JPH0128809B2 - - Google Patents

Info

Publication number
JPH0128809B2
JPH0128809B2 JP57195105A JP19510582A JPH0128809B2 JP H0128809 B2 JPH0128809 B2 JP H0128809B2 JP 57195105 A JP57195105 A JP 57195105A JP 19510582 A JP19510582 A JP 19510582A JP H0128809 B2 JPH0128809 B2 JP H0128809B2
Authority
JP
Japan
Prior art keywords
laser
carbides
speed
hardness
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57195105A
Other languages
Japanese (ja)
Other versions
JPS5983718A (en
Inventor
Yoshio Ashida
Juichi Seki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19510582A priority Critical patent/JPS5983718A/en
Publication of JPS5983718A publication Critical patent/JPS5983718A/en
Publication of JPH0128809B2 publication Critical patent/JPH0128809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、高速度鋼の特性殊に切削性能を改善
する為の表面処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface treatment method for improving the properties of high-speed steel, particularly its cutting performance.

一般の高速度鋼中にはW,Mo,Cr,V等の合
金元素からなる1次炭化物が多量含まれており
(通常焼入状態で10重量%前後)、切削性能の向上
に多大な影響を与えている。そして切削性向上に
関する研究は上記1次炭化物の形態に着目したも
のが多く、基本的には下記2つの流れに分けるこ
とができる。
General high-speed steel contains a large amount of primary carbides made of alloying elements such as W, Mo, Cr, and V (around 10% by weight in the normal quenched state), which has a great effect on improving cutting performance. is giving. Many studies on improving machinability have focused on the form of the primary carbide described above, and can basically be divided into the following two streams.

(1) 1次炭化物量の増加 Mo,W,V等の炭化物生成元素を、それに見
合う量のCと共に多量添加し、1次炭化物量を増
加させることによつて耐摩耗性を高めようとする
ものであり、硬質のMC型炭化物を形成するVの
効果が最も大きいとされている。そしてJIS規格
では1968年に高C−高V系のSKH53、SKH54、
SKH57等が追加され、その後も更に合金元素量
を増加或いは調整したものが開発されつつある。
しかし何れにしても、1次炭化物を増加させたも
のは偏析が生じ易く、又角状の粗大炭化物も増加
して靭性が極端に劣化するという問題があり、更
に合金元素量が多く価格が高騰するという事情も
あつて、現在のところ特殊な用途(難削材の加
工)に使用されているにすぎない。
(1) Increasing the amount of primary carbides Adding large amounts of carbide-forming elements such as Mo, W, and V along with a corresponding amount of C to increase the amount of primary carbides to improve wear resistance. It is said that V has the greatest effect in forming hard MC type carbides. In 1968, according to the JIS standard, high C-high V series SKH53, SKH54,
SKH57 etc. were added, and after that, products with further increased or adjusted amounts of alloying elements are being developed.
However, in any case, products with increased primary carbides tend to cause segregation, and angular coarse carbides also increase, resulting in an extreme deterioration of toughness.Furthermore, the amount of alloying elements is large, resulting in a rise in price. For this reason, it is currently only used for special purposes (machining difficult-to-cut materials).

