JPH0351535B2 - - Google Patents

Info

Publication number
JPH0351535B2
JPH0351535B2 JP11330987A JP11330987A JPH0351535B2 JP H0351535 B2 JPH0351535 B2 JP H0351535B2 JP 11330987 A JP11330987 A JP 11330987A JP 11330987 A JP11330987 A JP 11330987A JP H0351535 B2 JPH0351535 B2 JP H0351535B2
Authority
JP
Japan
Prior art keywords
cutting edge
cutting
rapidly solidified
solidified layer
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11330987A
Other languages
Japanese (ja)
Other versions
JPS63278726A (en
Inventor
Yoshio Ashida
Juichi Seki
Shigenori Kusumoto
Ryuichi Ozawa
Osamu Sakata
Yoshio Nakahara
Hideyuki Fujiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11330987A priority Critical patent/JPS63278726A/en
Publication of JPS63278726A publication Critical patent/JPS63278726A/en
Publication of JPH0351535B2 publication Critical patent/JPH0351535B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は高度の切削性能を有する高速度切削工
具の製造方法に関するものである。 本発明に係る高速度鋼とは、JISで規定されて
いる高速度鋼や、一般に粉末高速度鋼と呼ばれる
鋼種は勿論のこと、1次炭化物を含みしかも合金
炭化物の析出による焼戻し2次硬化が生じる鋼種
を含むものである。 [従来の技術] 高速度鋼は高い硬度と優れた靭性を有している
為、切削工具や金型など主として耐摩耗性を必要
とする製品の素材として利用されている。これら
切削加工や金型成形加工の分野では、作業能率及
び精度の高度化が一段と要求される傾向にあり、
この様な要求に応えるべく高速度鋼にも種々の改
良がなされている。 例えば特開昭59−83718号公報によれば、高速
度鋼表面にレーザビームを照射して表面を溶融急
冷凝固させて1次炭化物を固溶させ、次いで焼戻
すことにより2次硬化を著しく促進させて硬度及
び靭性を改善し、その結果として耐摩耗性の向上
を図るという方法が開示されている。 この様な場合のレーザビームは高いパワー密度
を得る必要上レンズ等によつて集光し、その集光
点近傍で被処理物に照射させるのが一般的であ
り、従つてこの様にして得られる急冷凝固層はそ
の幅が約2mm程度と比較的狭いのが現状である。
一方切削工具刃先は、通常何度も再研削して使用
されるものであつて、急冷凝固層の幅が上記の様
に狭いと再研削可能回数が低減する。つまり再研
削までの刃先寿命は向上するものの工具全体の寿
命の改善には必らずしもつながつておらないのが
実状である。 またレーザビーム照射後に行なわれる仕上げ加
工の際に、加工能率との関係で加工代を大きくと
る場合があるが、このとき急冷凝固層の幅が狭け
れば急冷凝固層が削り取られてなくなつてしまう
おそれがある。この為急冷凝固層の形成に当たつ
ては、刃先部又は刃先形成予定部(以下、単に刃
先部等ということがある)を極めて高い位置精度
で形成する様に細心の注意を払う必要があり作業
能率が著しく低下する。従つてこれらの不都合を
解消する為には広幅の急冷凝固層を形成するとい
うことで対処する必要がある。その方法としては
1つには第11図に示す様に高速度鋼1の表面に
レーザビーム2の照射を何本も繰り返し行ない境
界部を重複させることにより急冷凝固層3を広幅
のものとする方法がある。また他の方法としては
第12図に示す様にレーザビーム2のスポツト径
を大きくしてレーザビーム2の照射面積(溶融部
4)を広くする方法がある。 [発明が解決しようとする問題点] しかしながらこれらの方法では以下の問題を生
ずる。 まず前者の方法ではオーバラツプさせた境界部
(急冷凝固層形成済み)が熱影響を受ける為境界
部の硬度が焼戻し硬化を受けて低下するおそれが
ある。また高速度鋼の場合は急冷凝固層及びその
周囲の熱影響によつて形成される焼入れ層の硬度
がHv800以上であつて非常に高い為割れが容易に
発生するおそれがある。この様な割れはレーザビ
ーム照射前の高速度鋼の硬度には関係がなく、仮
令焼鈍材を用いたとしても発生する為、高速度鋼
にこの方法を採用することはできない。 次に後者の方法ではレーザビームのパワー密度
が低下する為走査速度を遅くすることが必要であ
り、その結果溶融層の冷却速度が遅くなるという
問題があるほか、溶融層の断面形状がビームのパ
ワー分布を反映する結果、表面の凹凸が大きくな
る他、急冷凝固層内に硬さ分布が生じるという問
題がある。 本発明はこの様な事情に鑑みてなされたもので
あつて、上記した従来技術の欠点を招くことなく
従来より広幅の急冷凝固層を形成し、しかもビー
ム照射前の熱処理条件を調節することによつて急
冷凝固層の広幅化に伴なう割れの発生を完全に抑
制する高速度鋼切削工具の製造方法を提供するも
のである。 [問題点を解決する為の手段] 本発明は第1及び第2の発明からなるものであ
り、いずれの発明も高速度鋼切削工具素材の刃先
部又は刃先形成予定部の表面に含まれるある線上
を、高エネルギー密度ビームを高速振動させなが
ら照射して該照射部の表面層を溶融させつつ前記
切削工具素材をビームの振動方向と交差する方向
に相対的に移動させることによつて前記刃先部又
は刃先形成予定部の表面に急冷凝固層を形成させ
た後、更に焼戻し加工及び仕上加工を行なうこと
を要旨とするものであるが、ビーム照射前に行な
う高速度鋼切削工具素材の焼入温度を第1の発明
においては切削工具素材の融点下130℃より低い
温度で行ない、また第2の発明においては焼入温
度は限定しないが、焼入れ後540℃〜700℃で焼戻
しを行なうこともそれぞれの発明の重要な構成要
素である。 尚ここで刃先形成予定部とはビーム照射後の仕
上げ加工又は再研削加工によつて刃先となる領域
を意味する。また高速度鋼切削工具とは、工具全
体が高速度鋼からなるものは勿論、切削に関与す
る刃先部のみが高速度鋼であるものも含まれる。 [作用] 第1図は本発明による高速度鋼切削工具の製造
方法を示す図であつて、高速度鋼1の表面にレー
ザビームや電子ビーム等の高エネルギー密度ビー
ム(以下単にビームと略称することがある)12
を高速振動つまり矢印P方向へ繰り返し高速移動
させつつ高速度鋼1の表面に照射すると同時に高
速度鋼1又はビーム12のいずれか一方を矢印Q
方向に低速で移動させることにより、あたかもビ
ームの高速移動幅に相当する細長いビームを任意
長さに亘つて照射するのと同様の効果が得られる
こととなる。その結果ビーム12の高速移動幅に
相当する範囲の高速度鋼表面を溶融させることに
よつて従来より広幅の急冷凝固層3が形成される
が、この際ビームのスポツト径を大きく形成して
照射している訳ではないのが照射ビームのパワー
密度が低下することなく、従つて従来法の第2法
で述べた様な欠点は生じない。またビーム12の
繰り返し移動は高速度で行なうものである為、繰
り返し移動によるビームオーバラツプ部は実質上
同時に照射されたこととなり、加熱・急冷・熱影
響という熱履歴を頻回にわたつて受けるという訳
ではなく、唯1回の急速溶融凝固による焼入れを
受けたのと同じ効果が得られ、従来法の第1法で
述べた様な欠点は生じない。 また本発明において使用されるビームは、高速
加熱の可能なものであればレーザビーム、電子ビ
ーム或はその他のものでもよく、その種類が限定
されるものではないが、ここでは炭酸ガスレーザ
を例にとりビーム照射条件について説明する。 レーザ照射によつて切削性能を向上させるには
冷却速度:102℃/秒で、深さ0.1mm以上の急冷凝
固層を形成することが必要であり、その為のレー
ザ照射条件は照射面内の1点が照射されている時
間(相互作用時間:T)とそのときのビーム強度
(照射エネルギー密度:W)でほぼ決定される。 SKH55(1000℃焼入材)にレーザビーム或は電
子ビームを照射してビーム強度[照射エネルギー
密度W(J/cm2)]と相互作用時間T(秒)との関
係を実験により求めたところ、T及びWの好まし
い範囲は 5×10-4秒<T<10-1秒 …(1) 2×103J/cm2<W<2×104J/cm2 …(2) であつた。そして上記(1)、(2)の範囲外においては
第2図に示す様に蒸発する、急冷凝固層深さ
が不足する、急冷凝固層内に欠陥を生じる、
冷却速度が不足する等の問題を生じ必要な特性が
得られなかつた。 また本発明の様に高速で繰り返し移動するビー
ムを照射する場合には、更に下記(3)及び(4)式を満
足する必要がある。 V/F×16.7<S …(3) F>10(Hz) …(4) ここで各記号は次の意味を表わす。 S:スポツト径(mm) F:繰り返し移動するビームの振動数(Hz) V:ビーム又は工具の高速度繰り返し方向と交
差する方向の移動速度(m/分) 上記(3)、(4)式の範囲外では高速繰り返し移動中
いつたん溶融層が凝固し、再度溶融される可能性
が生じるため、前述のオーバーラツプ法と同じく
後記の熱処理条件の如何に拘わらず割れが発生す
る恐れがあるほか、急冷凝固層内に熱影響層が発
生し、所望の効果が得られない。 なお、TおよびWは次式によつて求められる。 T=S/V×S/D×0.06(秒) …(5) W=P/D×V×6×103(J/cm2) …(6) (注:*パルス発信の場合にはそれぞれデユーテ
イをかける) ここでD:繰り返し移動するビームの振幅
(mm) P:ビーム出力(KW) を意味する。 急冷凝固層の幅は、ビームの高速繰り返し幅の
約70〜90%となるのでビームの高速繰り返し幅は
所望の急冷凝固層幅の1.1〜1.4倍となるよう設定
するのが望ましい。 一方、ビームが電子ビームである場合には、ビ
ームエネルギーの吸収率が異なるためにWに関す
る条件範囲が変化する。すなわち、その望ましい
範囲は 3×102J/cm2<W<3×103J/cm2 …(2)′ となり、他の条件範囲は同じである。 尚、レーザがYAGレーザである場合、吸収率
の関係上電子ビーム照射条件と同じになる。 以上の条件範囲であれば、あたかも高速移動幅
(振幅)に相当する細長いビームを照射するのと
ほぼおなじ効果があり、溶融層内の熱影響層の存
在しない連続した広幅急冷凝固層を形成すること
が可能であつた。ところで高速度鋼の場合、焼入
れ硬度が非常に高いため、通常の焼入れを行つた
後、このレーザ処理を行うと依然として割れが発
生するという問題がある。 次に割れを防止するための熱処理条件について
説明する。 まず、代表的な溶製高速度鋼SKH51,
SKH55、および焼結高速度鋼KHA30[Fe−1.25
%C−4.0%Cr−5.0%Mo−6.0%W−3.0%V−8.0
%Co(重量%)]を種々の温度で焼入れた後、こ
れを供試材として焼入れ温度と硬度の関係を調査
した。結果は、第1表及び第3図に示すとおりで
あつた。
[Industrial Field of Application] The present invention relates to a method for manufacturing a high-speed cutting tool having high cutting performance. The high-speed steel according to the present invention includes not only the high-speed steel specified by JIS and the steel type generally called powder high-speed steel, but also contains primary carbides and is not subject to secondary hardening during tempering due to the precipitation of alloy carbides. This includes the type of steel produced. [Prior Art] Since high-speed steel has high hardness and excellent toughness, it is used as a material for products that require wear resistance, such as cutting tools and molds. In the fields of cutting and mold forming, there is a tendency for higher work efficiency and precision to be required.
In order to meet these demands, various improvements have been made to high speed steel. For example, according to Japanese Patent Application Laid-Open No. 59-83718, the surface of high-speed steel is irradiated with a laser beam to melt and rapidly solidify the surface to form a solid solution of primary carbides, and then tempering to significantly promote secondary hardening. A method is disclosed in which the hardness and toughness are improved by increasing the hardness and the wear resistance is improved as a result. In order to obtain high power density, it is common for the laser beam in such cases to be focused using a lens, etc., and to be irradiated onto the workpiece in the vicinity of the focused point. At present, the width of the rapidly solidified layer is relatively narrow, about 2 mm.
On the other hand, the cutting tool cutting edge is normally used after being re-ground many times, and if the width of the rapidly solidified layer is as narrow as described above, the number of times that it can be re-grinded is reduced. In other words, although the life of the cutting edge until re-grinding is improved, the reality is that this does not necessarily lead to an improvement in the life of the tool as a whole. In addition, during finishing machining performed after laser beam irradiation, a large machining allowance may be required in relation to machining efficiency, but at this time, if the width of the rapidly solidified layer is narrow, the rapidly solidified layer will be scraped off and disappear. There is a risk of it getting lost. For this reason, when forming the rapidly solidified layer, it is necessary to pay close attention to form the cutting edge or the part where the cutting edge is to be formed (hereinafter simply referred to as the cutting edge) with extremely high positional accuracy. Work efficiency will be significantly reduced. Therefore, in order to eliminate these disadvantages, it is necessary to form a wide rapidly solidified layer. One method is to repeatedly irradiate the surface of high-speed steel 1 with several laser beams 2 to overlap the boundaries, thereby making the rapidly solidified layer 3 wider, as shown in FIG. There is a way. Another method, as shown in FIG. 12, is to increase the spot diameter of the laser beam 2 to widen the area irradiated with the laser beam 2 (melted area 4). [Problems to be Solved by the Invention] However, these methods cause the following problems. First, in the former method, since the overlapped boundary portion (on which a rapidly solidified layer has been formed) is affected by