JPH01290599A - 炭化ケイ素ウィスカーの製造方法 - Google Patents

炭化ケイ素ウィスカーの製造方法

Info

Publication number
JPH01290599A
JPH01290599A JP11831888A JP11831888A JPH01290599A JP H01290599 A JPH01290599 A JP H01290599A JP 11831888 A JP11831888 A JP 11831888A JP 11831888 A JP11831888 A JP 11831888A JP H01290599 A JPH01290599 A JP H01290599A
Authority
JP
Japan
Prior art keywords
silicon carbide
silicon
transition metal
hydrolysate
contg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11831888A
Other languages
English (en)
Inventor
Shigemasa Kawakami
川上 殷正
Riako Nakano
里愛子 中野
Kouichi Yatsukiyou
八京 孝一
Hiromasa Isaki
寛正 伊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP11831888A priority Critical patent/JPH01290599A/ja
Publication of JPH01290599A publication Critical patent/JPH01290599A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭化ケイ素ウィスカーの製造方法に関し、詳
しくは高品質、高収率に炭化ケイ素ウィスカーを製造す
る方法に関する。
(従来の技術およびその問題点) 炭化ケイ素ウィスカーは、比強度、比弾性、耐熱性、耐
酸化性、化学的安定性などの特性面で他の複合材料用繊
維にない優れた性能を有しており、各種金属との濡れ性
も良好であることから、セラミックス、金属、プラスチ
ックスなどの複合材料の強化材として注目されている。
しかし、炭化ケイ素ウィスカーが複合強化材として優れ
た性能を発揮するためには、ウィスカーの直径、長さな
どの形状特性以外にウィスカー中に含まれる金属不純物
の含有量や未反応シリカ分、粒状炭化ケイ素分の少ない
ことが要求される。
この様な炭化ケイ素ウィスカーの製造方法は、従来、炭
素を含む原料及びケイ素を含む原料との混合物をガス状
として高温で反応させる気相合成法と、炭素を含む原料
及びケイ素を含む原料として共に固体を用いる固相合成
法とに大別される。
しかし従来知られている気相合成法は、原料が高純度で
あること、アスペクト比の高いウィスカーが得られ易い
、という長所はあるが、反応装置の設計や生成物の回収
がやっかいで収率も低く、工業的な製造方法としては適
当でないという欠点がある。これに対し固相合成法は、
シリカと炭素を混合しこれを加熱して、おもに粉末間に
ウィスカーを生成させるので生成物の回収や連続化が容
易であるが、ウィスカーの形状が不揃いで粉状や屈曲状
の炭化ケイ素が生成し易く、また未反応シリカの除去が
困難な欠点を有している。
このため、高収率で高品質の炭化ケイ素ウィスカーを得
るために多様の製造技術が提案されている。 例えば、
特開昭58−172297 、特開昭59−21370
0、特開昭61−127700の様に原料物質(ケイ累
源、炭素源)の選定や触媒(遷移金属化合物)および溶
融剤(アルカリ金属化合物)、生成空間形成剤(NaC
I)などの第三成分を添加したり、特開昭61−174
99.特開昭61−26600の様に原料の配合方法や
充填方法および反応時の雰囲気や温度などの各種反応条
件を組合せたものが多い。
しかしながら、これらの製法は原料事情の制約や作業性
および反応の操作性の点、あるいは第三勇− 成分の添加量が多いため後処理が8爵である点などを考
慮した場合、工業的に有利な方法になり得ていない。
また、特開昭58−145700においては触媒効果を
向上させるために、ケイ酸ソーダを分解して得た多孔質
のシリカゲルに遷移金属触媒成分を含浸させる方法が提
示されているが、この様な方法でも高収率で形状の揃っ
たウィスカーを得るには触媒必要量が多く使用され、し
たがって製品中にも触媒成分が多量に取り込まれること
となり、高純度のウィスカーとするにはフッ素処理など
のやっかいな精製処理が必要である。
(問題点を解決するための手段及び作用)本発明者らは
、従来の炭化ケイ素ウィスカーの製造における上記した
問題点を解決するために鋭意研究した結果、ケイ素のア
ルコキシドに遷移金属またはその化合物を添加して加水
分解し、得られた遷移金属元素含有加水分解生成物を原
料のケイ素化合物として用いることにより、粉状や屈曲
