
面に前記第1の実施例で述べたと同様にして酸素を所定
量含有するポリSi層68を所定の厚さに気相成長させ
る。
Next, as shown in FIG. 3E, a poly-Si layer 68 containing a predetermined amount of oxygen is grown to a predetermined thickness on the surface of the epitaxial layer 67 in the same manner as described in the first embodiment.

次いで第3F図に示す如く、ポリSi層68の所定部分
を夫々エツチング除去して開口60,6162,63,
64,65を形成し、これら開口を通じてP型不純物(
例えばB)をエピタキシヤル層47に達する迄拡散する
Next, as shown in FIG. 3F, predetermined portions of the poly-Si layer 68 are etched away to form openings 60, 6162, 63,
64 and 65, and P-type impurity (
For example, B) is diffused until it reaches the epitaxial layer 47.

この結果、開口60,63,64,65からの拡散領域
はp+型分離拡散領域51,52,53,54の上部に
まで及ひ、これらが一体となつてエピタキシヤル層67
表面から基板41まで達するp+型の分離拡散領域71
,72,73,74が夫々形成される。また開口61,
62からの拡散領域はp+型半導体領域58に達してこ
れらが一体となり、p+型半導体領域58中の不純物も
エピタキシャル層67内に拡散するので、N一型半導体
領域48にはP型不純物を高濃度に含むp+型半導体領
域、即ちベース領域82によつて囲まれた低濃度のN一
型半導体領域、即ちエミツタ領域78が形成されること
になる。またN一型エピタキシャル層67は分離拡散領
域71〜74によつてN一型半導体領域88,89,9
0に夫々分離される。なお上述の分離拡散と同時に、ポ
リSi層68の表面が酸化されてSlO2層81に変化
し、またこれに連続して開口60〜65にはSiO2が
成長する。またエピタキシャル層67上に残したSiO
2層59上に存在するポリSi層も表面酸化され、従つ
てこのポリSi層75はSlO2層81とこれに連なる
SiO2層59とによつて丁度埋め込まれた状態となる
。次いで第3G図に示す如く、開口62に存在している
SiO2層81部分、N一型半導体領域8990上のポ
リSi層68及びSiO2層81部分を同一のエツチン
グ液によつて夫々選択的にエツチング除去して開口76
,77,79を形成し、これら開口を通じてP型不純物
(例えばB)を拡散する。
As a result, the diffusion regions from the openings 60, 63, 64, 65 extend to the upper part of the p+ type isolation diffusion regions 51, 52, 53, 54, and together they form the epitaxial layer 67.
P+ type isolation diffusion region 71 reaching from the surface to the substrate 41
, 72, 73, and 74 are formed, respectively. Also, the opening 61,
The diffusion region from 62 reaches the p + type semiconductor region 58 and becomes one, and the impurity in the p + type semiconductor region 58 also diffuses into the epitaxial layer 67. A lightly doped N1 type semiconductor region, ie, an emitter region 78, is formed surrounded by a p+ type semiconductor region, ie, a base region 82, which is included in the concentration. Further, the N1 type epitaxial layer 67 is formed by the N1 type semiconductor regions 88, 89, 9 by the isolation diffusion regions 71 to 74.
0 respectively. Simultaneously with the above-described separation and diffusion, the surface of the poly-Si layer 68 is oxidized and changed to the SlO2 layer 81, and SiO2 subsequently grows in the openings 60-65. Also, the SiO remaining on the epitaxial layer 67
The surface of the poly-Si layer existing on the second layer 59 is also oxidized, so that the poly-Si layer 75 is just buried by the SlO 2 layer 81 and the SiO 2 layer 59 continuous thereto. Next, as shown in FIG. 3G, the portion of the SiO2 layer 81 existing in the opening 62, the poly-Si layer 68 on the N-type semiconductor region 8990, and the portion of the SiO2 layer 81 are selectively etched using the same etching solution. Remove opening 76
, 77, 79 are formed, and a P-type impurity (for example, B) is diffused through these openings.