(2) 1次炭化物の偏析の軽減及び微細化 高速度鋼の切削性能を向上させるに当つては、
耐摩耗性の他靭性も改善する必要がある。特に高
V系高速度鋼の様に1次炭化物を多く含有するも
のでは、靭性の改善が特に重要となり、その為に
は1次炭化物の偏析を軽減すると共に、その結晶
を微細化するのが有効である。こうした基本思想
に沿う代表的な改善策としてESR法と粉末冶金
法が挙げられる。しかし前者のESR法では、1
次炭化物の偏析は相当抑制されるものの炭化物粒
度は粗大化する傾向があり、又元々炭化物の分布
が均一な小物部品には効果が少なく、且つ製造工
程が複雑であるので価格も高騰する。また後者の
粉末冶金法の場合は、1次炭化物の偏析がなく且
つ粒子も微細化されるものでは靭性は相当改善さ
れるものの、通常の溶解材と同成分では耐摩耗性
が劣化する傾向があり、しかも製造工程が複雑で
製品コストが高くなる。
(2) Reduction of segregation and refinement of primary carbides In order to improve the cutting performance of high-speed steel,
In addition to wear resistance, it is also necessary to improve toughness. In particular, for steels containing a large amount of primary carbides, such as high-V high-speed steels, improving toughness is particularly important, and for this purpose, it is necessary to reduce the segregation of primary carbides and refine the crystals. It is valid. The ESR method and the powder metallurgy method are typical improvement measures that follow this basic idea. However, in the former ESR method, 1
Although the segregation of secondary carbides is considerably suppressed, the carbide grain size tends to become coarser, and it is less effective for small parts that originally have a uniform distribution of carbides, and the manufacturing process is complicated, so the price rises. In addition, in the case of the latter powder metallurgy method, if there is no segregation of primary carbides and the particles are made finer, toughness can be considerably improved, but if the composition is the same as that of ordinary melted materials, wear resistance tends to deteriorate. However, the manufacturing process is complicated and the product cost is high.

この様に従来法では、高速度鋼の耐摩耗性を高
めようとすると靭性が犠性となり、靭性を改善し
ようとすると経済性に問題がでてくる。従つて靭
性を劣化させることなく耐摩耗性を高めることが
でき、しかも容易且つ廉価に生産し得る様な技術
の開発が待たれている。
As described above, in the conventional method, when trying to improve the wear resistance of high-speed steel, toughness is sacrificed, and when trying to improve toughness, economical problems arise. Therefore, there is a need for the development of a technology that can increase wear resistance without deteriorating toughness and that can be produced easily and at low cost.

本発明者等はこうした状況を踏まえ、合金成分
量の調整だけでは本質的な改善を図ることが困難
であると考え、成形後の表面処理法を工夫するこ
とによつて表面特性を改善すべく鋭意研究を進め
てきた。本発明はかかる研究の結果完成されたも
のであつて、その構成は、焼入れ処理した高速度
鋼の表面にレーザービームを、吸収エネルギー密
度2000J/cm2以上、ビームと被処理物との相対移
動速度(以下ビーム移動速度という)2〜5m/
分以上で照射して鋼表面を溶融し、表面層の1次
炭化物をマトリツクス中に固溶せしめ、その後焼
戻し処理することによつて固溶した炭化物を微細
析出させるところに要旨が存在する。
Considering these circumstances, the present inventors believed that it would be difficult to achieve essential improvements only by adjusting the amount of alloy components, and therefore aimed to improve the surface properties by devising a post-forming surface treatment method. We have been conducting intensive research. The present invention was completed as a result of such research, and its configuration consists of a laser beam applied to the surface of hardened high-speed steel, an absorbed energy density of 2000 J/cm 2 or more, and a relative movement between the beam and the workpiece. Speed (hereinafter referred to as beam movement speed) 2 to 5 m/
The gist is that the steel surface is melted by irradiation for more than 10 minutes, the primary carbides in the surface layer are dissolved in the matrix, and then the solid-dissolved carbides are finely precipitated by tempering.

本発明では高速度鋼を一且焼入れ処理した後、
その表面に高エネルギー密度のレーザービームを
特定速度以上の移動速度で照射させることによつ
て表面の1次炭化物をマトリツクス中に固溶さ
せ、靭性に悪影響を及ぼす1次炭化物を殆んど含
まない表面層を形成させると共に、その後の焼戻
しによつて固溶した炭化物を微細析出させ、2次
硬化量を大幅に増大させることによつて耐摩耗
性、ひいては切削性能の向上を図つたものであ
る。
In the present invention, after the high-speed steel is once quenched,
By irradiating the surface with a high-energy-density laser beam at a moving speed higher than a certain speed, the primary carbide on the surface is dissolved in the matrix, and it contains almost no primary carbide that has a negative effect on toughness. In addition to forming a surface layer, the solid-dissolved carbide is finely precipitated by subsequent tempering, and the amount of secondary hardening is greatly increased, thereby improving wear resistance and ultimately cutting performance. .