状の炭化ケイ素を含まず直線状に優れた炭化ケイ素ウィ
スカーを高純度で得ることが出来ることを見い出し本発
明に至ったものである。
すなわち、ケイ素のアルコキシドを微量の遷移金属およ
びその化合物の共存下で加水分解し、得られた微量の遷
移金属化合物を含有する加水分解生成物と炭素源とを混
合後、水素濃度が10〜100%である不活性ガス雰囲
気中において1300〜1800℃の温度で加熱するこ
とを特徴とするものである。
本発明における上記したrXi、量の遷移金属元素を均
一に含有するケイ素のアルコキシドを加水分解した生成
物は、ケイ素のアルコキシドを加水分解する際に微量の
遷移金属およびその化合物を混合して加水分解を行うこ
とにより達成される。
この様な方法で得られた加水分解生成物は、結晶化の際
の触媒となる遷移金属元素が微細で均一にケイ素化合物
内に分散しており、単なる含浸操作に比較し微量の触媒
量で炭化ケイ素ウィスカーの結晶成長の促進化と収率の
向上に有効に作用するものである。しかも結晶化反応を
水素含有雰囲気下で行なうことにより更に効果が助長さ
れ、粒状SiC分も少なく、形状も直線性に優れ揃った
ものになる。
ウィスカーの生成は、VLS機構によって進行するもの
と推測されるが、ケイ素化合物の内部や表面に微細な状
態で均一に分散している触媒成分が加熱によって5I0
2に固溶しやすく、やがて局部的にSi、C,および触
媒成分からなる液適を生じこの液適にSiOやCI+4
. Coなどのガス状のケイ素化合物や炭素化合物が溶
解して行き、飽和濃度を超えるとSiCウィスカーとし
て析出するものと考えられる。
本発明のような触媒成分の添加方法が、VLS機構にお
ける極めて効果的な成長活性点(液適)を作りやすいこ
とと、水素の共存がガス状のケイ素化合物や炭素化合物
の生成を促進する作用と相乗し、性状の優れた炭化ケイ
素ウィスカーの生成を著しく促進するものと考えられる
この様な方法で得られたウィスカーは、添加触媒量が少
ないため製品中に残留する量も極めて少なく、また収率
が高いため未反応のSiO□をほとんど含まない。形状
的にも粒状分をほとんど含まず直線状で揃っているため
、分離分級操作を必要とせず、高品質の製品となりつる
ものである。
本発明に使用されるアルコキシドは、通常容易に入手で
きるものならば特に限定されないが、−般には脂肪族ア
ルコキシドであり、好ましくは01〜C4のアルコキシ
ド、たとえば、メトキシド、エトキシド、プロポキシド
、ブトキシドなどである。
具体的にはテトラメトキシシラン、テトラエトキシシラ
ン、テトラプロポキシシラン、テトラブトキシシランな
どが挙げられる。これらのアルコキシドは単独または二
種類以上の混合物として使用できる。そのほかに、更に
はこれらアルコキシドのダイマー、トリマー、テトラマ
ーなどのオリゴマーも好適に使用できる。
本発明の方法は、このアルコキシド類を結晶化反応にお
ける触媒成分であるFe、 Co、 Niの遷移金属お
よびその化合物の共存下で加水分解するのであるが、遷
移金属化合物としては上記金属の酸化物、塩化物、硝酸
塩、炭酸塩、硫酸塩などが用いられる。
これらの化合物のうち、触媒成分が均一に分散して反応
条件下でより効果的に作用するためにはPe。
Co、 Niの塩化物や硝酸塩などの水溶性化合物がよ
り好ましい。
加水分解の方法は、ケイ素のアルコキシド化合物を加水
分解するに要する水に触媒成分を溶簿あるいは均一に分
散させた後、ケイ素のアルコキシド化合物と混合すれば
よい。均一な加水分解反応を進行させるためには水の量
を最小量に抑え、2層に分離しない様に必要に応じてア
ルコール類を添加して均一溶液状態で行うのがよい。
また反応速度を制御するために、揮散性の塩基や酸類を
添加したり、加熱しながら加水分解反応を進行させても
よいが、局部的な反応が起こらない様に配慮する必要が
ある。
反応終了後、得られた加水分解反応生成物は乾煙し、1
50メフシ1以下に微粉砕する。
本発明を実施するに際して触媒量は、加水分解生成物中
のケイ素分に対し、金属元素量として0゜002〜0.
5重量%の割合になるように調製されるが、この含有量
が0.002重量%以下では効果は少なく、0.5重量
%を越えてももはや好ましい効果は得られず、製品の純
度を低下させることとなり好ましくない。
次にこの様にして得られた遷移金属元素を含有する加水
分解生成物と炭素源とを混合する。
この炭素源としては、この種の反応に通常使用されるカ
ーボンブラックや粉末活性炭などの炭素等が使用できる
が、アセチレンブラックやファーネスブラックなどのカ
ーボンブラックが好ましい。
炭素源の配合は、加水分解生成物中のケイ素分に対し炭
素としC/5i=3〜5の比率とし、混練機やミキサー
で混合されるが、混合物の嵩密度を0゜02〜0.2g
/ccとなるように調製するのが好ましい。
嵩密度が低い方が針状結晶を発達させるのに有効な成長
空間を形成し、直線的なウィスカーの成長を助長する。
炭素量が少ない場合は未反応のケイ素酸化物が残存し、
また多い場合は後処理の負担が増え経済的でない。
