JPH0251966B2 - - Google Patents

Info

Publication number
JPH0251966B2
JPH0251966B2 JP12284486A JP12284486A JPH0251966B2 JP H0251966 B2 JPH0251966 B2 JP H0251966B2 JP 12284486 A JP12284486 A JP 12284486A JP 12284486 A JP12284486 A JP 12284486A JP H0251966 B2 JPH0251966 B2 JP H0251966B2
Authority
JP
Japan
Prior art keywords
laser
cutting
cutting edge
speed
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12284486A
Other languages
Japanese (ja)
Other versions
JPS62282831A (en
Inventor
Yoshio Ashida
Juichi Seki
Shigenori Kusumoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12284486A priority Critical patent/JPS62282831A/en
Publication of JPS62282831A publication Critical patent/JPS62282831A/en
Publication of JPH0251966B2 publication Critical patent/JPH0251966B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Heat Treatment Of Articles (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、高度の切削性能を有する高速度鋼切
削工具の製造方法に関するものである。 本発明に係る高速度鋼とは、JISで規定されて
いる高速度鋼や通常粉末高速度鋼と呼ばれる鋼種
はをちろん1次炭化物を含み、しかも合金炭化物
析出による焼戻し2次硬化が生じる鋼種を含むも
のである。 [従来の技術] 切削加工の高能率化・高精度化の要請にもとづ
いて近年高速度鋼切削工具に関しても種々の改良
が行なわれ特に刃先部の耐摩耗性、靫性及び硬度
の向上がはかられている。例えば特開昭59−
83718号では、高速度鋼素材を焼入れした後これ
にレーザを照射することにより素材鋼中に大量に
含まれる1次炭化物を固溶せしめ、表層部組織が
炭化物を殆んど含まないものとし、その後特定の
温度で焼戻すことによつて固溶している炭化物を
微細析出させ2次硬化を著しく促進させ硬度、靫
性、耐摩耗性を向上させる方法が示されている。 [発明が解決しようとする問題点] しかしながらこの方法では次の様な問題を生ず
る。 まず、従来行なわれている高速度鋼切削工具に
おける焼入処理の温度は、素材鋼中の1次炭化物
をできるだけ多く固溶させ、且つ結晶粗大化等の
問題を生じない、という観点から決められたもの
であり、融点よりも30〜50℃低い融点直下の温度
で焼入れされている。このように処理された焼入
材は硬度、剛性共に高く、しかも靫性、塑性変形
能は非常に小さいものである。一方、レーザ照射
により溶融及び急冷凝固した層(以下、レーザ処
理層という)には、その層に隣接する高速度鋼素
材部分(以下、母材部分という)との間で引張応
力が働く。このため、焼入処理後にレーザ照射を
行なうと前記引張応力がレーザ処理層の破断力よ
り大きい場合、割れが発生するおそれがある。さ
らにレーザ処理工程が加えられることにより製品
コストが上昇する。 本発明はこの様な事情に鑑みてなされたもので
あつて、その目的はレーザ等の高エネルギー密度
ビーム照射時における割れの発生を防止すること
ができる高性能の高速度鋼切削工具の製造方法を
提供しようとするものである。 [問題点を解決する為の手段] 本発明に係る高速度鋼切削工具の製造方法は切
削工具素材を融点下130℃より低い温度で焼入れ
した後、高エネルギー密度ビームの照射によつて
刃先部あるいは刃先形成予定部を溶融及び急冷凝
固し、更に焼戻しをすることにより刃先部に急冷
凝固層を有する高速度鋼切削工具を得ることにそ
の要旨が存在するものである。 [作用] 本発明は上記の様に構成されるが、要するに高
エネルギー密度ビーム照射前の焼入温度を調整す
ることによつて母材の塑性変形能を変えてそれに
よつて高エネルギー密度ビームの照射時における
割れの発生を防止するものである。以下にその作
用を説明する。尚、本発明に係る高速度鋼切削工
具とは工具全体が高速度鋼よりなるものはもちろ
ん、切削に関与する刃先部のみが高速度鋼である
ものも含まれる。 まず、本出願人は代表的な溶製高速度鋼
SKH51、SKE55、及び粉末高速度鋼である
KHA30を種々の温度で焼入れした。これを供試
材として焼入温度と硬さの関係を調査した。結果
は第1図及び第1表に示すとおりであつた。
[Industrial Application Field] The present invention relates to a method of manufacturing a high speed steel cutting tool having high cutting performance. The high-speed steel according to the present invention includes not only the high-speed steel specified by JIS and the steel type usually called powder high-speed steel, but also the steel type that contains primary carbides and undergoes secondary hardening during tempering due to precipitation of alloy carbides. This includes: [Prior Art] Various improvements have been made to high-speed steel cutting tools in recent years based on the demand for higher efficiency and higher accuracy in cutting processes, and improvements in wear resistance, toughness, and hardness of the cutting edge have been made in recent years. It's getting messy. For example, JP-A-59-
In No. 83718, a high-speed steel material is hardened and then irradiated with a laser to dissolve primary carbides contained in large amounts in the material steel, so that the surface layer structure contains almost no carbides, A method has been proposed in which the solid-dissolved carbides are finely precipitated by tempering the steel at a specific temperature to significantly accelerate secondary hardening and improve hardness, glaze properties, and wear resistance. [Problems to be Solved by the Invention] However, this method causes the following problems. First, the temperature of conventional quenching treatment for high-speed steel cutting tools is determined from the viewpoint of dissolving as much primary carbide as possible in the steel material and not causing problems such as crystal coarsening. It is hardened at a temperature just below the melting point, which is 30 to 50 degrees Celsius lower than the melting point. The hardened material treated in this manner has high hardness and rigidity, and has very low toughness and plastic deformability. On the other hand, tensile stress acts on the layer melted and rapidly solidified by laser irradiation (hereinafter referred to as the laser-treated layer) with the high-speed steel material portion (hereinafter referred to as the base material portion) adjacent to the layer. Therefore, if laser irradiation is performed after hardening treatment, cracks may occur if the tensile stress is greater than the breaking force of the laser treated layer. Furthermore, the addition of a laser processing step increases product cost. The present invention was made in view of the above circumstances, and its purpose is to provide a method for manufacturing a high-performance high-speed steel cutting tool that can prevent the occurrence of cracks when irradiated with a high-energy density beam such as a laser. This is what we are trying to provide. [Means for Solving the Problems] The method for manufacturing a high-speed steel cutting tool according to the present invention is to harden the cutting tool material at a temperature lower than the melting point of 130°C, and then irradiate the cutting edge with a high energy density beam. Alternatively, the gist lies in obtaining a high-speed steel cutting tool having a rapidly solidified layer at the cutting edge by melting and rapidly solidifying the portion where the cutting edge is to be formed, and then tempering. [Function] The present invention is constructed as described above, but in short, by adjusting the quenching temperature before irradiation with a high-energy density beam, the plastic deformability of the base material is changed, thereby increasing the quenching temperature of the high-energy density beam. This prevents cracks from occurring during irradiation. The effect will be explained below. Note that the high-speed steel cutting tool according to the present invention includes not only a tool in which the entire tool is made of high-speed steel, but also a tool in which only the cutting edge portion involved in cutting is made of high-speed steel. First, the applicant has developed a typical melt-produced high-speed steel.
SKH51, SKE55, and powder high speed steel
KHA30 was quenched at various temperatures. This was used as a test material to investigate the relationship between quenching temperature and hardness. The results were as shown in FIG. 1 and Table 1.