以下実験経過を追つて本発明の構成及び作用効
果を明確にしていく。
The structure and effects of the present invention will be clarified below as the experiment progresses.

一般にレーザーは非常に高いエネルギー密度を
有しており、材料表面に局部的な急熱急冷を与え
ることができる。特に表面のみを溶融させること
によつて得られる急冷凝固層の組織は、通常の熱
処理組織に比べて1次炭化物の形態、合金元素の
固溶析出状態、結晶粒径等の点でかなりの違いが
期待され、硬度をはじめ機械的性質を大幅に高め
る可能性がある。そこでまず高速度鋼として
SKH9の焼入れ処理材を選択し、下記の条件でレ
ーザービーム照射処理を行つた場合のレーザー照
射部とその影響を受けていない母材部分との内部
組織を光学顕微鏡により比較した。
Lasers generally have very high energy density and can locally heat and cool the surface of a material. In particular, the structure of the rapidly solidified layer obtained by melting only the surface is significantly different from the normal heat-treated structure in terms of the morphology of primary carbides, solid solution precipitation state of alloying elements, crystal grain size, etc. is expected to have the potential to significantly improve mechanical properties including hardness. Therefore, first of all, as high-speed steel,
A hardened material of SKH9 was selected, and the internal structure of the laser beam irradiation area and the unaffected base material area were compared using an optical microscope when laser beam irradiation treatment was performed under the following conditions.

〔照射条件〕[Irradiation conditions]

熱 源:CO2レーザー 出 力:3KW〜5KW エネルギー密度:2300〜4300J/cm2 ビーム移動速度:5m/秒 冷 却:自然冷却 その結果は第1図(レーザー照射部の図面代用
顕微鏡写真)、及び第2図(母材部の図面代用顕
微鏡写真)に示す通りであり、通常の熱処理材
(母材:第2図)では多く認められる1次炭化物
が、レーザー照射部(第1図)では完全に消滅し
ており、レーザー照射により1次炭化物がマトリ
ツクス中に固溶し極めて均一な結晶組織が得られ
ている。
Heat source: CO 2 laser output: 3KW to 5KW Energy density: 2300 to 4300J/cm 2 Beam movement speed: 5m/sec Cooling: Natural cooling The results are shown in Figure 1 (a photomicrograph in place of a drawing of the laser irradiation area). As shown in Fig. 2 (micrograph substituted for drawing of the base metal), primary carbides, which are often observed in the normal heat-treated material (base material: Fig. 2), are found in the laser irradiated part (Fig. 1). It has completely disappeared, and the primary carbide is dissolved in the matrix by laser irradiation, resulting in an extremely uniform crystal structure.

またこのレーザー照射処理材について焼戻し処
理温度と2次硬化の関係を調べたところ、第3図
の結果が得られた。この図よりレーザー照射の影
響を受けていない母材部分では、焼戻し温度を上
げるにつれて硬度は低下し、特に焼戻し温度が約
600℃を越えると硬度は急激に低下する。これに
対しレーザー照射部では異質の傾向が見られ、
500〜600℃の焼戻しによつて急激な2次硬化を生
じ、最終製品表層部(レーザー照射部)の焼戻し
硬さはHv1100まで上昇し、焼戻し軟化抵抗も優
れていることが確認された。又第4図は、レーザ
ービーム出力を3KW又は5KWとし焼戻し温度を
550℃に設定した他は上記と同様の処理を行い、
表面からの距離と硬度との関係を調べた実験グラ
フである。この図より、レーザー出力を3KWと
するとレーザー照射面から約700μm、5KWとす
る約1200μmの深さに亘つて表面硬化層が得られ
ており、レーザー出力を高めるにつれて2次硬化
層を深くすることができる。しかし硬化層の硬度
はほぼHv1100で一定値を示しており、硬度に与
えるレーザー出力の影響は殆んど認められない。
Further, when the relationship between the tempering temperature and the secondary hardening of this laser irradiation treated material was investigated, the results shown in FIG. 3 were obtained. This figure shows that in the part of the base material that is not affected by laser irradiation, the hardness decreases as the tempering temperature increases, especially when the tempering temperature is about
When the temperature exceeds 600℃, the hardness decreases rapidly. On the other hand, a different tendency was observed in the laser irradiated area.
Tempering at 500 to 600°C caused rapid secondary hardening, and the tempering hardness of the final product surface layer (laser irradiation area) increased to Hv1100, and it was confirmed that the tempering softening resistance was also excellent. Figure 4 shows the tempering temperature when the laser beam output is 3KW or 5KW.
The same process as above was performed except that the temperature was set at 550℃.
This is an experimental graph that investigated the relationship between distance from the surface and hardness. From this figure, a surface hardening layer is obtained over a depth of about 700 μm from the laser irradiated surface when the laser output is 3KW, and about 1200 μm when the laser power is 5KW, and as the laser power is increased, the secondary hardening layer becomes deeper. Can be done. However, the hardness of the hardened layer shows a constant value of approximately Hv1100, and almost no influence of laser output on hardness is observed.