heat, there is a risk that the hardness of the boundary portion may be reduced due to temper hardening. Furthermore, in the case of high-speed steel, the hardness of the rapidly solidified layer and the hardened layer formed by the thermal influence around it is Hv800 or higher, which is very high, so cracks may easily occur. Such cracking has nothing to do with the hardness of the high-speed steel before laser beam irradiation, and will occur even if pre-annealed material is used, so this method cannot be applied to high-speed steel. Next, in the latter method, the power density of the laser beam decreases, so it is necessary to slow down the scanning speed, which results in the problem of slowing down the cooling rate of the molten layer, and the cross-sectional shape of the molten layer As a result of reflecting the power distribution, there is a problem in that not only the surface irregularities become large but also the hardness distribution occurs in the rapidly solidified layer. The present invention has been made in view of these circumstances, and it is possible to form a rapidly solidified layer with a wider width than before without incurring the drawbacks of the prior art described above, and to adjust the heat treatment conditions before beam irradiation. Therefore, the present invention provides a method for manufacturing a high-speed steel cutting tool that completely suppresses the occurrence of cracks due to the widening of the rapidly solidified layer. [Means for Solving the Problem] The present invention consists of the first and second inventions, both of which include a certain amount of material contained in the cutting edge portion or the surface of the cutting edge forming portion of the high-speed steel cutting tool material. By irradiating the line with a high energy density beam while vibrating at high speed and melting the surface layer of the irradiated part, the cutting tool material is relatively moved in a direction intersecting the vibration direction of the beam, thereby cutting the cutting edge. After forming a rapidly solidified layer on the surface of the part or the part where the cutting edge is to be formed, the material is further tempered and finished. In the first invention, the temperature is lower than 130°C below the melting point of the cutting tool material, and in the second invention, although the quenching temperature is not limited, tempering may be performed at 540°C to 700°C after quenching. Each is an important component of the invention. Note that the portion where the cutting edge is to be formed means the area that will become the cutting edge by finishing or re-grinding after beam irradiation. Furthermore, the term "high-speed steel cutting tool" includes not only a tool in which the entire tool is made of high-speed steel, but also a tool in which only the cutting edge part involved in cutting is made of high-speed steel. [Function] FIG. 1 is a diagram showing a method for manufacturing a high-speed steel cutting tool according to the present invention, in which a high-energy density beam (hereinafter simply referred to as a beam) such as a laser beam or an electron beam is applied to the surface of a high-speed steel 1. (sometimes) 12
The surface of the high-speed steel 1 is irradiated with high-speed vibration, that is, repeatedly moving at high speed in the direction of the arrow P, and at the same time either the high-speed steel 1 or the beam 12 is moved in the direction of the arrow Q.
By moving the beam in the direction at low speed, an effect similar to that obtained by irradiating an elongated beam over an arbitrary length corresponding to the width of the beam's high-speed movement can be obtained. As a result, by melting the high-speed steel surface in a range corresponding to the high-speed movement width of the beam 12, a rapidly solidified layer 3 that is wider than before is formed. However, the power density of the irradiation beam does not decrease, and therefore the drawbacks mentioned in the second conventional method do not occur. In addition, since the repeated movement of the beam 12 is performed at high speed, the beam overlap area due to the repeated movement is irradiated at virtually the same time, and is frequently subjected to thermal history such as heating, rapid cooling, and thermal effects. However, the same effect as quenching by rapid melting and solidification can be obtained only once, and the drawbacks mentioned in the first conventional method do not occur. Furthermore, the beam used in the present invention may be a laser beam, an electron beam, or any other beam as long as it is capable of high-speed heating, and the type thereof is not limited, but here, a carbon dioxide laser will be used as an example. The beam irradiation conditions will be explained. In order to improve cutting performance by laser irradiation, it is necessary to form a rapidly solidified layer with a depth of 0.1 mm or more at a cooling rate of 10 2 °C/sec, and the laser irradiation conditions for this are as follows: It is approximately determined by the time during which one point is irradiated (interaction time: T) and the beam intensity at that time (irradiation energy density: W). The relationship between the beam intensity [irradiation energy density W (J/cm 2 )] and the interaction time T (seconds) was determined experimentally by irradiating SKH55 (1000℃ quenched material) with a laser beam or electron beam. , T, and W are as follows: 5×10 -4 sec<T<10 -1 sec...(1) 2×10 3 J/cm 2 <W<2×10 4 J/cm 2 ...(2) Ta. Outside the ranges of (1) and (2) above, as shown in Figure 2, evaporation occurs, the depth of the rapidly solidified layer is insufficient, and defects occur in the rapidly solidified layer.
Problems such as insufficient cooling rate occurred, and necessary characteristics could not be obtained. Furthermore, when irradiating a beam that repeatedly moves at high speed as in the present invention, it is further necessary to satisfy the following equations (3) and (4). V/F×16.7<S...(3) F>10(Hz)...(4) Here, each symbol represents the following meaning. S: Spot diameter (mm) F: Frequency of the repeatedly moving beam (Hz) V: Moving speed of the beam or tool in the direction intersecting the high-speed repeating direction (m/min) Equations (3) and (4) above Outside this range, there is a possibility that the molten layer will solidify and melt again during high-speed repeated movement, so there is a risk that cracks will occur regardless of the heat treatment conditions described below, as with the overlap method described above. A heat-affected layer occurs within the rapidly solidified layer, making it impossible to obtain the desired effect. Note that T and W are determined by the following equations. T=S/V×S/D×0.06 (sec) …(5) W=P/D×V×6×10 3 (J/cm 2 ) …(6) (Note: *In case of pulse transmission (multiply the duty for each) where D: amplitude of the repeatedly moving beam (mm) P: beam output (KW). Since the width of the rapidly solidified layer is about 70 to 90% of the high speed repetition width of the beam, it is desirable to set the high speed repetition width of the beam to be 1.1 to 1.4 times the desired width of the rapidly solidified layer. On the other hand, when the beam is an electron beam, the condition range regarding W changes because the beam energy absorption rate differs. That is, the desirable range is 3×10 2 J/cm 2 <W<3×10 3 J/cm 2 (2)′, with other conditional ranges being the same. Note that when the laser is a YAG laser, the conditions are the same as those for electron beam irradiation due to absorption rate. In the above condition range, the effect is almost the same as irradiating with a long and narrow beam corresponding to the high-speed movement width (amplitude), and a continuous wide rapidly solidified layer is formed without a heat-affected layer within the molten layer. It was possible. However, in the case of high-speed steel, the quenched hardness is very high, so there is a problem that cracks still occur if this laser treatment is performed after normal quenching. Next, heat treatment conditions for preventing cracking will be explained. First, the representative high-speed steel SKH51,
SKH55, and sintered high-speed steel KHA30 [Fe−1.25
%C-4.0%Cr-5.0%Mo-6.0%W-3.0%V-8.0
%Co (wt%)] was quenched at various temperatures and then used as test materials to investigate the relationship between quenching temperature and hardness. The results were as shown in Table 1 and Figure 3.