【表】【table】

【表】 一方、切削工具の母材は切削を直接行なう部分
ではないから、切削に直接関与する刃先部に要求
される程の硬さが必要とされるものではなく、刃
先部を保持するに足りる強度を具えていればよい
のである。この観点から通常HRC40程度の硬さが
あればよいとされる。第1図から明らかな様に、
焼入温度が降下すると焼入硬さも低下するから、
高速度鋼においてはオーステナイト化温度以上の
焼入温度であればHRC40程度の硬さは十分に得ら
れるのである。即ち、通常の焼入処理を行なえ
ば、切削工具の母材に必要とされる硬度は当然に
得られるのである。 次に焼入処理を行なつた高速度鋼工具の刃先部
或は刃先形成予定部に高エネルギー密度ビームを
照射し、割れ発生状況と焼入温度の関係を調査し
たところ第2図に示す通りの結果を得た。尚、割
れ発生状況の判定尺度としては下記の5段階評価
を採用した。 1……割れ発生せず。 2……目視では識別できないが20倍拡大により
視認可能な微細な割れ発生。 3……目視可能な割れの総延長50mm未満或は割
れ起点数4点以下。 4……目視可能な割れの総延長50mm以上10mm未
満或は割れ起点数5点以上9点以下。 5……目視割れの総延長100mm以上或は割れ起
点数10点以上。 第2図から明らかな様に少なくとも融点下130
℃より低い温度で焼入処理を行なえば割れの発生
は防止できることがわかつた。尚、割れ発生状況
を焼入硬さとの関係で調査したところ第3図に示
す結果を得た(割れ発生状況の判定尺度は第2図
の場合と同じである)。即ち、焼入硬さの観点か
らいえば、通常の焼入硬さよりHRC5程度以上低
下させれば割れが発生しないことが判明した。つ
まり、従来融点下30〜50℃で行なわれていた焼入
れを、それより低温の融点下130℃より低い温度
で行なうことにより、切削工具母材の硬さは従来
のものよりHRC5以上低下し、その結果剛性も低
下し塑性変形能が大きくなる。従つて刃先部或は
刃先形成予定部位に高エネルギー密度ビームを照
射した場合に生ずる照射部と母材部の間の引張応
力が塑性変形によつて容易に吸収されることとな
り、割れが減少するのである。 尚、本発明において使用される高エネルギー密
度ビームは高速加熱の可能な高エネルギービーム
であれば、レーザ、電子ビームその他特にビーム
の種類を限定するものではない。次にレーザ及び
電子ビームを例にとりビームの照射条件を説明す
る。 高速度鋼にレーザを照射する場合の照射条件の
設定は、吸収エネルギー密度とビームの移動速度
によつて決定する方法も理論上は可能である(特
開昭59−83718)が、一般にはエネルギーの吸収
率の特定は困難であるので、吸収エネルギー密度
による条件の設定は具体的でない。このため本発
明においてはエネルギー照射密度による条件の設
定を行なつた。 即ち幅Dmm以上、深さ0.1mm以上の急冷凝固層
を形成させる為に必要な高エネルギー密度ビーム
の照射条件は、照射面内の1点が照射されている
時間(相互作用;T)とその時のビーム強度(照
射エネルギー密度;W)でほぼ決定されるもので
ある。SKH55(1000℃焼入材)にレーザ及び電子
ビームを照射したときのビーム強度(J/cm2)と
相互作用時間との関係をあらわす実験結果を第4
図に示す。 <レーザ照射条件> T及びWの好ましい範囲は 5×10-4秒≦T≦10‐1秒 …… 2×103J/cm2≦W≦2×104J/cm2 …… であつて上記範囲外においては、第4図に示す様
に蒸発する、急冷凝固層深さが不足する、急冷凝
固層内に欠陥を生じる、冷却速度が不足する等の
問題を生じ必要な特性が得られないこととなる。
ここで、T及びWはレーザの発振方法、照射方法
によつて異なり次のような条件が与えられる。 (1) 刃先に平行な1本又は数本の連続発振ビーム
を同時に並列させ走査し、1本又は重複部に熱
影響層の存在しない一部が重複した急冷凝固層
を形成させる場合。 T=S/V×0.06(秒) …… W=P/S×V×6×103(J/cm2)…… ここでS=スポツト径(mm) V=走査速度(m/min) P=レーザ出力(Kw) (2) 1本又は平行な数本のパルス発振ビームを刃
先に同時に並列して走査し、1本又は重複部に
熱影響層の存在しない一部が重複した急冷凝固
層を形成させる場合。 T=S×d/V×6×10‐4(秒) …… W=P×d/S×V×6×103(J/cm2) …… さらに追加条件として、連続した凝固層を得る
には f/V(1−d/100)×16.7<S …… (1−d/100)/f<0.1(秒) …… が必要である[(1)はd=100%の場合であること
がわかる]。 ここでS,V,Pは(1)と同じ d=デユーテイ(%) f=周波数(Hz) (3) 刃先に交差する方向に振動させながら、さら
に刃先と平行方向にビームを走査し急冷凝固層
を形成させる場合。 T=S/D×T′(秒) …… W=P/D×V×6×103(J/cm2)…… *パルス発振ではそれぞれdをかける。 ここでS,V,Pは(1)と同じ。D=振幅(mm)、
T′は又はで得られるTの値。さらにf0=振動
周波数(Hz)とすると連続した凝固層を得るため
には,(パルス発振では,も)の他に次
の条件が必要である。 V/f0×16.7<S …… f0>10(Hz) …… <電子ビーム照射条件> 金属表面でのビームエネルギーの吸収率が異な
るためにWに関する条件範囲が変化する(は同
じ、が変わる)。照射方法によるW及びTを決
定する条件式はレーザ照射の場合と同じである。
又、上限、下限値の設定理由も同じである。 5×10-4秒≦T≦10-1秒 …… 3×102J/cm2≦W≦3×103J/cm2 ……′ この場合の処理条件は下記のとおりである。 出力:100W〜1Kw スポツト径:0.1〜2mm 速度:0.3〜8m/分 連続方式: − 尚、レーザがYAG(イツトリウム、アルミニウ
ム、ガーネツト)レーザである場合、吸収率の関
係上電子ビーム照射条件と同じになることが予想
される。 以上の様な照射条件で急冷凝固層が形成される
が、切削工具に関与する刃先部全体に急冷凝固層
が形成されることは必ずしも必要でなく、工具の
種類によつては刃先の一部のみに形成される場合
もある。また、多刃工具にあつては必ずしも全て
の刃に急冷凝固層が形成されるものではなく、一
部の刃の刃先部、更に該刃先部の更に一部のみに
形成されることもある。 本発明の係る高速度切削工具は、工具全体が高
速度鋼よりなるもののみならず普通鋼等に高速度
鋼を溶接或は焼ばめを施して刃先加工したもの、
即ち切削に関与する刃先部のみを高速度鋼で構成
したものも含まれる。尚、前記第2図、第3図の
調査においてビームは炭酸ガスレーザを用いた。
照射条件は下記の通りとした。 ビームスポツト径:1.0mmφ 出力:5Kw ビーム移動速度:3m/分 即ち、照射エネルギー密度:104J/cm2 相互作用時間:0.02秒 照射方法40□ ×150l 焼入材表面に、上記条件で間隔8mmで平行に
15本照射。 ビーム照射後は、一旦溶融することによる表面
凹凸、急冷凝固層中の残留応力、残留オーステナ
イトの存在を考慮すると焼戻し処理が必要とな
る。焼戻しは好ましくは500〜600℃で1回又は複
数回行なう。 尚、本発明は上記の作用により高エネルギー密
度ビーム照射時における割れの発生を防止するも
のであるが、ビームの照射により形成される急冷
凝固層の2次デンドライト間隔が6μm以下であ
る場合は、被削材の仕上面粗さの向上効果も期待
されると共にビーム照射により耐摩綿性及び靫性
の向上も期待される。 尚、第5図はレーザビーム照射時のビーム強度
と急冷凝固層最大深さとの関係を示す。この場
合、レーザ処理条件は下記のとおりである。 出力:1〜5Kw ビームスポツト径:0.3〜2.5mm 加工速度:0.3〜8m/分 オシレート式 振幅:6mm 周波数:100dl パルス方式 周波数:200Hz デユーテイ:50% 連続方式: − 本発明に係る工具はリーマ、ブローチ、シエー
ビングカツター、ピニオンカツター、ラツクカツ
ター、ベベルカツター、エンドミル、ホブ、フオ
ーミングラツク、切断用切削工具、フレージング
カツター、フライス、ドリル及びこれら工具に使
用されるチツプやブレード等が含まれることはい
うまでもない。 以下実施例について説明する。 [実施例] 本発明に係る製造方法により、ブローチ、エン
ドミル、ピニオンカツター、ドリル、フライス、
ホブ、ベベルカツターを製造して切削試験を行な
い従来例と比例した。 実施例 1 ブローチ 第6図a〜dにその製造方法を示す。尚eは図
bのE−E′拡大断面図、fは図cのF−F′拡大断
面図である。 高速度鋼素材(SKH55)1の刃先部形成予定
位置へ高エネルギービーム2を照射し[第6図
a]、急冷凝固層3を形成した後、焼戻処理を行
ない高速度鋼ブローチ素材4とする[第6図b]。
次に砥石5で溝切り加工を行なう[第6図c]。
次に刃先を仕上げ加工し高速度鋼ブローチ6を得
る[第6図d]。尚7は母材、8はすくい面、9
は逃げ面である。 ブローチのように多刃総後工具の場合は、刃先
部に急冷凝固層を形成させてから所定寸法に仕上
げ加工する方法よりも、刃先形成予定位置に予め
急冷凝固層を形成した後に焼戻し刃切り加工及び
仕上加工を行なう方法のほうが作業も容易であり
望ましい。このような工程における刃切り研削加
工の加工性を、送り速度を尺度として従来例の送
り速度と比較した結果を第7図に示す。 砥石は六方晶窒化硼素を使用し、研削切込み深
さ3mmでクリープフイード研削を行なつた。第7