第5図はレーザー照射後550℃で1時間焼入れ
を行つた高切削鋼について、表層部硬化層(レー
ザー処理部)と母材(通常熱処理部)との耐摩耗
性を比較した実験グラフである。尚試験条件は下
記の通りとした。
Figure 5 is an experimental graph comparing the wear resistance of the hardened surface layer (laser treated area) and base metal (normally heat treated area) for high cutting steel that was hardened at 550℃ for 1 hour after laser irradiation. . The test conditions were as follows.

〔試験条件〕〔Test conditions〕

試験法:大越式摩耗試験 相手材:SUJ2,1.5mm巾 ×30mm径 (HRC=
60) 摩擦距離:400m 荷 重:3.3Kg この図からも明らかな様に、レーザー照射によ
る表面硬化層は特に高速摩耗域で優れた耐摩耗性
を示した。
Test method: Okoshi type wear test Compatible material: SUJ2, 1.5mm width x 30mm diameter (H R C =
60) Friction distance: 400m Load: 3.3Kg As is clear from this figure, the surface hardening layer created by laser irradiation showed excellent wear resistance, especially in the high-speed wear region.

第6図は本発明のレーザー照射材と通常の熱処
理材を用いて作製した切削具を使用し、下記の条
件で連続切削試験を行つた実験グラフである。
FIG. 6 is an experimental graph obtained by conducting a continuous cutting test under the following conditions using a cutting tool made using the laser irradiated material of the present invention and a conventional heat-treated material.

〔切削条件〕[Cutting conditions]

バイト取付角:0−15−6−6−15−15−
R0.4 突出量:34mm 切込量:1.5mm 送 り:0.2mm 被削材:SNCM8(HRC32) 潤 滑:なし 寿命判定:完全寿命 又第7図は同様の切削条件(但し被削材は90゜
毎に巾10mmの溝付けを付したものとし、寿命判定
はVBmax=0.6mmとした)で行つた断続切削試験
結果を示したものである。
Bit installation angle: 0-15-6-6-15-15-
R0.4 Overhang: 34mm Depth of cut: 1.5mm Feed: 0.2mm Work material: SNCM8 (H R C32) Lubrication: None Life judgment: Complete life Figure 7 shows similar cutting conditions (however, the workpiece The material was grooved with a width of 10 mm at every 90° angle, and the life judgment was performed at V B max = 0.6 mm).

第6,7図からも明らかな様に、本発明法に従
つてレーザー照射及び焼戻し処理を行つたもの
は、従来の熱処理材に比べて優れた切削性を有し
ている。殊に高度の靭性が要求される断続切削に
おいても優れた性能を有していることが分かる。
As is clear from FIGS. 6 and 7, the material subjected to laser irradiation and tempering according to the method of the present invention has superior machinability compared to conventional heat-treated materials. It can be seen that it has excellent performance especially in interrupted cutting where a high degree of toughness is required.