この結果、ベース領域82の右側上部には更に高濃度の
ベース電極取出し用のp+型半導体領域80が形成され
、またN一型半導体領域8990にはp+型ベース領域
92及びp+型抵抗領域93が夫々形成され、これと同
時に開口76,77,79にはSlO2層81に連なる
SiO2層83,84,85が成長する。次いで第3H
図に示す如く、エミツタ領域78上のSlO2層81,
59及びポリSi層75、ベース領域82の右側のN一
型半導体領域88即ちコレクタ領域88上のSiO2層
81及びポリSi層68、ベース領域92上のSiO2
層84、ベース領域92の右側のN一型半導体領域89
即ちコレクタ領域89上のSiO2層81及びポリS1
層68を夫々選択的にエツチング除去し、開口86,8
7,91,94を夫々形成する。
As a result, a p+ type semiconductor region 80 with a higher concentration for taking out the base electrode is formed on the upper right side of the base region 82, and a p+ type base region 92 and a p+ type resistance region 93 are formed in the N1 type semiconductor region 8990. At the same time, SiO2 layers 83, 84, and 85, which are connected to the SlO2 layer 81, grow in the openings 76, 77, and 79, respectively. Then the 3rd H
As shown in the figure, the SlO2 layer 81 on the emitter region 78,
59 and the poly-Si layer 75, the SiO2 layer 81 on the N-type semiconductor region 88 on the right side of the base region 82, that is, the collector region 88, the poly-Si layer 68, and the SiO2 on the base region 92.
layer 84, N-type semiconductor region 89 to the right of base region 92;
That is, the SiO2 layer 81 and poly S1 on the collector region 89
Layer 68 is selectively etched away to form openings 86 and 8, respectively.
7, 91, and 94 are formed, respectively.

そしてこれら開口を通じてN型不純物(例えばSb)を
拡散してN+型エミツタ領域98、コレクタ電極取出し
用のN+型半導体領域99、N+型1ミツタ領域108
、コレクタ電極取出し用のN+型半導体領域109を夫
々形成する。次いで第31図に示す如く、上述のエミツ
タ拡散時に成長したSlO2層95,96,97,98
及びSlO2層83,84,85を夫々選択的にエツチ
ング除去し、これら除去部分にエミツタ電極102,1
12、ベース電極103,113、コレクタ電極104
,114、抵抗用の電極105,106を夫々被着する
Then, N type impurities (for example, Sb) are diffused through these openings to form an N+ type emitter region 98, an N+ type semiconductor region 99 for extracting the collector electrode, and an N+ type 1 emitter region 108.
, an N+ type semiconductor region 109 for extracting the collector electrode is formed, respectively. Next, as shown in FIG. 31, the SlO2 layers 95, 96, 97, 98 grown during the emitter diffusion described above are grown.
and the SlO2 layers 83, 84, 85 are selectively etched away, and emitter electrodes 102, 1 are formed in these removed portions.
12, base electrodes 103, 113, collector electrode 104
, 114, and resistor electrodes 105 and 106 are applied, respectively.

以上のようにして、エピタキシヤル成長層67の左側に
低濃度エミッタ領域を具備するNPN型のLECトラン
ジスタが、その真中に通常のNPN型トランジスタが、
その右側に抵抗が夫々形成される。
As described above, an NPN type LEC transistor having a low concentration emitter region on the left side of the epitaxial growth layer 67 is formed, and a normal NPN type transistor is formed in the middle thereof.
Resistors are respectively formed on the right side thereof.

本実施例においても、分離拡散領域71,72,73,
74で分離された各N一型半導体領域8889,90に
対し、エピタキシャル層67表面に被着したポリSi層
67をマスクとして不純物拡散を行うことによつて、前
記N一型半導体領域88内にはベース領域82を、前記
N一型半導体領域89内にはベース領域92を、前記N
一型半導体領域90内には抵抗領域93を夫々形成し、
この不純物拡散後に前記ポリSi層67をそのまま残し
ているので、前記第1の実施例と同様に製造程を著しく
簡略化することが出米る。
Also in this embodiment, the separation diffusion regions 71, 72, 73,
By diffusing impurities into each of the N1 type semiconductor regions 8889 and 90 separated by 74 using the poly-Si layer 67 deposited on the surface of the epitaxial layer 67 as a mask, the N1 type semiconductor region 88 is has a base region 82 in it, a base region 92 in the N-type semiconductor region 89, and a base region 92 in the N-type semiconductor region 89;
Resistance regions 93 are formed in each of the type 1 semiconductor regions 90,
Since the poly-Si layer 67 is left as is after this impurity diffusion, the manufacturing process can be significantly simplified as in the first embodiment.