【表】 次に焼入れ処理を行つた高速度鋼工具素材の刃
先形成予定部に下記照射条件で炭酸ガスレーザを
照射した。 供試材 :SKH51,SKH55,KHA30 素材形状 :30高さ×50幅×150長さ レーザ出力(P) :3KW スポツト径(S) :約1.5mm 高速繰り返し幅(振幅;D) :10mm 繰り返し振動数(S) :3600Hz 素材移動速度(V) :0.3m/分 得られた工具素材の焼入温度と割れ発生状況と
の関係を調査した。結果を第4図に示す。 なお、割れ発生状況の判定尺度としては下記の
5段階評価を採用した。 1:割れ発生せず 2:目視では識別できないが、20倍拡大によつて
視認可能な微細な割れが発生した。 3:目視可能な割れの総延長が50mm未満あるいは
割れ起点数が4点以下。 4:目視可能な割れの総延長が50mm以上100mm以
下あるいは割れ起点数が5点以上10点未満 5:目視可能な割れの総延長が100mm以上あるい
は割れ起点数が10点以上 第4図から明らかなように、レーザ照射前の素
材焼入温度が低下するにつれ、割れ発生傾向は減
少し、融点下130℃以下の温度で焼入処理をおこ
なえば、割れの発生は防止できることがわかつ
た。なお、割れ発生状況と焼入硬度の関係を調査
したところ第5図に示す結果を得た。すなわち、
焼入硬度の点からいえば、従来の焼入硬度より
HRC5程度以上低下させれば割れが発生しないこ
とが判明した。つまり、従来融点下30〜50℃で行
われていた焼入れをそれより低い融点下130℃以
下の温度で行うことにより、切削工具母材の硬度
は従来のものよりHRC2〜3以上低下し、その結
果塑性変形能が大きくなる。従つて、刃先部等に
ビームを照射した場合に生ずる照射部と母材部の
間の引つ張り応力が塑性変形によつて緩和され、
このために割れが減少するものと思われる。 なお、切削工具の母材は切削を直接行う部分で
はないから、切削に直接関与する刃先部に要求さ
れる程の高い硬度が必要とされるものではなく、
刃先部を保持するに足る強度を備えていればよ
い。この観点からは通常HRC40程度の硬さがあれ
ばよいとされる。 従つて、第3図から明らかなように、焼入温度
が仮に800℃まで低下してもHRC40程度の焼入硬
度は充分にでるため、仮令焼入温度を融点下130
℃以上低下させたとしても母材に要求される硬度
(>HRC40)は十分得られる。 次に割れを防止するためのもう1つの方法であ
る焼入温度を限定せず焼戻温度を限定する場合に
ついて説明する。 前述の高速度鋼素材を1200℃で焼入れ後、種々
の温度で焼戻し、焼戻温度と硬度の関係をもとめ
た。結果を第6図に示す。 第6図より明らかな様に焼戻温度が500℃を超
すと硬度が低下し始めることがわかつた。更に、
前述と同様のレーザ処理を行い、割れ発生と焼戻
温度の関係を調査したところ第7図の結果を得
た。 第7図より明らかな通り、焼戻温度が上昇する
につれ割れ発生傾向は低下し、540℃以上で焼戻
しを行うことにより、焼入温度が融点下130℃以
上であつても割れが完全に抑制されることが判明
した。そのさい、焼戻温度が、540〜560℃の範囲
内においては硬度が焼入れままとほぼおなじかむ
しろ高めであるにもかかわらず、割れが抑制され
るのは焼戻しに伴う延性、靭性の向上によるもの
と思われる。また焼戻しを行うことにより割れを
防止する場合には、焼戻温度を700℃以下にする
必要がある。この温度以上で焼戻しを行うと母材
に切削工具として必要な強度を付与できない。 以上の条件で急冷凝固層を形成したあと、さら
に焼戻しおよび仕上げ加工することにより切削工
具が製造されるが、その際も焼戻温度は従来と同
じく500〜600℃で1回または複数回行われる。ま
たいかに急冷凝固層の幅が広いといつても仕上げ
加工の際には、刃先に急冷凝固層が存在するよう
に留意する必要があるのはいうまでもない。 また本発明による切削工具の製造工程としては
予め刃切り加工したあとビームを照射し、その後
焼戻し、仕上げ加工してもよく、或また刃切りし
ていない素材にビームを照射した後焼戻しし刃切
り加工を行なつてもよい。 尚以上の試験では全て刃切りしていない角状の
供試材にレーザを照射し急冷凝固層を形成させて
いるが、これとは別に工具形状に刃切り加工した
素材に急冷凝固層を形成する試験も行つたとこ
ろ、いずれも割れ発生傾向は角削り材より良好で
あり、角削り材で割れの発生しない条件では刃切
り加工したものでも割れが発生しないことが確認
された。 [実施例] 本発明に係る製造方法により切削工具(ブロー
チ)を製造して、切削試験を行なつた。 実施例 1 第8図A〜Fに製造方法を示す。なお第8図E
は、同BのE−E′拡大断面図、同Fは同CのF−
F′拡大断面図である。 (イ) SKH55製高速度鋼焼鈍材を粗削り後この高
速度鋼切削工具素材1を1100℃で焼入れし、表
面研削、寸法調整しその刃先形成予定部に下記
条件でビーム2を照射し[第8図A]、幅約7
mm、深さ約0.8mmの急冷凝固層3を1.1mm間隔で
形成した。 (ロ) その後560℃×1時間×3回の焼戻しを行い、
高速度鋼ブローチ素材11とした。[第8図B] (ハ) 次に砥石5で溝切り加工を行つた。[第8図
C] (ニ) 次に刃先および逃げ面を仕上げ加工し、高速
度鋼ブローチ111を得た。[第8図D] なお、6は母材、7はすくい面、8は逃げ面で
あり、仕上げ加工後の逃げ面の幅(ランド幅)は
5.5mm、刃の間隔は11.0mm、刃数は16刃であつた。 またビーム照射条件は次の通りとした。 ビーム種類 :炭酸ガスレーザビーム 出 力 :2.9Kw スポツト径 :1.5mm 高速繰り返し幅 :8.5mm 高速繰り返し方向 :刃先線と交差する方向 繰り返し振動数 :3600Hz 工具移動速度 :0.3mm/分 工具移動方向 :刃先と平行 急冷凝固層の中心
:予定刃先線から2.4±0.8mm内部狙い 急冷凝固層の間隔 :11.0mm また比較の為に従来法としてビーム照射条件の
みを下記の様に変更したブローチも製造した。 ビーム種類 :炭酸ガスレーザ 出 力 :5KW スポツト径 :2mm 工具移動速度 :2m/分 工具移動方向 :刃先と平行 急冷凝固層の中心
:予定刃先線から0.65±0.15mm内部狙い 急冷凝固層の間隔 :11.0mm この様にして得たいずれのブローチも割れの発
生は認められなかつた。 上記工程におけるビーム照射処理に要した時間
を第2表に示す。
[Table] Next, the part where the cutting edge of the hardened high-speed steel tool material was to be formed was irradiated with a carbon dioxide laser under the following irradiation conditions. Test material: SKH51, SKH55, KHA30 Material shape: 30 height x 50 width x 150 length Laser output (P): 3KW Spot diameter (S): Approx. 1.5mm High-speed repetition width (amplitude; D): 10mm Repeated vibration Number (S): 3600Hz Material movement speed (V): 0.3m/min The relationship between the quenching temperature of the obtained tool material and the occurrence of cracks was investigated. The results are shown in Figure 4. Note that the following 5-level evaluation was adopted as a criterion for determining the occurrence of cracks. 1: No cracking occurred. 2: Fine cracking occurred, which could not be visually identified but was visible under 20x magnification. 3: The total length of visible cracks is less than 50 mm or the number of crack origins is 4 or less. 4: The total length of visible cracks is 50 mm or more and 100 mm or less, or the number of crack starting points is 5 or more and less than 10 points. 5: The total length of visible cracks is 100 mm or more or the number of crack starting points is 10 or more. It is clear from Figure 4. As shown, the tendency for cracking to occur decreases as the material quenching temperature before laser irradiation decreases, and it was found that cracking can be prevented by quenching at a temperature below the melting point of 130°C. When the relationship between crack occurrence and quenching hardness was investigated, the results shown in FIG. 5 were obtained. That is,
In terms of quenching hardness, it is better than conventional quenching hardness.
It was found that cracking does not occur if the H R C5 is lowered. In other words, by performing quenching at a temperature below 130°C below the melting point, which was conventionally performed at 30 to 50°C below the melting point, the hardness of the cutting tool base material can be reduced by H R C2 to 3 or more compared to the conventional one. , as a result, the plastic deformability increases. Therefore, the tensile stress between the irradiated part and the base material, which occurs when a beam is irradiated to the cutting edge, etc., is alleviated by plastic deformation.
This is thought to reduce cracking. In addition, since the base material of the cutting tool is not the part that directly performs cutting, it does not need to have the same hardness as the cutting edge, which is directly involved in cutting.