炭素源を混合した混合物は、低嵩密度の状態で炭素製容
器に充填し、水素を含む不活性ガス雰囲気下で1300
〜1800℃の温度で加熱反応させる。この際、水素濃
度は10%より低いと水素の添加効果が実質的に得られ
ず、高い程ウィスカーの生成に効果的であり、10〜1
00%の範囲とすればよい。
また、加熱温度は1300℃より低いとこの反応が実質
的に進行せず、1800℃より高いとウィスカーの径が
太くなりウィスカー同士の融着も起こすようになるため
1300〜1800℃が好ましい。
反応後に過剰の炭素が残留する場合は、空気中において
600〜800℃で炭素を燃焼除去すればよい。
このようにして得られた炭化ケイ累ウィスカーは未反応
のSiO2をほとんど含まず重金属徂も少ない高純度の
ものである。また、アスペクト比が20〜200範囲、
直径0.2〜1.0μmの直線状のウィスカーであり粒
状の炭化ケイ素をほとんど含まない高品質である。
(発明の効果) 本発明は上述したように微量の触媒成分を均一に含有し
たケイ素のアルコキシドの加水分解生成物を炭素源と混
合し、水素含有雰囲気で加熱することにより、高収率で
高品質の炭化ケイ素ウィスカーを得ることが出来る。
以下に本発明の実施例を示す。
実施例 1゜ テトラメトキシシラン152gとメタノール64gとを
混合した溶液に塩化コバル) (COCl2) 0.0
15gを溶解した水72gを投入し反応させ、透明な加
水分解生成物を得た。
得られた加水分解生成物を乾煙し150メフシユ以下に
粉砕後、0.03g/ccのカーボンブラック40gを
加え、再度混合して嵩密度0.07g/ccの混合原料
とした。混合原料を炭素製容器に充填した後、水素ガス
濃度50%のアルゴンガス混合雰囲気下に1500℃で
2hr反応させた。次いで残留したカーボンブラックを
700℃でlhr燃焼除去した。
得られた炭化ケイ素ウィスカーは、直径0.2〜1.0
μm、アスペクト比20〜200程度の直線状のウィス
カーであり、粒状分は2%以下であった。
また、酸素濃度0.7%(S+021.3%相当)、C
C080pp 、 Fe、 Ni、 Cr、 Caなど
の他の重金属不純物量は50ppm以下であった。
実施例 2゜ 塩化コバルトの量と結晶化反応の際の水素濃度を変えた
以外は実施例1と同様の方法で炭化ケイ素ウィスカーの
製造を行ない、第1表に示す結果を得た。
第1表 リケイ素分に対するCoの元素量(重量%)いずれの生
成物もアスベスト比20〜200.直径0.2〜1.0
μmの直線状のウィスカーであった。
また、Co以外の重金属不純物量は僅か50ppm以下
であった。
実施例3゜ 塩化コバルトの代わりに塩化鉄(PeC13) 0.0
19g(ケイ素分に対するFe元素fio、 024重
量%)を用いる以外は実施例1と同様の方法で炭化ケイ
素ウィスカーを合成した。
得られた炭化ケイ素ウィスカーは、直径0.2〜1.0
μm、アスペクト比20〜200程度の直線状のウィス
カーであり、粒粉秋分は2%以下であった。
また、酸素濃度1.0% (31021,9%相当)、
FFeloopp、 Co、 Ni、 Cr、 Caな
どの他の重金属不純物量は僅か5oppm以下であった
実施例4゜ 塩化コバルトに替えて塩化ニッケル(NiC1□)0.
015g (ケイ素分に対するNi元素量0.024重
量%)を用いる以外は実施例1と同様の方法で炭化ケイ
素ウィスカーの製造を行なった。
得られた炭化ケイ素ウィスカーは、アスペクト比20〜
200.直径0.2〜1.0μmの直線状のウィスカー
であり、粒状の炭化ケイ素は2%以下であった。また、
酸素濃度1.2%(SiO22,2%相当)。
Ni、110ppm 、 Co、 Fe、 Cr、 C
aなど他の重金属不純物量は僅かに50ppm以下であ
った。
比較例 1゜ 実施例1と同様な方法で加水分解生成物と炭素源との混
合原料を調製したのち、結晶化反応の際のガス雰囲気を
水素を全く含有しないアルゴンガスで炭化ケイ素ウィス
カーの製造を行なった。
得られた炭化ケイ素ウィスカー中の粒状の炭化ケイ素は
30%と多かった。また、未反応の5in2も5%含有
していた。
比較例 2゜ 塩化コバルトを用いない以外は実施例1と同様な方法で
炭化ケイ素ウィスカーの製造を行なった。
得られた炭化ケイ素ウィスカーには未反応の5I02を
4%含有し粒状の炭化ケイ素は35%と多かった。
比較例 36 150 hシ1以下のシリカゲル60gを塩化コバルト
(COCl2) 0.15gを含む水溶液に浸漬し、充
分に浸透したのち加熱乾繰し、ケイ素置に対するCO元
素量0.24重量%のシリカゲルを調製した。
上記シリカゲルに実施例1で使用したカーボンブラック
50gを混合し、これを実施例1と同様の結晶化条件で
炭化ケイ素ウィスカーの製造を行なった。
得られた炭化ケイ素ウィスカー中には、未反応の5I0
2が10%もあり、粒粉成分の炭化ケイ素も30%と多
かった。
特許出願人 三菱瓦斯化学株式会社 代理人(9070)弁理士 小堀貞文 手続補正書(自発) 昭和63年7月25日