また、NPN型のLECトランジスタ及び通常のNPN
型トランジスタを同時に形成することができるので、こ
の意味においても極めて有利である。さらに、ベース領
域82,92とコレクタ領域88,89との夫々の逆バ
イアス接合上及び低濃度領域上はポリSi層68で覆わ
れ、またエミッタ領域98,108とベース領域82,
92との夫々の接合上はSiO2層で覆われているので
、パツシベーシヨン効果に優れていて高耐圧1Cに有効
となり、HFEの低下もない。次に本発明を高耐圧のL
ECICに適用した第3の実施例を第4図に付き述べる
Also, NPN type LEC transistor and normal NPN
It is extremely advantageous in this sense as well, since it is possible to simultaneously form two type transistors. Further, the reverse bias junctions and low concentration regions of the base regions 82, 92 and collector regions 88, 89 are covered with a poly-Si layer 68, and the emitter regions 98, 108, the base regions 82, 89,
Since the respective junctions with 92 are covered with a SiO2 layer, the passivation effect is excellent and effective for high breakdown voltage 1C, and there is no decrease in HFE. Next, the present invention will be applied to a high voltage L
A third embodiment applied to ECIC will be described with reference to FIG.

本実施例においては第2のエピタキシャル層の分離拡散
領域の形成程が前記第2の実施例と異なり、共通部分に
は共通符号を付して説明を省略する。
This embodiment differs from the second embodiment in the formation process of the isolation diffusion region of the second epitaxial layer, and common parts are given common reference numerals and explanations will be omitted.

即ち、まず第4A図に示す如く、前記第2の実施例にお
ける第3C図に示す程によつて第2のN一型エピタキシ
ャル層67を形成した後、このエピタキシヤル層の表面
に熱酸化によつてSiO2層119を形成し、このSi
O2層の所定部分をエツチング除去して形成した開口1
20,121,122,123,124,125を通じ
てP型不純物(例えばB)を拡散することにより、前記
第1の実施例と同様のp+型分離拡散領域71,72,
73,74とp+型ベース領域82とを形成する。
That is, as shown in FIG. 4A, a second N-type epitaxial layer 67 is first formed by the process shown in FIG. 3C in the second embodiment, and then thermal oxidation is applied to the surface of this epitaxial layer. Thus, a SiO2 layer 119 is formed, and this SiO2 layer 119 is formed.
Opening 1 formed by etching a predetermined portion of the O2 layer
By diffusing P type impurities (for example, B) through 20, 121, 122, 123, 124, 125, p+ type isolation diffusion regions 71, 72, similar to those in the first embodiment are formed.
73, 74 and a p+ type base region 82 are formed.

次いで第4B図に示す如く、SiO2層119をエツチ
ングし、このうちLECトランジスタとなる部分のみに
SiO2層119を残す。
Next, as shown in FIG. 4B, the SiO2 layer 119 is etched, leaving the SiO2 layer 119 only in the portion that will become the LEC transistor.

次いで第4C図に示す如く、エピタキシヤル層67の表
面に酸素を所定量含有するポリSi層68を気相成長さ
せ、しかる後に第4D図に示す如く、ポリSi層68の
所定部分をエツチング除去して形成した開口126,1
27,128を通じてP型不純物(例えばB)を拡散し
、ベース領域82に高濃度のp+型半導体領域80を、
コレクタ領域83にp+型ベース領域92を、更にN一
型半導体領域90にp+型抵抗領域93を夫夫形成する
Next, as shown in FIG. 4C, a poly-Si layer 68 containing a predetermined amount of oxygen is grown in a vapor phase on the surface of the epitaxial layer 67, and then, as shown in FIG. 4D, a predetermined portion of the poly-Si layer 68 is removed by etching. The opening 126,1 formed by
27, 128 to diffuse a P type impurity (for example, B) to form a highly doped p+ type semiconductor region 80 in the base region 82.
A p+ type base region 92 is formed in the collector region 83, and a p+ type resistance region 93 is further formed in the N1 type semiconductor region 90.