この様に本発明では、焼入れ処理後表面にレー
ザービームを照射することによつて、表層部にお
ける粗大1次炭化物の析出をなくすと共に、その
後に行われる特定温度の焼戻し処理により2次硬
化を著しく促進せしめ、もつて硬度及び靭性の双
方を高めて切削性を大幅に改善することができ
る。しかしこうした効果はレーザービーム照射時
の吸収エネルギー密度及びビーム移動速度によつ
て相当変動する傾向があり、目的達成の為には吸
収エネルギー密度を2000J/cm2以上、ビーム移動
速度を2〜5m/分以上に設定しなければならな
い。但し吸収エネルギー密度とは次式より算出さ
れる値を言う。
As described above, in the present invention, by irradiating the surface with a laser beam after the hardening process, the precipitation of coarse primary carbides in the surface layer is eliminated, and the subsequent tempering process at a specific temperature significantly reduces the secondary hardening. This can significantly improve machinability by increasing both hardness and toughness. However, these effects tend to vary considerably depending on the absorbed energy density and beam movement speed during laser beam irradiation. Must be set to at least 1 minute. However, the absorbed energy density refers to a value calculated from the following formula.

吸収エネルギー密度(J/cm2)=出力(KW)×3.6×10
6/〔ビーム移動速度(cm/分)×ビーム径(cm)×60
(分)〕×吸収率 この様にレーザー照射条件を設定した理由は次
の通りである。即ち吸収エネルギー密度について
は、前記第5図で該密度を大きくする程硬化層を
深くすることができることを明らかにしたが、レ
ーザー照射による溶融層(即ち硬化層)の深さと
吸収エネルギー密度の関係を更に詳細に検討した
ところ、第8図に示す結果が得られた。この図か
らも明らかな様に、レーザー照射によつて表層部
に硬化層を形成する為には、吸収エネルギー密度
を少なくとも2000J/cm2以上としなければならな
いことが分かる。そしてこれ以上であれば吸収エ
ネルギー密度を大きくする程焼戻し処理後の硬化
層は深くなり切削性は向上するが、この照射効果
は約4000J/cm2で飽和状態に達し、それ以上の吸
収エネルギー密度の増大はレーザー発生装置の出
力を無為に増大するだけとなる。一方第9図は、
ビーム移動速度とレーザー処理ままの炭化物の体
積率並びにその後の焼戻し処理(550℃×1hr)を
施したときの硬さとの関係を示した実験グラフで
あり、この図より、レーザー照射による硬化促進
効果を有意に発揮させる為には、ビーム移動速度
を200cm/分以上に設定しなければならない。し
かしビーム移動速度が早過ぎる場合は、レーザー
照射部に所定の吸収エネルギー密度を与えること
ができず、満足のいく硬さの硬化層が得られなく
なる。しかも硬化層の深さが不十分になるばかり
でなく表面に凹凸ができ易くなり、仕上げ加工に
よりこの凹凸を研削除去すると硬化層が更に浅く
なるといつた問題が生じてくる。この様なところ
から、ビーム移動速度は500cm/分以下に抑えな
ければなない。
Absorbed energy density (J/cm 2 ) = Output (KW) x 3.6 x 10
6 / [Beam movement speed (cm/min) x Beam diameter (cm) x 60
(minutes)] x absorption rate The reason why the laser irradiation conditions were set in this way is as follows. That is, regarding the absorbed energy density, it was clarified in Figure 5 above that the larger the density, the deeper the hardened layer can be. When we examined this in more detail, we obtained the results shown in Figure 8. As is clear from this figure, in order to form a hardened layer on the surface layer by laser irradiation, the absorbed energy density must be at least 2000 J/cm 2 or more. If the absorbed energy density is higher than this, the hardened layer after tempering will become deeper and the machinability will improve, but this irradiation effect reaches a saturation state at about 4000 J/ cm2 , and if the absorbed energy density is higher than that, the hardened layer will become deeper and the machinability will improve. Increasing the output power of the laser generator merely increases the output power of the laser generator. On the other hand, Figure 9 shows
This is an experimental graph showing the relationship between the beam movement speed, the volume fraction of carbide as-treated by the laser, and the hardness when the subsequent tempering treatment (550°C x 1 hr) is performed. In order to make significant use of this, the beam movement speed must be set to 200cm/min or higher. However, if the beam movement speed is too fast, it will not be possible to provide a predetermined absorption energy density to the laser irradiated area, and a cured layer with satisfactory hardness will not be obtained. Moreover, not only is the depth of the hardened layer insufficient, but also the surface tends to become uneven, and when these unevenness are removed by polishing during finishing, the hardened layer becomes even shallower. For this reason, the beam movement speed must be kept below 500 cm/min.