図の横軸は焼入温度、縦軸は1220℃で焼入し550
℃で焼戻した従来材の送り速度に対する本実施例
の送り速度の比をあらわす。送り量は研削焼け、
研削割れを生じることがなく且つ従来例と同等の
仕上面が得られる送り量とした。融点より130℃
以上低い温度で焼入すると加工能率が2倍以上と
なつた。低温で焼入するほど研削加工時の硬さが
低くなるので加工性がより良好となつた。この様
にして作製したブローチで切削試験を行なつたと
ころ第8図に示すように被削材の仕上面粗さも向
上しまた第9図に示すように耐摩耗性向上効果も
得られた。 実施例 2 エンドミル 材質 比較材 1 SKH56 2 KHA30 レーザ処理材 SKH56 (焼入温度:1000℃) 処理条件 比較材1,2 従来通り レーザ処理材出力:5Kw連続 速度:20m/分 スポツト径:0.3mmφ 焼戻し:550℃×3回 切削条件 刃数:2 直径:10mm 被削材:SKD11(HB=380) 送り:80mm/分 速度:16mm/分 切込み:1mm 試験結果 第10図に示す。 レーザ処理したものは従来材のものより耐摩耗
性が向上した。尚、図示しないが、レーザ処理し
たKHA30についても良好な結果を得た。 実施例 3 ピニオンカツター 材質 比較材 1 SKH55 2 KHA30 レーザ処理材 SKH55 処理条件 比較材1,2 従来通り レーザ処理材出力:5Kw連続 速度:1m/分 スポツト径:1.5mmφ 焼戻し:550℃×3回 切削条件 被削材:SCM21 切削ストローク:(400▽ /500▽▽ )str/分 ラジアル送り:0.12mm/分 試験結果 第11図に示す。 レーザ処理したものは従来材のものより良好な
結果を得た。尚、図示しなかつたが、レーザ処理
したKHA30よりなるピニオンカツターについて
も良好な結果を得た。 実施例 4 ストレートシヤンクドリル(10mmφ) 材質 比較材 1 SKH51 2 SKH51(TiNコーテイング処理) レーザ処理材 1 SKH51(レーザ処理) 2 SKH51(レーザ処理及びTiNコーテイング処
理) 処理条件 比較材1,2 従来通り(TiNコーテイン
グ処理) レーザ処理材 出力:5Kw 速度:5m/分 スポツト径:1.0mmφ 焼戻し:550℃、580℃ 600℃×2回 TiNコーテイングはPVD、厚さ3μmとし
た。 切削条件 被削材:S50C(HB250) 穴径:10mmφ 送り:0.18mm/rev 速度:比較例1,2 18m/分 レーザ処理材1,2 25m/分 板厚:20t(貫通) 試験結果 穴加工数で比較した。結果を第12図に示す。 レーザ処理材1は比較材1の2倍以上、レーザ
処理材2は比較材2の1.3倍の穴加工数を示しい
ずれも性能が従来材より向上し、且つコーテイン
グ膜の信頼性も向上した。 実施例 5 みぞスライス 材質 比較材 1 SKH55 2 KHA30 レーザ処理材 SKE55 処理条件 比較材1,2 従来通り レーザ処理材出力:3Kw 速度:5m/分 スポツト径:1.0mmφ 焼戻し:550℃×3回 切削条件 被削材:S40C(HB150) 切削速度:17.6m/分 送り速度:90mm/分 溝深さ:1.14mm 試験結果 溝切加工数で比較した。結果を第13図に示
す。 比較材1の2.5倍、比較材2の2倍の加工数を
示し、最終性能が向上した。素材比も安価であ
る。 実施例 6 普通刃ホブ ホブ 諸元 材質SKH55、モジユール2.5、圧力角
20゜、条数3、溝数12 被削歯車 諸元 平歯車、歯数31、ねじれ角0゜、
SCM415H(HB150)82.5〓×50w 切削条件 切削速度:98m/分 送り:4.0mm/rev クライスカツト シフトなし レーザ処理 出力:5Kw スポツト径:1.5mmφ 速度:3m/分 焼戻し:580℃×3回 試験結果 第14図に示す。 クレータ、逃げ面摩耗とも減少し、寿命、仕上
げ面粗さともに向上した。 実施例 7 ベベルカツター 材質 SKH51 被削歯車諸元 ピツチ円径:154.08mm 歯者:36 ねじれ角:35゜ 歯幅:23.0mm 歯丈:10.5mm 材質:SCM415(HB150) 切削条件 切削速度:43m/分 送り:0.12mm/ブレード レーザ処理 出力: 速度: スポツト径:5Kw 3m/分 1mmφ底刃 出力: 速度: スポツト径:5Kw 5m/分 2.5mmφ外刃、内刃 焼戻し:580℃×3回 試験結果 第15図及び第16図に示す。従来例に比して
クレータが減少し、逃げ面摩耗も減少した。 効 果 寿命向上(底刃のクレータに起因する欠損で寿
命) 歯面粗さ向上(外刃、内刃) [発明の効果] 本発明は上記の様に構成されるので、急冷凝固
層の形成に際して割れ発生を防止することができ
ると共に工具の仕上げ面粗さ、耐摩耗性及び靫性
等の性能を向上させることができる。
[Table] On the other hand, since the base material of a cutting tool is not the part that directly performs cutting, it does not need to be as hard as the cutting edge, which is directly involved in cutting. It is sufficient as long as it has sufficient strength. From this point of view, it is generally considered that a hardness of about H R C40 is sufficient. As is clear from Figure 1,
As the quenching temperature decreases, the quenching hardness also decreases.
In high-speed steel, a hardness of about H R C40 can be sufficiently obtained if the quenching temperature is above the austenitizing temperature. In other words, the hardness required for the base material of a cutting tool can be naturally obtained by performing a normal hardening process. Next, a high energy density beam was irradiated on the cutting edge of the high-speed steel tool that had been hardened, or the area where the cutting edge was to be formed, and the relationship between the occurrence of cracks and the hardening temperature was investigated, as shown in Figure 2. The results were obtained. The following 5-level evaluation was adopted as a criterion for determining the occurrence of cracks. 1... No cracking occurred. 2...Minute cracks occur that cannot be visually identified but are visible under 20x magnification. 3...The total length of visible cracks is less than 50 mm or the number of crack starting points is 4 or less. 4...The total length of visible cracks is 50 mm or more and less than 10 mm, or the number of crack starting points is 5 or more and 9 or less. 5...The total length of visible cracks is 100 mm or more or the number of crack starting points is 10 or more. As is clear from Figure 2, at least 130° below the melting point.