なおこの拡散時にポリSi層68表面は酸化されてSi
O2層81に変化する。次いで第4E図に示す如く、S
iO2層81,59及びポリSi層68を夫々エツチン
グ除去し、この除去部分からN型不純物(例えばP)を
拡散し、N+型エミッタ領域98,108、コレクタ電
極取出し用のN+型半導体領域99,109を夫々形成
する。そして拡散時に成長したSiO2層9596,9
7,98、及びSlO2層83,84,85を夫々選択
的にエツチング除去し、既述の諸電極を被着する。本実
施例によれば、分離拡散領域71,74の拡散形成時に
はポリSi層68をマスクとして用いてはいないので、
この拡散時の熱によるポリSiに対する悪影響が生じな
い。
Note that during this diffusion, the surface of the poly-Si layer 68 is oxidized and becomes Si.
It changes into an O2 layer 81. Then, as shown in FIG. 4E, S
The iO2 layers 81, 59 and the poly-Si layer 68 are etched and removed, and an N-type impurity (for example, P) is diffused from the removed portions to form N+-type emitter regions 98, 108, an N+-type semiconductor region 99 for extracting the collector electrode, 109 are formed respectively. And the SiO2 layer 9596,9 grown during diffusion
7, 98 and the SlO2 layers 83, 84, 85 are selectively etched away, respectively, and the previously described electrodes are deposited. According to this embodiment, the poly-Si layer 68 is not used as a mask when forming the isolation diffusion regions 71 and 74.
The heat generated during this diffusion does not have an adverse effect on the poly-Si.

以上本発明を実施例に基いて説明したが、本発明はこれ
らの実施例に限定されるものではなく、その技術的思想
に基いて更に変形が可能であることが理解されよう。
Although the present invention has been described above based on examples, it will be understood that the present invention is not limited to these examples and can be further modified based on the technical idea thereof.

例えばポリSi層8,68が拡散程によつて総て酸化さ
れてしまうのを防止するために、ポリSi層の3層構造
を拡散前に被着するのがよい。
For example, to prevent the poly-Si layers 8, 68 from being completely oxidized by the diffusion process, a three-layer structure of poly-Si layers may be deposited before the diffusion.

即ち、エピタキシヤル層7,67と直接接する第1層と
して酸素を含有する厚さ5000人のポリSi層を、こ
のポリSi層上に第2層として窒素を含有する厚さ10
00人のポリSi層を、このポリSi層上に第3層とし
て酸素を含有する厚さ1000A0のポリSi層を形成
する。この場合、最上層のポリSi層は総て酸化されて
も中間の窒素含有ポリSi層は酸化され難いから問題は
なくまたこの中間層の存在によつて特に耐湿性を向上さ
せ得ることは水蒸気処理によるテストで証明された。こ
の窒素含有ポリSi層を形成するには、第2図に示す気
体源39からのN2Oの供給を遮断し、この代リに気体
源40からNH,を送り込み、例えばNH,/SiH4
を約100/30とする。この窒素含有量は10at%
以上であるのが好ましく、窒素の量が少なすぎるとこの
ポリ層の表面を通じて電極間で放電が生じ易く、また純
粋なポリSiと似たものとなつて耐湿性が悪くなる。窒
素の多い分にはよく、殆んどSi3N4の割合となるま
で使用可能である。なお上述の実施例ではポリSi層の
外表面は酸化膜(SiO2)で覆われているから、この
上に電極及び外部リードを設けた場合の安定性及び信頼
性が向上し、特に高耐圧化を図れる。
That is, a poly-Si layer with a thickness of 5,000 yen containing oxygen is formed as a first layer in direct contact with the epitaxial layers 7 and 67, and a poly-Si layer with a thickness of 10 yen thick containing nitrogen is formed on this poly-Si layer as a second layer.
A poly-Si layer having a thickness of 1000 A0 and containing oxygen is formed as a third layer on this poly-Si layer. In this case, even if the entire top poly-Si layer is oxidized, there is no problem because the intermediate nitrogen-containing poly-Si layer is difficult to oxidize, and the presence of this intermediate layer can particularly improve moisture resistance. Proven by processing tests. To form this nitrogen-containing poly-Si layer, the supply of N2O from the gas source 39 shown in FIG.
is approximately 100/30. This nitrogen content is 10at%
The above is preferable; if the amount of nitrogen is too small, discharge is likely to occur between the electrodes through the surface of the poly layer, and the poly layer becomes similar to pure poly Si, resulting in poor moisture resistance. It is good for large amounts of nitrogen, and can be used until the proportion is almost Si3N4. In the above embodiment, the outer surface of the poly-Si layer is covered with an oxide film (SiO2), so when electrodes and external leads are provided on this layer, stability and reliability are improved, especially for high voltage resistance. can be achieved.