Claims (3)

    【特許請求の範囲】
  1. (1)ケイ素のアルコキシドに遷移金属またはその化合
    物を添加して加水分解し、得られた遷移金属元素含有加
    水分解生成物と炭素源とを混合後、水素を含む不活性ガ
    ス雰囲気中において加熱処理することを特徴とする炭化
    ケイ素ウィスカーの製造方法。
  2. (2)遷移金属ならびに遷移金属化合物が、Fe、Co
    、Ni、から選択され、加水分解生成物中のケイ素分に
    対し遷移金属元素の量とし0.002〜0.5重量%に
    なるように調製する特許請求の範囲第1項記載の炭化ケ
    イ素ウィスカーの製造方法。
  3. (3)水素を含む不活性ガスが、水素濃度で10〜10
    0%であることを特徴とする特許請求の範囲第1項記載
    の炭化ケイ素ウィスカーの製造方法。
JP11831888A 1988-05-17 1988-05-17 炭化ケイ素ウィスカーの製造方法 Pending JPH01290599A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11831888A JPH01290599A (ja) 1988-05-17 1988-05-17 炭化ケイ素ウィスカーの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11831888A JPH01290599A (ja) 1988-05-17 1988-05-17 炭化ケイ素ウィスカーの製造方法

Publications (1)

Publication Number Publication Date
JPH01290599A true JPH01290599A (ja) 1989-11-22

Family

ID=14733704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11831888A Pending JPH01290599A (ja) 1988-05-17 1988-05-17 炭化ケイ素ウィスカーの製造方法

Country Status (1)

Country Link
JP (1) JPH01290599A (ja)

Similar Documents

Publication Publication Date Title
US4849196A (en) Process for producing silicon carbide whiskers
US5221526A (en) Production of silicon carbide whiskers using a seeding component to determine shape and size of whiskers
JPH01290599A (ja) 炭化ケイ素ウィスカーの製造方法
JPS6122000A (ja) 炭化珪素ウイスカ−の製造法
JPH0476359B2 (ja)
JPH01308898A (ja) 窒化アルミニウムウィスカーの製造法
JPH01301596A (ja) 窒化ケイ素ウィスカーの製造法
JP6017482B2 (ja) 水素化クロロシランの製造方法および水素化クロロシラン製造用触媒
JPH01290600A (ja) 炭化ケイ素ウィスカーの製造法
JPS60141698A (ja) 炭化珪素ウイスカ−の製造方法
JPH0791157B2 (ja) SiCウイスカーの製造方法
JPS5945640B2 (ja) SiCウイスカ−の製造方法
JP6344052B2 (ja) アンモニア合成触媒およびアンモニア合成方法
JPH03353B2 (ja)
JPH03232800A (ja) 炭化珪素ウィスカーの製造方法
JPS6126600A (ja) β型炭化ケイ素ウイスカ−の製造方法
JPH0676609B2 (ja) 銅微粉の製造方法
JPH0776159B2 (ja) 炭化珪素ウィスカーの製造方法
JPH01301595A (ja) 窒化ケイ素ウィスカーの製造法
JP2604753B2 (ja) 炭化ケイ素ウイスカーの製造方法
JPH05330996A (ja) 酸化チタン系ウイスカーの製造方法
JPH0693517A (ja) 異形繊維状SiCとその製造方法
JPH0353280B2 (ja)
JPS63260899A (ja) 炭化珪素ウイスカーの製法
JPH0274598A (ja) 窒化珪素ウイスカーの製造方法