ところで高速度鋼の表面硬度を高めるのにレー
ザービーム照射を利用する技術は特開昭55−
62119号公報にも開示されている。しかしこの技
術は、公開明細書の記載からも明らかな様に、焼
入れ・焼戻処理した高速度鋼工具の表面にレーザ
ービームを照射し急速加熱、自己冷却を行うもの
であり、本発明の様に焼入処理後のレーザー照
射によつて表層部の組織を殆んど炭化物を含まな
いものとし〔炭化物の大きさ1μm以下:第1図、
同体積率2%以下:第9図〕、且つレーザー照
射後の焼戻処理により2次硬化させて表面硬度を
飛躍的に高める、という思想は全く示されていな
い。ちなみに本発明では上記の組織を得る為に
ビーム移動速度を200〜500cm/分以上に設定する
ことが不可欠であるが、前記公開発明に示された
同移動速度は40cm/分と極めて遅く、また最終製
品の表面硬度にしても前記公開発明では高々HR
C69(Hv約1000)であるのに対し、本発明では
Hv1100程度まで高めることができる。
By the way, the technology of using laser beam irradiation to increase the surface hardness of high-speed steel was disclosed in Japanese Patent Application Laid-Open No. 1986-
It is also disclosed in Publication No. 62119. However, as is clear from the description in the published specification, this technique involves irradiating the surface of a hardened and tempered high-speed steel tool with a laser beam to rapidly heat and self-cool it, and the present invention is similar to that of the present invention. After quenching, laser irradiation is performed to make the structure of the surface layer almost free of carbides [carbide size: 1 μm or less: Fig. 1,
The same volume ratio is 2% or less: Fig. 9], and there is no idea of dramatically increasing the surface hardness by secondary hardening by tempering treatment after laser irradiation. Incidentally, in the present invention, it is essential to set the beam movement speed to 200 to 500 cm/min or more in order to obtain the above-mentioned tissue, but the same movement speed shown in the disclosed invention is extremely slow at 40 cm/min. Even if the surface hardness of the final product is determined by the disclosed invention, it is at most H R
C69 (about 1000 Hv), whereas in the present invention
It can be raised to about Hv1100.

本発明は概略以上の様に構成されており、靭性
を低下させることなく硬さを大幅に改善すること
ができ、切削性能の卓越した高速度鋼を提供し得
ることになつた。
The present invention is roughly constructed as described above, and it has become possible to provide a high-speed steel that can significantly improve hardness without reducing toughness and has excellent cutting performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1,2図は鋼材組織を示す図面代用顕微鏡写
真、第3図は焼戻処理温度と硬さの関係を示すグ
ラフ、第4図はレーザー照射面からの距離と硬さ
の関係を示すグラフ、第5図は摩擦速度と比摩耗
量の関係を示すグラフ、第6図は衝撃回数と切削
速度の関係を示すグラフ、第7図は切削速度と切
削時間を示すグラフ、第8図は吸収エネルギー密
度と溶融層(硬化層)の深さの関係を示すグラ
フ、第9図はビーム移動速度と硬さ及び炭化物の
体積率の関係を示すグラフである。
Figures 1 and 2 are micrographs that are used as drawings to show the steel structure, Figure 3 is a graph that shows the relationship between tempering temperature and hardness, and Figure 4 is a graph that shows the relationship between distance from the laser irradiation surface and hardness. , Figure 5 is a graph showing the relationship between friction speed and specific wear amount, Figure 6 is a graph showing the relationship between impact number and cutting speed, Figure 7 is a graph showing cutting speed and cutting time, and Figure 8 is absorption. FIG. 9 is a graph showing the relationship between the energy density and the depth of the molten layer (hardened layer), and FIG. 9 is a graph showing the relationship between the beam moving speed, hardness, and carbide volume fraction.