It was found that cracking could be prevented if the quenching treatment was performed at a temperature lower than ℃. When the occurrence of cracking was investigated in relation to the quenching hardness, the results shown in FIG. 3 were obtained (the criteria for determining the occurrence of cracking was the same as in FIG. 2). That is, from the viewpoint of quenching hardness, it has been found that cracks do not occur if the hardness is lowered by about H R C5 or more from the normal quenching hardness. In other words, by performing quenching at a temperature lower than 130°C below the melting point, which was conventionally performed at 30 to 50°C below the melting point, the hardness of the cutting tool base material is reduced by more than H R C5 than the conventional one. However, as a result, the rigidity also decreases and the plastic deformability increases. Therefore, the tensile stress between the irradiated part and the base material that occurs when a high energy density beam is irradiated on the cutting edge or the area where the cutting edge is to be formed is easily absorbed by plastic deformation, reducing cracking. It is. Note that the high energy density beam used in the present invention is not particularly limited to the type of beam, such as a laser or an electron beam, as long as it is a high energy beam capable of high-speed heating. Next, beam irradiation conditions will be explained using laser and electron beams as examples. It is theoretically possible to set the irradiation conditions when irradiating high-speed steel with a laser by determining the absorption energy density and the beam movement speed (Japanese Patent Application Laid-Open No. 1983-83718), but in general, the energy Since it is difficult to specify the absorption rate of , it is not specific to set conditions based on absorbed energy density. Therefore, in the present invention, conditions are set based on energy irradiation density. In other words, the irradiation conditions for the high energy density beam necessary to form a rapidly solidified layer with a width of Dmm or more and a depth of 0.1mm or more are the time during which one point within the irradiation surface is irradiated (interaction; T) and the time. This is approximately determined by the beam intensity (irradiation energy density; W). Experimental results showing the relationship between beam intensity (J/cm 2 ) and interaction time when SKH55 (1000℃ quenched material) is irradiated with laser and electron beams are shown in the fourth section.
As shown in the figure. <Laser irradiation conditions> The preferred ranges of T and W are: 5×10 -4 seconds≦T≦ 10-1 second …… 2×10 3 J/cm 2 ≦W≦2×10 4 J/cm 2 …… If the temperature is outside the above range, problems such as evaporation, insufficient depth of the rapidly solidified layer, defects in the rapidly solidified layer, and insufficient cooling rate may occur, as shown in Figure 4, and necessary characteristics may not be achieved. It will not be possible to do so.
Here, T and W vary depending on the laser oscillation method and irradiation method, and the following conditions are given. (1) When one or several continuous wave beams parallel to the cutting edge are scanned in parallel at the same time to form a rapidly solidified layer in which a portion of the beam where no heat-affected layer does not exist overlaps in one beam or in the overlapping area. T=S/V×0.06 (sec)...W=P/S×V×6× 103 (J/ cm2 )...where S=spot diameter (mm) V=scanning speed (m/min) P = Laser output (Kw) (2) One or several parallel pulse oscillation beams are scanned in parallel at the cutting edge at the same time, and rapid solidification is performed with overlapping parts where no heat-affected zone exists in one or the overlapping parts. When forming layers. T = S × d / V × 6 × 10-4 ( seconds ) ... W = P × d / S × V × 6 × 10 3 (J/cm 2 ) ... As an additional condition, a continuous solidified layer is To obtain f/V(1-d/100)×16.7<S...(1-d/100)/f<0.1(sec)...[(1) is when d=100% It can be seen that it is]. Here, S, V, and P are the same as in (1). d = Duty (%) f = Frequency (Hz) (3) While vibrating in the direction crossing the cutting edge, the beam is further scanned in a direction parallel to the cutting edge to rapidly solidify. When forming layers. T=S/D×T' (seconds)... W=P/D×V×6×10 3 (J/cm 2 )... * Multiply by d for each pulse oscillation. Here, S, V, and P are the same as (1). D = amplitude (mm),