It only needs to have enough strength to hold the cutting edge. From this point of view, it is generally considered that a hardness of about H R C40 is sufficient. Therefore, as is clear from Figure 3, even if the quenching temperature were to drop to 800°C, the quenching hardness of about H R C40 would be sufficiently achieved, so the quenching temperature should be set at 130°C below the melting point.
Even if the hardness is lowered by more than ℃, the hardness required for the base material (>H R C40) can be sufficiently obtained. Next, another method for preventing cracking, in which the tempering temperature is limited without limiting the quenching temperature, will be explained. The aforementioned high-speed steel material was quenched at 1200℃ and then tempered at various temperatures to determine the relationship between tempering temperature and hardness. The results are shown in Figure 6. As is clear from FIG. 6, it was found that when the tempering temperature exceeds 500°C, the hardness begins to decrease. Furthermore,
The same laser treatment as above was performed and the relationship between crack occurrence and tempering temperature was investigated, and the results shown in FIG. 7 were obtained. As is clear from Figure 7, the tendency for cracking to occur decreases as the tempering temperature increases, and by tempering at 540°C or higher, cracking is completely suppressed even when the quenching temperature is 130°C or higher below the melting point. It turned out that it was. At that time, when the tempering temperature is within the range of 540 to 560℃, the hardness is almost the same as that of as-quenched, or even higher, but cracking is suppressed due to the improvement in ductility and toughness that accompanies tempering. It seems to be. In addition, if cracking is to be prevented by tempering, the tempering temperature must be 700°C or lower. If tempering is performed above this temperature, the strength required for a cutting tool cannot be imparted to the base material. After forming a rapidly solidified layer under the above conditions, cutting tools are manufactured by further tempering and finishing, but the tempering temperature is the same as in the past, at 500 to 600°C once or multiple times. . It goes without saying that no matter how wide the rapidly solidified layer is, care must be taken to ensure that the rapidly solidified layer is present at the cutting edge during finishing. In addition, the manufacturing process of the cutting tool according to the present invention may include cutting the blade in advance, irradiating it with a beam, then tempering and finishing it, or irradiating the beam onto a material that has not yet been cut, tempering it, and then cutting the blade. Processing may also be performed. In all of the above tests, a laser was irradiated on a square specimen material that had not been cut with a blade to form a rapidly solidified layer, but in addition to this, a rapidly solidified layer was formed on a material that had been cut into the shape of a tool. Tests were also conducted, and it was confirmed that the tendency of cracking in all cases was better than that of square-cut materials, and that under conditions where square-cut materials would not cause cracks, even those that had been cut with a blade did not generate cracks. [Example] A cutting tool (broach) was manufactured by the manufacturing method according to the present invention, and a cutting test was conducted. Example 1 The manufacturing method is shown in FIGS. 8A to 8F. In addition, Figure 8E
is an enlarged sectional view taken along E-E′ of B, and F is an enlarged cross-sectional view of F-
F' is an enlarged sectional view. (b) After rough cutting the high-speed steel annealed material made of SKH55, this high-speed steel cutting tool material 1 is hardened at 1100℃, surface ground and the dimensions are adjusted, and the part where the cutting edge is to be formed is irradiated with beam 2 under the following conditions. 8 Figure A], width approx. 7
Rapidly solidified layers 3 with a depth of about 0.8 mm and a depth of about 0.8 mm were formed at intervals of 1.1 mm. (b) After that, tempering is performed at 560℃ x 1 hour x 3 times,
High speed steel broach material 11 was used. [Figure 8B] (c) Next, groove cutting was performed using the grindstone 5. [FIG. 8C] (d) Next, the cutting edge and flank were finished to obtain a high-speed steel broach 111. [Fig. 8D] In addition, 6 is the base material, 7 is the rake face, and 8 is the flank surface, and the width of the flank face (land width) after finishing machining is
5.5 mm, the blade spacing was 11.0 mm, and the number of blades was 16. The beam irradiation conditions were as follows. Beam type: Carbon dioxide laser beam output: 2.9Kw Spot diameter: 1.5mm High-speed repetition width: 8.5mm High-speed repetition direction: Crossing the cutting edge line Repetition frequency: 3600Hz Tool movement speed: 0.3mm/min Tool movement direction: Cutting edge Center of the rapidly solidified layer parallel to: 2.4±0.8mm from the planned cutting edge line Distance between the rapidly solidified layers: 11.0mm For comparison, we also manufactured a broach using the conventional method with only the beam irradiation conditions changed as shown below. Beam type: Carbon dioxide laser output: 5KW Spot diameter: 2mm Tool movement speed: 2m/min Tool movement direction: Parallel to the cutting edge Center of the rapidly solidified layer: 0.65±0.15mm from the planned cutting edge line Inner distance of the rapidly solidified layer: 11.0 mm No cracking was observed in any of the broaches obtained in this manner. Table 2 shows the time required for the beam irradiation treatment in the above steps.