本発明は上述の如く、バイポーラICの製造において、
分離拡散領域によつて分離された分離領域に対し酸素を
含有する多結晶シリコン層をマスクとして不純物拡散を
行うことによつて前記分離領域内にベース領域を形成し
、この不純物拡散後に前記多結晶シリコン層をそのまま
残すようにしているので、一旦ベース領域を酸化膜をマ
スクとして形成し、次にこの酸化膜を除去した後に前記
多結晶シリコン層を被着する場合に比べ、数が少なくな
ジ、製造程を著しく簡略化することができると共に、ベ
ース領域とコレクタ領域との逆バイアス接合上を表面パ
ツシベーシヨン効果が極めて良好な前記多結晶シリコン
層で覆うことができ、従つて信頼性の高い半導体集積回
路を製造することができる。
As described above, the present invention includes the following steps in manufacturing a bipolar IC:
A base region is formed in the isolation region by performing impurity diffusion using the oxygen-containing polycrystalline silicon layer as a mask in the isolation region separated by the isolation diffusion region, and after this impurity diffusion, the polycrystalline silicon layer is Since the silicon layer is left as is, the number of silicon layers is reduced compared to the case where the base region is formed using an oxide film as a mask, and then the oxide film is removed and the polycrystalline silicon layer is deposited. In addition, the manufacturing process can be significantly simplified, and the reverse bias junction between the base region and the collector region can be covered with the polycrystalline silicon layer, which has an extremely good surface passivation effect, thus making the semiconductor highly reliable. Integrated circuits can be manufactured.

またベース領域形成時にこのベース領域上に形成された
酸化膜をマスクとして前記ベース領域に対し不純物拡散
を行うことによつて前記ベース領域内にエミツタ領域を
形成し、この不純物拡散後に前記酸化膜をそのまま残す
ようにしているので、エミッタ領域とベース領域との接
合上を酸化膜で覆うことができ、従つて酸素を含有する
多結晶シリコン層で覆う場合に比べてHFEが低下する
のを防止することができる。
Further, when forming the base region, an emitter region is formed in the base region by diffusing impurities into the base region using the oxide film formed on the base region as a mask, and after this impurity diffusion, the oxide film is Since the junction between the emitter region and the base region is left as is, it is possible to cover the junction between the emitter region and the base region with an oxide film, which prevents the HFE from decreasing compared to the case where it is covered with a polycrystalline silicon layer containing oxygen. be able to.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すものであつて、第1A図〜
第1G図は本発明をバイボーラICに適用した第1の実
施例による製造方法を程順に示す断面図、第2図はポリ
Siの気相成長に用いる装置の概略図、第3A図〜第3
1図は本発明をLECICに適用した第2の実施例によ
る製造方法を工程順に示す断面図、第4A図〜第4E図
は本発明を高耐圧のLECICに適用した第3の実施例
による製造方法を工程順に示す断面図である。 なお図面に用いられている符号において、7,47はN
型エビタキシヤル層、8,68,75はポリSi層、1
1,81はSiO2層、12,13,14,51,52
,53,54,71,72,7374はP+型分離拡散
領域、22,82,92はベース領域、23,93は抵
抗領域、28,78,98,108はエミッタ領域、6
7はN一型エピタキシヤル層である。
The drawings show embodiments of the present invention, and include Figures 1A to 1A.
FIG. 1G is a sectional view showing step by step the manufacturing method according to the first embodiment in which the present invention is applied to a bibolar IC, FIG. 2 is a schematic diagram of an apparatus used for vapor phase growth of poly-Si, and FIGS. 3A to 3
Figure 1 is a cross-sectional view showing the manufacturing method according to the second embodiment in which the present invention is applied to a LECIC, and Figures 4A to 4E are sectional views showing the manufacturing method according to the third embodiment in which the present invention is applied to a high voltage LECIC. FIG. 3 is a cross-sectional view showing the method in the order of steps. In addition, in the symbols used in the drawings, 7 and 47 are N
type epitaxial layer, 8, 68, 75 are poly-Si layers, 1
1, 81 are SiO2 layers, 12, 13, 14, 51, 52
, 53, 54, 71, 72, 7374 are P+ type isolation diffusion regions, 22, 82, 92 are base regions, 23, 93 are resistance regions, 28, 78, 98, 108 are emitter regions, 6
7 is an N-type epitaxial layer.