T' is the value of T obtained by or. Furthermore, if f 0 = vibration frequency (Hz), in addition to (in pulse oscillation) the following conditions are required to obtain a continuous solidified layer. V/f 0 ×16.7<S ... f 0 >10 (Hz) ... <Electron beam irradiation conditions> The condition range for W changes because the absorption rate of beam energy on the metal surface is different (is the same, but change). The conditional expressions for determining W and T depending on the irradiation method are the same as in the case of laser irradiation.
Moreover, the reason for setting the upper and lower limit values is also the same. 5×10 −4 seconds≦T≦10 −1 seconds ……3×10 2 J/cm 2 ≦W≦3×10 3 J/cm 2 …′ The processing conditions in this case are as follows. Output: 100W to 1Kw Spot diameter: 0.1 to 2mm Speed: 0.3 to 8m/min Continuous method: - If the laser is a YAG (yttrium, aluminum, garnet) laser, the conditions are the same as for electron beam irradiation due to absorption rate. It is expected that A rapidly solidified layer is formed under the above irradiation conditions, but it is not necessarily necessary to form a rapidly solidified layer on the entire cutting edge involved in the cutting tool, and depending on the type of tool, it may be formed on a part of the cutting edge. Sometimes it is only formed. Furthermore, in the case of a multi-blade tool, the rapidly solidified layer is not necessarily formed on all the blades, but may be formed only on the cutting edge of some blades, or even only on a part of the cutting edge. The high-speed cutting tool according to the present invention is not only made entirely of high-speed steel, but also has a cutting edge formed by welding or shrink-fitting high-speed steel to ordinary steel, etc.
That is, it includes those in which only the cutting edge part involved in cutting is made of high-speed steel. In the investigations shown in FIGS. 2 and 3, a carbon dioxide laser was used as the beam.
The irradiation conditions were as follows. Beam spot diameter: 1.0mmφ Output: 5Kw Beam movement speed: 3m/min That is, irradiation energy density: 10 4 J/cm 2 interaction time: 0.02 seconds Irradiation method 40 Parallel with 8mm spacing
15 irradiations. After beam irradiation, a tempering treatment is required in consideration of surface irregularities caused by once melting, residual stress in the rapidly solidified layer, and the presence of retained austenite. Tempering is preferably performed at 500 to 600°C once or multiple times. Although the present invention prevents the occurrence of cracks during high-energy density beam irradiation by the above-mentioned effect, if the secondary dendrite interval of the rapidly solidified layer formed by beam irradiation is 6 μm or less, The effect of improving the finished surface roughness of the work material is expected, and the beam irradiation is also expected to improve the abrasion resistance and glaze properties. Incidentally, FIG. 5 shows the relationship between the beam intensity during laser beam irradiation and the maximum depth of the rapidly solidified layer. In this case, the laser processing conditions are as follows. Output: 1~5Kw Beam spot diameter: 0.3~2.5mm Machining speed: 0.3~8m/min Oscillating type Amplitude: 6mm Frequency: 100dl Pulse type Frequency: 200Hz Duty: 50% Continuous type: - The tool according to the present invention is a reamer, Includes broaches, shaving cutters, pinion cutters, rack cutters, bevel cutters, end mills, hobs, forming racks, cutting tools, phrasing cutters, milling cutters, drills, and tips and blades used in these tools. Needless to say. Examples will be described below. [Example] By the manufacturing method according to the present invention, broaches, end mills, pinion cutters, drills, milling cutters,
A hob and a bevel cutter were manufactured and a cutting test was conducted, and the results were in proportion to the conventional example. Example 1 Brooch The manufacturing method thereof is shown in FIGS. 6a to 6d. Note that e is an enlarged sectional view taken along the line E-E' in FIG. b, and f is an enlarged sectional view taken along the line FF' in FIG. A high-energy beam 2 is irradiated to the planned cutting edge formation position of the high-speed steel material (SKH55) 1 [Fig. 6a] to form a rapidly solidified layer 3, and then tempered to form a high-speed steel broach material 4. [Figure 6b].