【表】 前述の通り、従来法では急冷凝固総の幅が狭い
ためビーム照射位置の許容範囲が非常に狭かつ
た。すなわち、急冷凝固層を刃先から1.5mm以上
残そうとするとその中心線は予定刃先線から0.5
mm以上離さなければならず、又急冷凝固層の端は
むらがあるため端から0.2mm以上研削しなければ
ならないことを考えると中心線は予定刃先線から
0.8mm以下にしなければならなかつた。従つて、
照射するビームの狙い位置は、0.65±0.15mmとな
り±0.15mmの精度が必要であつた。ビームの照射
位置は、例えばレーザビームを用いる場合には、
反射鏡の僅かな動きや使用中の熱膨張によつても
大きく変わつてくるため、従来法では毎回照射位
置の測定をしなければならない。このための時間
として約90分/本を要した。また、工具素材を当
然±0.15mm以下の位置精度で固定する必要があ
り、このセツテイングおよび固定位置の確認、調
整に40分/本かかつた。 さらに、照射後の急冷凝固層の位置確認(0.65
±0.15mmに入つているかどうかおよび急冷凝固層
の幅)も拡大鏡を用いる必要があり、この時間に
90分/本を要した。その他高エネルギー密度ビー
ムの照射時間などを含めると従来法では、合計
224分を要した。 一方、本発明法では、ビーム照射位置が多少ず
れても急冷凝固層の幅が広いため急冷凝固層を十
分に残して刃切りおよび仕上げ加工できる結果、
照射位置の許容範囲±0.8mmと広かつた。(この場
合、最低でも幅5.1mmの急冷凝固層が刃先から残
る。)従つて、毎回の照射位置の確認は不要であ
り、工具素材のセツテイングおよび固定位置の確
認も15分/本、ビーム照射後の急冷凝固層の確認
も目視でよいので15分/本で充分であり、ビーム
照射時間はやや増加するものの処理に要する総時
間は40分と従来法に比べて大幅に短縮された。 尚、刃立て加工および仕上げ加工に要する時間
は特に測定していないが、急冷凝固層の幅が広い
分、作業性が改善され、時間も短縮された。また
従来の焼入温度(1200〜1220℃)で焼入れを行つ
たものと比較すると母材硬度が低い為、2倍以上
の研削送り速度での加工が可能であり、加工能率
が大幅に向上した。 次に切削性能試験結果について説明する。 (a) 刃先寿命 上記方法にて製造した本発明に係るブローチ
とさらにビーム処理していない通常の高速度鋼
ブローチ(材質:SKH55、焼入温度:1220℃、
他は同じ)を用いて、下記条件にて切削試験を
行い切削性能を比較した。切削性能は、被切削
材の表面粗度および工具の逃げ面摩耗量で判定
した。結果を第9図に示す。 第9図より明らかな通り、本発明法により製
造した工具は、従来のビーム処理を行つたもの
とほぼ同じ性能を示し、ビーム処理を行つてい
ないものに比べ被切削材の表面粗度が小さく、
一定の表面粗度に達した時の切削長さを刃先寿
命とすると約2〜3倍の寿命向上効果があつ
た。また第10図に工具の逃げ面最大摩耗量と
切削長との関係を示すが、この結果から判定し
ても一定摩耗量に達するまでの切削長さはビー
ム処理していないものの約2〜3倍となつた。 (b) 工具寿命 本発明法にて製造した工具の刃先寿命が、従
来法によるビーム処理したものと同等の刃先寿
命を示すことが確認できたので、次に再研削も
含めた全工具寿命の比較を行つた。 切削条件は前と同じで、被切削材の表面粗度
が10μmとなつた時を刃先寿命とし、すくい面
を0.4〜0.5mm再研削して再度切削試験を行い、
これを繰り返すことによつて再研削回数および
工具寿命(最終的に工具が使えなくなるまで再
研削したとき全切削長さ)を求めた。 その結果を第3表に示す。
[Table] As mentioned above, in the conventional method, the allowable range of the beam irradiation position was extremely narrow because the width of the rapid solidification was narrow. In other words, if you try to leave a rapidly solidified layer of 1.5 mm or more from the cutting edge, its center line will be 0.5 mm away from the planned cutting edge line.
Considering that the edge of the rapidly solidified layer is uneven, it must be ground at least 0.2 mm from the edge, so the center line should be separated from the planned cutting edge line by at least 0.2 mm.
It had to be 0.8mm or less. Therefore,
The target position of the irradiated beam was 0.65±0.15mm, which required an accuracy of ±0.15mm. For example, when using a laser beam, the irradiation position of the beam is as follows:
In the conventional method, the irradiation position must be measured every time, as it can vary greatly depending on the slight movement of the reflector and thermal expansion during use. This took about 90 minutes/book. In addition, it was necessary to fix the tool material with a positional accuracy of ±0.15 mm or less, and it took 40 minutes per tool to set it up, check and adjust the fixing position. Furthermore, we confirmed the position of the rapidly solidified layer after irradiation (0.65
It is necessary to use a magnifying glass to check whether the temperature is within ±0.15 mm and the width of the rapidly solidified layer.
It took 90 minutes/book. Including the irradiation time of other high energy density beams, the total
It took 224 minutes. On the other hand, in the method of the present invention, even if the beam irradiation position is slightly shifted, the width of the rapidly solidified layer is wide, so that blade cutting and finishing can be performed while leaving a sufficient amount of the rapidly solidified layer.
The allowable range of irradiation position is wide at ±0.8mm. (In this case, a rapidly solidified layer with a width of at least 5.1 mm remains from the cutting edge.) Therefore, there is no need to check the irradiation position each time, and the setting and fixing position of the tool material can also be checked for 15 minutes/beam irradiation. Since the rapidly solidified layer can be checked visually afterward, 15 minutes per piece is sufficient, and although the beam irradiation time increases slightly, the total time required for processing is 40 minutes, which is significantly shorter than the conventional method. Although the time required for sharpening and finishing was not particularly measured, the workability was improved and the time was shortened due to the wide width of the rapidly solidified layer. In addition, compared to conventional quenching at quenching temperatures (1200-1220°C), the base material hardness is lower, making it possible to process at more than twice the grinding feed rate, greatly improving machining efficiency. . Next, the cutting performance test results will be explained. (a) Cutting edge life The broach according to the present invention manufactured by the above method and the ordinary high-speed steel broach without beam treatment (material: SKH55, quenching temperature: 1220℃,
A cutting test was conducted under the following conditions to compare the cutting performance. Cutting performance was determined by the surface roughness of the material to be cut and the amount of flank wear of the tool. The results are shown in Figure 9. As is clear from Fig. 9, the tool manufactured by the method of the present invention shows almost the same performance as the tool with conventional beam treatment, and the surface roughness of the workpiece is lower than that of the tool without beam treatment. small,
If the cutting length when a certain surface roughness was reached was defined as the life of the cutting edge, there was an effect of improving the life by about 2 to 3 times. Furthermore, Fig. 10 shows the relationship between the maximum amount of wear on the flank surface of the tool and the cutting length. Judging from this result, the cutting length until a certain amount of wear is reached is approximately 2 to 3 mm even without beam treatment. It has doubled. (b) Tool life Since it was confirmed that the life of the cutting edge of the tool manufactured by the method of the present invention is equivalent to that of the tool processed by the conventional beam treatment method, we next investigated the total tool life including re-grinding. I made a comparison. The cutting conditions were the same as before, the cutting edge life was defined as when the surface roughness of the material to be cut reached 10 μm, the rake face was reground by 0.4 to 0.5 mm, and the cutting test was performed again.
By repeating this process, the number of times of re-grinding and the tool life (total cutting length when the tool was re-grinded until it finally became unusable) were determined. The results are shown in Table 3.