Claims (1)

【特許請求の範囲】[Claims] 1 焼入れ処理した高速度鋼の表面にレーザービ
ームを、吸収エネルギー密度2000J/cm2以上、ビ
ーム移動速度2〜5m/分で照射して鋼表面を溶
融し、表面層の1次炭化物をマトリツクス中に固
溶せしめ、その後焼戻し処理することにより固溶
した炭化物を微細析出せしめることを特徴とする
高速度鋼の表面処理方法。
1 The surface of hardened high-speed steel is irradiated with a laser beam at an absorbed energy density of 2000 J/cm 2 or more and a beam movement speed of 2 to 5 m/min to melt the steel surface and transform the primary carbide in the surface layer into a matrix. A method for surface treatment of high-speed steel, characterized by finely precipitating carbides dissolved in the solid solution by dissolving the carbides in the solid solution, and then subjecting the carbides to a tempering treatment.
JP19510582A 1982-11-05 1982-11-05 Surface treatment of high speed steel Granted JPS5983718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19510582A JPS5983718A (en) 1982-11-05 1982-11-05 Surface treatment of high speed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19510582A JPS5983718A (en) 1982-11-05 1982-11-05 Surface treatment of high speed steel

Publications (2)

Publication Number Publication Date
JPS5983718A JPS5983718A (en) 1984-05-15
JPH0128809B2 true JPH0128809B2 (en) 1989-06-06

Family

ID=16335593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19510582A Granted JPS5983718A (en) 1982-11-05 1982-11-05 Surface treatment of high speed steel

Country Status (1)

Country Link
JP (1) JPS5983718A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282803A (en) * 1986-05-28 1987-12-08 Kobe Steel Ltd High-speed steel cutting tool
DE19848025B4 (en) * 1998-10-17 2015-02-05 Oerlikon Trading Ag, Trübbach Process for the surface treatment of tools and tools with treated surface
JP2013107143A (en) * 2011-11-17 2013-06-06 Osg Corp Tool and method of manufacturing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS5562119A (en) * 1978-10-30 1980-05-10 Komatsu Ltd Heat treating method for high speed steel tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS5562119A (en) * 1978-10-30 1980-05-10 Komatsu Ltd Heat treating method for high speed steel tool

Also Published As

Publication number Publication date
JPS5983718A (en) 1984-05-15

Similar Documents

Publication Publication Date Title
Åhman Microstructure and its effect on toughness and wear resistance of laser surface melted and post heat treated high speed steel
US2249629A (en) Armored article
Amine et al. Microstructural and hardness investigation of tool steel D2 processed by laser surface melting and alloying
CN114427091B (en) High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof
JPH0128809B2 (en)
CN1155725C (en) Laser technology for treating surface of cold hard roller, nodular iron casting or gray casting
JP3091059B2 (en) How to strengthen steel
JPH09316601A (en) Cold tool steel suitable for surface treatment, die and tool for the same
JP4099742B2 (en) Tool steel with excellent weldability and machinability and mold using the same
JPS5943816A (en) Manufacture of spheroidal graphite cast iron parts
JP3508943B2 (en) Aluminum forging die steel
JPH02221304A (en) Manufacture of high speed steel tool
JP3830030B2 (en) High-hardness pre-hardened steel for cold working with excellent machinability, cold working mold using the same, and method for machining steel
JP3747982B2 (en) Manufacturing method of medium and high carbon steel sheet
JPH03165906A (en) Manufacture of roll for cold rolling
JPH0351535B2 (en)
Tiziani et al. Laser Surface Treatment by Rapid Solidification.(Retroactive Coverage)
SU833424A1 (en) Method of applying coating
JP3028645B2 (en) Surface modification method
JPH01177956A (en) Groove processing method to hard material
JP3838480B2 (en) High surface pressure resistant steel and high surface pressure resistant material with excellent machinability
JPS6320191A (en) Surface roughening method for cold rolling roll
SU1740443A1 (en) Process for heat treatment of mill rolls
JPH0137453B2 (en)
Dobrzański et al. Effect of laser treatment on changes of the surface layers properties of the hot work alloy tool steels