Next, groove cutting is performed using the grindstone 5 [Fig. 6c].
Next, the cutting edge is finished to obtain a high-speed steel broach 6 [Fig. 6d]. In addition, 7 is the base material, 8 is the rake face, 9
is an escape. In the case of a multi-blade complete post tool such as a broach, rather than forming a rapidly solidified layer on the cutting edge and then finishing it to a specified size, it is preferable to form a rapidly solidified layer in advance at the position where the cutting edge is to be formed and then temper the blade. A method of processing and finishing is easier and more desirable. FIG. 7 shows the results of comparing the workability of blade cutting and grinding in such a process with the feed rate of a conventional example using the feed rate as a measure. A hexagonal boron nitride grinding wheel was used, and creep feed grinding was performed with a depth of cut of 3 mm. 7th
The horizontal axis of the figure is the quenching temperature, and the vertical axis is quenched at 1220℃ and 550℃.
It represents the ratio of the feed rate of this example to the feed rate of a conventional material tempered at °C. Feed amount is grinding burnt,
The feed rate was set so that grinding cracks would not occur and a finished surface equivalent to that of the conventional example could be obtained. 130℃ above melting point
Quenching at a lower temperature more than doubled the processing efficiency. The lower the temperature of quenching, the lower the hardness during grinding, resulting in better workability. When a cutting test was carried out using the broach prepared in this way, the finished surface roughness of the workpiece was improved as shown in FIG. 8, and the effect of improving wear resistance was also obtained as shown in FIG. 9. Example 2 End mill Material Comparative material 1 SKH56 2 KHA30 Laser treated material SKH56 (Quenching temperature: 1000℃) Processing conditions Comparative materials 1 and 2 Same as before Laser treated material output: 5Kw Continuous speed: 20m/min Spot diameter: 0.3mmφ Tempering : 550℃ x 3 times Cutting conditions Number of teeth: 2 Diameter: 10mm Work material: SKD11 (H B = 380) Feed: 80mm/min Speed: 16mm/min Depth of cut: 1mm Test results Shown in Figure 10. The laser-treated material has improved wear resistance compared to conventional materials. Although not shown, good results were also obtained with laser-treated KHA30. Example 3 Pinion cutter Material Comparative material 1 SKH55 2 KHA30 Laser treated material SKH55 Processing conditions Comparative materials 1, 2 Same as before Laser treated material output: 5Kw Continuous speed: 1m/min Spot diameter: 1.5mmφ Tempering: 550℃ x 3 times Cutting conditions Work material: SCM21 Cutting stroke: (400▽ /500▽▽) str/min Radial feed: 0.12mm/min Test results are shown in Figure 11. The laser treated material obtained better results than the conventional material. Although not shown, good results were also obtained with a pinion cutter made of laser-treated KHA30. Example 4 Straight shank drill (10mmφ) Material Comparison material 1 SKH51 2 SKH51 (TiN coating treatment) Laser treated material 1 SKH51 (Laser treatment) 2 SKH51 (Laser treatment and TiN coating treatment) Processing conditions Comparison materials 1 and 2 Same as before (TiN coating treatment) Laser treated material Output: 5Kw Speed: 5m/min Spot diameter: 1.0mmφ Tempering: 550°C, 580°C, 600°C x 2 times TiN coating was PVD and thickness was 3 μm. Cutting conditions Work material: S50C (H B 250) Hole diameter: 10mmφ Feed: 0.18mm/rev Speed: Comparative examples 1 and 2 18m/min Laser treated materials 1 and 2 25m/min Plate thickness: 20t (penetration) Test results Comparison was made based on the number of holes drilled. The results are shown in FIG. Laser-treated material 1 drilled more than twice as many holes as comparative material 1, and laser-treated material 2 1.3 times as many holes as comparative material 2. The performance of both materials was