【表】 従来法でビーム処理したものは4回再研削を
行うと急激に寿命が減少し異常摩耗が発生する
のに対し(可能な再研削回数は3回)、本発明
法で製造したものは、ビーム処理していないも
のと同等の8回の再研削が可能であり工具寿命
は大幅に向上した。 なお、再研削はランド幅(逃げ面の幅)が狭
くなつたため8回で中断した。 実施例 2 次に実施例1の場合と同様に本発明例と比較例
のブローチを以下の工程で製造し実施例1の場合
と同様の試験を行つた。最終的な工具形状は、実
施例1と同じとした。 イ) SKH55製高速度鋼焼鈍材を前記工具形状
に若干の加工代を残して、粗加工および刃立て
加工し、これを高速度鋼切削工具素材とした。 ロ) この素材を1100℃で焼入れし、表面研削、
寸法調整したあと刃先形成予定部に下記条件で
ビーム処理を行つた。ビーム処理前の(粗加工
状態)のランド幅は本発明法で製造する場合は
7.5mm、従来法で処理する場合は6.5mmとした。 ハ) その後、560℃×1.5時間×3回の焼戻しを
行い、仕上げ加工および刃先調整してブローチ
製品とした。 尚上記工程における本発明例と比較例における
ビーム照射条件はそれぞれ次の通りとした。 本発明例のビーム照射条件 ビーム種類 :炭酸ガスレーザ 出 力 :3Kw スポツト径 :1.5mm 高速繰り返し幅 :8.5mm 高速繰り返し方向 :刃先線と交差する方向 繰り返し振動数 :3600Hz 工具移動速度 :0.3mm/分 工具移動方向 :刃先と平行 急冷凝固層の中心 :ランド幅の中心±1.0mm狙い 急冷凝固層の間隔 :11.0mm 比較例のビーム照射条件 ビーム種類 :炭酸ガスレーザ 出 力 :5KW スポツト径 :2mm 工具移動速度 :2m/分 工具移動方向 :刃先と平行 急冷強固層の中心
:粗加工時の刃先線から1.65±0.15mm狙い 急冷凝固層の間隔 :11.0mm この様にして得たいずれのブローチも割れの発
生は認められなかつた。 ビーム照射処理に要する時間については次の通
りであつた。 実施例1と同じく従来の方法でビーム処理する
ときのビーム照射位置の許容範囲は±0.15mmと非
常に小さく、ビーム処理にほぼ同様の時間がかか
つたほか、本工程を採用する場合には粗加工の
際、すでに刃の間隔を正確に11.0mmに仕上げてお
く必要があり、焼入れ後の寸法調整およびその検
査に余分の時間がかかつた。なおこの±0.15mmと
いう値は、仕上げ加工の際、刃先から一定量検索
するとして(この場合は1.0mm)、急冷凝固層を
1.5mm以上残しかつ急冷凝固層を0.2mm以上研削す
ることが可能な範囲として求めており、急冷凝固
層を1.5mm以下にするのであれば許容範囲は若干
広がるがそのぶん再研削回数が減少した。 これに対し本発明法ではビーム照射位置の許容
範囲が広く、ビーム照射前の刃の間隔はそれほど
正確である必要がなかつた。またビーム照射その
ものに要する時間も実施例1と同じ理由で同程度
短縮された。 次に上記方法で製造したブローチの切削試験を
実施例1と同じ要領で行つた結果、ほぼ同様の結
果、すなわちビーム処理を行つていないものに比
べて、約2〜3倍の刃先寿命を示し、また従来の
ビーム処理方法で処理したものでは再研削回数が
3回であつたのに対し、本発明法によるもので
は、8回の再研削が可能であつた。 実施例 3 次にSKH55製高速度鋼焼鈍材を1200℃で焼入
れ後550℃×1.5時間×3回の焼戻しを行つたも
の、および1100℃焼入れ後同様の焼戻しを行つた
あと表面研削、寸法調整したものを高速度鋼切削
工具素材とし、以下実施例1と同様の方法で同形
状のブローチを製造した。 その結果、本ブローチにおいても割れの発生は
全く認められず、また実施例1と同様の切削試験
を行つた結果、同じ切削性能(刃先寿命、再研削
数)を示した。 [発明の効果] 以上の通り、本発明によれば広幅の急冷凝固層
を刃先に有する切削工具の製造が可能となり、刃
先再研削数が従来のものより増加し、ひいては工
具寿命を向上させることが可能となる。また、急
冷凝固層の幅がひろいため、仕上げ加工代をある
程度大きくしても急冷凝固層がなくなるおそれが
なく、ビーム照射位置の精度および仕上げ加工量
にそれほど留意しなくとも刃先に急冷凝固層を有
する切削工具の製造が可能となるため、製造効率
が著しく向上する。
[Table] In contrast to the products that were beam-processed using the conventional method, their service life rapidly decreased and abnormal wear occurred after re-grinding four times (possible number of re-grinding is three times). The tool can be re-grinded eight times, which is the same as the tool without beam treatment, and the tool life has been significantly improved. Note that the re-grinding was stopped after 8 times because the land width (width of the flank surface) became narrow. Example 2 Next, in the same manner as in Example 1, brooches of the present invention example and the comparative example were manufactured in the following steps, and the same tests as in Example 1 were conducted. The final tool shape was the same as in Example 1. b) A high-speed steel annealed material made of SKH55 was rough-processed and sharpened, leaving a slight machining allowance in the tool shape, and this was used as a high-speed steel cutting tool material. b) This material is hardened at 1100℃, surface ground,
After adjusting the dimensions, the area where the cutting edge was to be formed was subjected to beam treatment under the following conditions. The land width before beam processing (rough processing state) is
7.5 mm, and 6.5 mm when processed using the conventional method. c) Thereafter, it was tempered at 560°C for 1.5 hours three times, and finished and adjusted to produce a broach product. The beam irradiation conditions in the present invention example and comparative example in the above steps were as follows. Beam irradiation conditions for the example of the present invention Beam type: Carbon dioxide laser output: 3Kw Spot diameter: 1.5mm High-speed repetition width: 8.5mm High-speed repetition direction: Crossing the cutting edge line Repetition frequency: 3600Hz Tool movement speed: 0.3mm/min Tool movement direction: Parallel to the cutting edge Center of the rapidly solidified layer: Center of the land width ±1.0mm Aim Spacing between the rapidly solidified layers: 11.0mm Beam irradiation conditions for comparative example Beam type: Carbon dioxide laser output: 5KW Spot diameter: 2mm Tool movement Speed: 2m/min Tool movement direction: Parallel to the cutting edge Center of the rapidly solidified solid layer: Aim for 1.65±0.15mm from the cutting edge line during rough machining Distance between the rapidly solidified layers: 11.0mm All broaches obtained in this way have no cracking. No occurrence was observed. The time required for beam irradiation treatment was as follows. As in Example 1, the tolerance range of the beam irradiation position when performing beam processing using the conventional method is extremely small at ±0.15 mm, and the beam processing took almost the same amount of time. During rough machining, the blade spacing had to be precisely 11.0 mm, which required additional time for dimensional adjustment and inspection after hardening. This value of ±0.15 mm assumes that a certain amount is searched from the cutting edge during finishing (in this case, 1.0 mm), and the rapidly solidified layer is
We are looking for a range in which it is possible to leave 1.5 mm or more and grind the rapidly solidified layer by 0.2 mm or more.If the rapidly solidified layer is reduced to 1.5 mm or less, the allowable range increases slightly, but the number of re-grinding decreases accordingly. . In contrast, in the method of the present invention, the permissible range of the beam irradiation position is wide, and the spacing between the blades before beam irradiation does not need to be so precise. Furthermore, the time required for beam irradiation itself was shortened to the same extent as in Example 1 for the same reason. Next, a cutting test of the broach manufactured by the above method was conducted in the same manner as in Example 1, and the results were almost the same, that is, the cutting edge life was approximately 2 to 3 times longer than that of the broach that was not subjected to beam treatment. In addition, the number of re-grinding was three times in the case of the conventional beam processing method, whereas the re-grinding was possible eight times in the case of the method of the present invention. Example 3 Next, SKH55 high-speed steel annealed material was quenched at 1200°C and then tempered at 550°C for 1.5 hours 3 times, and after quenched at 1100°C, the same tempering was performed, followed by surface grinding and dimensional adjustment. The resulting material was used as a high-speed steel cutting tool material, and a broach of the same shape was manufactured in the same manner as in Example 1. As a result, no cracking was observed in this broach, and when the same cutting test as in Example 1 was conducted, it showed the same cutting performance (edge life, number of regrinds). [Effects of the Invention] As described above, according to the present invention, it is possible to manufacture a cutting tool having a wide rapidly solidified layer on the cutting edge, and the number of re-grinding of the cutting edge is increased compared to conventional tools, thereby improving the tool life. becomes possible. In addition, since the width of the rapidly solidified layer is wide, there is no risk of the rapidly solidified layer disappearing even if the finish machining allowance is increased to a certain extent, and the rapidly solidified layer can be formed on the cutting edge without paying much attention to the accuracy of the beam irradiation position or the amount of finishing machining. Since it becomes possible to manufacture a cutting tool that has the following characteristics, manufacturing efficiency is significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法によつて広幅の急冷凝固層
を形成する方法を説明する図、第2図はビーム強
度と相互作用時間の関係を示す図、第3図は高速
度鋼の焼入温度と硬度の関係を示す図、第4図は
焼入温度と割れ発生状況の関係を示す図、第5図
は焼入硬度と割れ発生状況の関係を示す図、第6
図は焼戻温度と硬度の関係を示す図、第7図は焼
戻温度と割れ発生の関係を示す図、第8図A〜F
は実施例のブローチ製造方法を説明する図、第9
図は実施例の被切削材表面粗さと切削長の関係を
示す図、第10図は実施例の逃げ面最大摩耗量と
切削長の関係を示す図、第11図及び第12図は
従来法による急冷凝固層の形成方法を示す図であ
る。 1……高速度鋼、2……ビーム、3……急冷凝
固層。
Fig. 1 is a diagram explaining the method of forming a wide rapidly solidified layer by the method of the present invention, Fig. 2 is a diagram showing the relationship between beam intensity and interaction time, and Fig. 3 is a diagram illustrating the quenching of high-speed steel. Figure 4 shows the relationship between temperature and hardness, Figure 4 shows the relationship between quenching temperature and crack occurrence, Figure 5 shows the relationship between quenching hardness and crack occurrence, and Figure 6 shows the relationship between quenching hardness and crack occurrence.
The figure shows the relationship between tempering temperature and hardness, Figure 7 shows the relationship between tempering temperature and crack occurrence, and Figures 8 A to F
9 is a diagram illustrating the broach manufacturing method of the example.
The figure shows the relationship between the surface roughness of the workpiece and the cutting length in the example. Figure 10 shows the relationship between the maximum flank wear amount and the cutting length in the example. Figures 11 and 12 show the conventional method. It is a figure which shows the formation method of the rapidly solidified layer by. 1...High speed steel, 2...Beam, 3...Rapid solidification layer.