Claims (1)

【特許請求の範囲】[Claims] 1 バイポーラ形の半導体集積回路を製造するにあたり
、複数の半導体素子を設けるための半導体層を半導体基
板上に形成する工程と、前記半導体層の表面から前記半
導体基板にまで達する分離拡散領域を前記半導体層に形
成する工程と、酸素を含有する多結晶シリコン層を前記
半導体層の前記表面に被着する工程と、前記分離拡散領
域によつて分離された前記半導体層の分離領域に対し前
記多結晶シリコン層をマスクとして不純物拡散を行うこ
とによつて前記分離領域内にベース領域を形成する工程
と、前記ベース領域形成時にこのベース領域上に形成さ
れた酸化膜をマスクとして前記ベース領域に対し不純物
拡散を行うことによつて前記ベース領域内にエミッタ領
域を形成する工程とを夫々具備し、これらの不純物拡散
後に前記多結晶シリコン層及び前記酸化膜を夫々そのま
ま残すようにしたことを特徴とする半導体集積回路の製
造方法。
1. In manufacturing a bipolar type semiconductor integrated circuit, there is a step of forming a semiconductor layer on a semiconductor substrate for providing a plurality of semiconductor elements, and a step of forming an isolation diffusion region extending from the surface of the semiconductor layer to the semiconductor substrate. depositing an oxygen-containing polycrystalline silicon layer on the surface of the semiconductor layer; forming a base region in the isolation region by diffusing impurities using a silicon layer as a mask; and diffusing impurities into the base region using an oxide film formed on the base region at the time of forming the base region as a mask. forming an emitter region in the base region by performing diffusion, and the polycrystalline silicon layer and the oxide film are left as they are after the impurity diffusion. A method for manufacturing semiconductor integrated circuits.
JP4585776A 1976-04-22 1976-04-22 Manufacturing method of semiconductor integrated circuit Expired JPS59978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4585776A JPS59978B2 (en) 1976-04-22 1976-04-22 Manufacturing method of semiconductor integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4585776A JPS59978B2 (en) 1976-04-22 1976-04-22 Manufacturing method of semiconductor integrated circuit

Publications (2)

Publication Number Publication Date
JPS52129288A JPS52129288A (en) 1977-10-29
JPS59978B2 true JPS59978B2 (en) 1984-01-10

Family

ID=12730867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4585776A Expired JPS59978B2 (en) 1976-04-22 1976-04-22 Manufacturing method of semiconductor integrated circuit

Country Status (1)

Country Link
JP (1) JPS59978B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2543739B1 (en) * 1983-03-30 1986-04-18 Radiotechnique Compelec METHOD FOR PRODUCING A HIGH VOLTAGE BIPOLAR TRANSISTOR
JPH057868U (en) * 1991-07-18 1993-02-02 彌壽夫 本屋 Ventilation window opening / closing device for membrane structure

Also Published As

Publication number Publication date
JPS52129288A (en) 1977-10-29

Similar Documents

Publication Publication Date Title
JP2914213B2 (en) Semiconductor device and manufacturing method thereof
JP2746225B2 (en) Semiconductor device and manufacturing method thereof
JPH08139278A (en) Manufacture of semiconductor device
JPH06318676A (en) Manufacture of semiconductor device
JPS59978B2 (en) Manufacturing method of semiconductor integrated circuit
JPS59108325A (en) Manufacture of semiconductor device
JP2002026027A (en) Semiconductor device and its manufacturing method
JPS6252949B2 (en)
JPS5854502B2 (en) Manufacturing method of semiconductor device
JPS63255914A (en) Manufacture of semiconductor integrated circuit
KR820000015B1 (en) Transister
JP2699625B2 (en) Method for manufacturing semiconductor device
JPS6019142B2 (en) Manufacturing method of semiconductor device
JPH0555204A (en) Manufacture of semiconductor device
JPH07169951A (en) Oxide film formation method
JP2002158304A (en) Semiconductor integrated circuit device and its manufacturing method
JPS6455853A (en) Semiconductor device and manufacture thereof
JPS5877240A (en) Semiconductor device and manufacture thereof
JPS59186366A (en) Semiconductor device and manufacture thereof
JPS5911642A (en) Semiconductor integrated circuit device and manufacture thereof
JPH06101519B2 (en) Method for forming both regions for separating semiconductor elements
JPS63233566A (en) Manufacture of semiconductor device
JPS63107165A (en) Semiconductor device and manufacture thereof
JPH06216058A (en) Manufacture of semiconductor device
JPH05267321A (en) Bipolar transistor and its manufacture