improved over the conventional material, and the reliability of the coating film was also improved. Example 5 Groove slicing Material Comparative material 1 SKH55 2 KHA30 Laser treated material SKE55 Processing conditions Comparative materials 1, 2 Conventional Laser treated material output: 3Kw Speed: 5m/min Spot diameter: 1.0mmφ Tempering: 550℃ x 3 times Cutting conditions Work material: S40C (H B 150) Cutting speed: 17.6 m/min Feed rate: 90 mm/min Groove depth: 1.14 mm Test results Comparison was made based on the number of grooves cut. The results are shown in FIG. The number of processes was 2.5 times that of Comparative Material 1 and twice that of Comparative Material 2, and the final performance was improved. The material ratio is also cheap. Example 6 Regular blade hob Hob specifications Material SKH55, module 2.5, pressure angle
20°, number of threads: 3, number of grooves: 12 Work gear specifications Spur gear, number of teeth: 31, helix angle: 0°,
SCM415H (H B 150) 82.5〓×50 w Cutting conditions Cutting speed: 98m/min Feed: 4.0mm/rev Kleis cut No shift Laser treatment Output: 5Kw Spot diameter: 1.5mmφ Speed: 3m/min Tempering: 580℃×3 The test results are shown in Figure 14. Craters and flank wear were reduced, and both life and finished surface roughness were improved. Example 7 Bevel cutter Material SKH51 Work gear specifications Pitch circle diameter: 154.08mm Teeth: 36 Helix angle: 35゜ Face width: 23.0mm Tooth height: 10.5mm Material: SCM415 (H B 150) Cutting conditions Cutting speed: 43m /min Feed: 0.12mm/blade Laser processing output: Speed: Spot diameter: 5Kw 3m/min 1mmφ bottom blade output: Speed: Spot diameter: 5Kw 5m/min 2.5mmφ outer blade, inner blade Tempering: 580℃ x 3 tests The results are shown in Figures 15 and 16. Compared to the conventional example, there were fewer craters and flank wear was also reduced. Effects: Improved service life (long life due to breakage due to bottom cutter crater) Improved tooth surface roughness (outer cutter, inner cutter) [Effects of the invention] Since the present invention is configured as described above, formation of a rapidly solidified layer is prevented. It is possible to prevent the occurrence of cracks during processing, and to improve the performance of the tool, such as the finished surface roughness, wear resistance, and toughness.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は焼入温度と焼入硬さの関係を示す図、
第2図は焼入温度と割れ発生状況の関係を示す
図、第3図は焼入硬さと割れ発生状況の関係を示
す図、第4図はビーム強度と相互作用時間の関係
を示す図、第5図はビーム強度と急冷凝固層最大
深さとの関係を示す図、第6図はブローチの製造
方法を示す図、第7図は研削送り速度比と焼入温
度との関係を示す図、第8図はブローチの仕上げ
面粗さに関する性能を示す図、第9図はブローチ
の逃げ面摩耗性の性能を示す図、第10図はエン
ドミルの性能を示す図、第11図はピニオンカツ
ターの性能を示す図、第12図はドリルの性能を
示す図、第13図はフライスの性能を示す図、第
14図はホブの性能を示す図、第15図及び第1
6図はベベルカツターの性能を示す図である。 1……高速度鋼素材、2……高エネルギービー
ム、3……急冷凝固層、4……ブローチ素材、8
……ブローチ刃先すくい面、9……ブローチ刃先
逃げ面。
Figure 1 is a diagram showing the relationship between quenching temperature and quenching hardness.
Figure 2 is a diagram showing the relationship between quenching temperature and crack occurrence status, Figure 3 is a diagram showing the relationship between quenching hardness and crack occurrence status, Figure 4 is a diagram showing the relationship between beam intensity and interaction time, Figure 5 is a diagram showing the relationship between beam intensity and the maximum depth of the rapidly solidified layer, Figure 6 is a diagram showing the broach manufacturing method, and Figure 7 is a diagram showing the relationship between grinding feed rate ratio and quenching temperature. Figure 8 shows the performance of the broach in terms of finished surface roughness, Figure 9 shows the performance of the flank wear resistance of the broach, Figure 10 shows the performance of the end mill, and Figure 11 shows the performance of the pinion cutter. Figure 12 shows the performance of the drill, Figure 13 shows the performance of the milling cutter, Figure 14 shows the performance of the hob, Figure 15 and Figure 1.
Figure 6 shows the performance of the bevel cutter. 1...High speed steel material, 2...High energy beam, 3...Rapid solidification layer, 4...Broach material, 8
...Broach cutting edge rake surface, 9...Broach cutting edge flank surface.