Claims (1)

【特許請求の範囲】 1 高速度鋼切削工具素材をその融点下130℃よ
り低い温度で焼入れした後、その表面の刃先部又
は刃先形成予定部に含まれるある線上を、高エネ
ルギー密度ビームを高速振動させながら照射して
該照射部の表面層を溶融させつつ前記切削工具素
材をビームの振動方向と交差する方向に相対的に
移動させることによつて前記刃先部又は刃先形成
予定部の表面に急冷凝固層を形成させた後、更に
焼戻し加工及び仕上加工を行なうことを特徴とす
る高速度鋼切削工具の製造方法。 2 高速度鋼切削工具素材を焼入れした後540℃
〜700℃で焼戻しを行ない、次いでその表面の刃
先部又は刃先形成予定部に含まれるある線上を、
高エネルギー密度ビームを高速振動させながら照
射して該照射部の表面層を溶融させつつ前記切削
工具素材をビームの振動方向と交差する方向に相
対的に移動させることによつて前記刃先部又は刃
先形成予定部の表面に急冷凝固層を形成させた
後、更に焼戻し加工及び仕上加工を行なうことを
特徴とする高速度鋼切削工具の製造方法。
[Claims] 1. After hardening a high-speed steel cutting tool material at a temperature lower than 130°C below its melting point, a high-energy density beam is applied at high speed to a certain line included in the cutting edge portion of the surface or the planned cutting edge formation portion. The cutting tool material is irradiated while being vibrated to melt the surface layer of the irradiated part, and the cutting tool material is relatively moved in a direction crossing the vibration direction of the beam, so that the cutting tool material is applied to the surface of the cutting edge part or the part where the cutting edge is to be formed. A method for manufacturing a high-speed steel cutting tool, which comprises further performing tempering and finishing after forming a rapidly solidified layer. 2 540℃ after hardening high speed steel cutting tool material
Tempering is performed at ~700°C, and then a certain line included in the cutting edge part or the planned cutting edge forming part on the surface is
The cutting tool material is irradiated with a high-energy density beam while vibrating at high speed to melt the surface layer of the irradiated portion while relatively moving the cutting tool material in a direction that intersects with the vibration direction of the beam. A method for manufacturing a high-speed steel cutting tool, which comprises forming a rapidly solidified layer on the surface of a portion to be formed, and then further performing tempering and finishing.
JP11330987A 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool Granted JPS63278726A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11330987A JPS63278726A (en) 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11330987A JPS63278726A (en) 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool

Publications (2)

Publication Number Publication Date
JPS63278726A JPS63278726A (en) 1988-11-16
JPH0351535B2 true JPH0351535B2 (en) 1991-08-07

Family

ID=14608969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11330987A Granted JPS63278726A (en) 1987-05-08 1987-05-08 Manufacture of high speed steel cutting tool

Country Status (1)

Country Link
JP (1) JPS63278726A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871230B2 (en) * 2011-12-27 2016-03-01 公立大学法人 滋賀県立大学 Tool having a cutting edge part, manufacturing method of a tool having a cutting edge part, and manufacturing method of a tool manufacturing intermediate having a cutting edge part
RU2734826C1 (en) * 2020-06-22 2020-10-23 федеральное государственное бюджетное образовательное учреждение высшего образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" (НГТУ) Method of laser processing of parts of rotation bodies from tool steels
CN112171216A (en) * 2020-09-29 2021-01-05 重庆派斯克刀具制造股份有限公司 Machining process of high-speed steel surface-replaceable blade

Also Published As

Publication number Publication date
JPS63278726A (en) 1988-11-16

Similar Documents

Publication Publication Date Title
Leunda et al. Laser cladding of vanadium-carbide tool steels for die repair
Ukar et al. Laser polishing of tool steel with CO2 laser and high-power diode laser
US6857255B1 (en) Reciprocating cutting blade having laser-hardened cutting edges and a method for making the same with a laser
Khorasani et al. Laser subtractive and laser powder bed fusion of metals: Review of process and production features
US6612204B1 (en) Process for manufacturing a blade of a cutting tool and product manufactured therewith
AU2011202496A1 (en) Utility knife blade
JP5328494B2 (en) Band saw blade and manufacturing method thereof
EP3525972B1 (en) Method of manufacturing a toothed blade and apparatus for manufacturing such a blade
CN111655874A (en) Regeneration method of tool material and tool material
KR20160116920A (en) method for alloying of metal surface using laser beam
RU2699469C1 (en) Steel billet machining method with chips crushing
JPH0351535B2 (en)
Bureš et al. Application of laser surface polishing on additive manufactured parts of inconel 718 nickel-based superalloy
RU2641444C2 (en) Method of mechanical processing of steel casting with fragmentation of chips
CA2245866A1 (en) Cutting die and method of making
Ordnung et al. Investigation of an incremental dual Laser Powder Bed Fusion strategy for improving the quality of up-facing inclined surfaces
RU2313581C2 (en) Manual plasma quenching method
JPH02221304A (en) Manufacture of high speed steel tool
WO2008129277A1 (en) Fracture site formation
JPH0251966B2 (en)
US11642741B2 (en) System for treating material of a cutting element
Cunha et al. Influence of the fibre laser parameters on the surface texturing of 420 stainless steel
JP2021066911A (en) Surface hardening treatment method of metal work by laser
JPH0128809B2 (en)
RU2792101C1 (en) Method for hardening woodworking tools made of chromium and chromium-silicon steels