Claims (1)

【特許請求の範囲】[Claims] 1 切削工具素材を融点下130℃より低い温度で
焼入れした後、高エネルギー密度ビームの照射に
よつて刃先部あるいは刃先形成予定部を溶融及び
急冷凝固し、更に焼戻しをすることにより刃先部
に急冷凝固層を有する高速度鋼切削工具を得るこ
とを特徴とする高速度鋼切削工具の製造方法。
1. After hardening the cutting tool material at a temperature below the melting point of 130°C, the cutting edge or the area where the cutting edge will be formed is melted and rapidly solidified by irradiation with a high energy density beam, and then tempered to rapidly cool the cutting tool material. A method for manufacturing a high-speed steel cutting tool, characterized in that a high-speed steel cutting tool having a solidified layer is obtained.
JP12284486A 1986-05-28 1986-05-28 Manufacture of high-speed cutting tool Granted JPS62282831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12284486A JPS62282831A (en) 1986-05-28 1986-05-28 Manufacture of high-speed cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12284486A JPS62282831A (en) 1986-05-28 1986-05-28 Manufacture of high-speed cutting tool

Publications (2)

Publication Number Publication Date
JPS62282831A JPS62282831A (en) 1987-12-08
JPH0251966B2 true JPH0251966B2 (en) 1990-11-09

Family

ID=14846035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12284486A Granted JPS62282831A (en) 1986-05-28 1986-05-28 Manufacture of high-speed cutting tool

Country Status (1)

Country Link
JP (1) JPS62282831A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372352A (en) * 2014-11-14 2015-02-25 无锡阳工机械制造有限公司 Heat treatment method for die-casting mould
CN104372353A (en) * 2014-11-14 2015-02-25 无锡阳工机械制造有限公司 Heat treatment method for die-casting mould
CN104372351A (en) * 2014-11-14 2015-02-25 无锡阳工机械制造有限公司 Heat treatment method for die-casting mould

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5871230B2 (en) * 2011-12-27 2016-03-01 公立大学法人 滋賀県立大学 Tool having a cutting edge part, manufacturing method of a tool having a cutting edge part, and manufacturing method of a tool manufacturing intermediate having a cutting edge part

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104372352A (en) * 2014-11-14 2015-02-25 无锡阳工机械制造有限公司 Heat treatment method for die-casting mould
CN104372353A (en) * 2014-11-14 2015-02-25 无锡阳工机械制造有限公司 Heat treatment method for die-casting mould
CN104372351A (en) * 2014-11-14 2015-02-25 无锡阳工机械制造有限公司 Heat treatment method for die-casting mould

Also Published As

Publication number Publication date
JPS62282831A (en) 1987-12-08

Similar Documents

Publication Publication Date Title
KR100869956B1 (en) High speed tool steel gear cutting tool and manufacturing method therefor
US6612204B1 (en) Process for manufacturing a blade of a cutting tool and product manufactured therewith
Dubey et al. Robust parameter design and multi-objective optimization of laser beam cutting for aluminium alloy sheet
Ezugwu et al. High speed milling of nickel-based superalloys
Wojciechowski et al. The evaluation of surface integrity during machining of Inconel 718 with various laser assistance strategies
JP5328494B2 (en) Band saw blade and manufacturing method thereof
Zhao et al. Enhancing the machinability of Cf/SiC composite with the assistance of laser-induced oxidation during milling
JP2023022257A (en) Diamond cutting tool and method for manufacturing the same
RU2699469C1 (en) Steel billet machining method with chips crushing
JPH0251966B2 (en)
Denkena et al. Production of chip breakers on cemented carbide tools using laser ablation
WO2021157716A1 (en) Method for manufacturing cutting tool
Ebenezer et al. Influence of short-pulsed laser and its thermal effect on micromachining of NiTi alloy
JP2023095112A (en) Cutting tool manufacturing method
JP6973672B2 (en) How to manufacture cutting tools
JPH0192033A (en) Manufacture of high speed steel cutting tool
JPH0351535B2 (en)
JPS63114804A (en) High-speed steel cutting tool
JPS62282803A (en) High-speed steel cutting tool
Lin et al. Studies on chip control in turning by partially laser hardening of carbon steel
JP2010253597A (en) Face milling method and material to be face-milled
RU2764449C1 (en) Method for mechanical processing of a steel workpiece with chip crushing
JPH02221304A (en) Manufacture of high speed steel tool
SU1752514A1 (en) Method of treatment of tungsten-cobalt hard alloy tools
Ming-Jen et al. Cutting tool wear of laser-surface-melted high speed steels