JPS63114804A - High-speed steel cutting tool - Google Patents

High-speed steel cutting tool

Info

Publication number
JPS63114804A
JPS63114804A JP25930986A JP25930986A JPS63114804A JP S63114804 A JPS63114804 A JP S63114804A JP 25930986 A JP25930986 A JP 25930986A JP 25930986 A JP25930986 A JP 25930986A JP S63114804 A JPS63114804 A JP S63114804A
Authority
JP
Japan
Prior art keywords
cutting
cutting edge
laser
celllike
congealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25930986A
Other languages
Japanese (ja)
Inventor
Yoshio Ashida
芦田 喜郎
Yuichi Seki
勇一 関
Shigenori Kusumoto
栄典 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP25930986A priority Critical patent/JPS63114804A/en
Publication of JPS63114804A publication Critical patent/JPS63114804A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To aim at improvement in abrasion resistance of a cutting tool, by forming a quenching congealment layer rich in a celllike congealing structure in a cutting edge. CONSTITUTION:A quenching congealment layer 2 to be formed in a cutting edge predetermined part of high speed steel 1 by means of irradiation of a laser beam is roughly constituted of a dendrite structure part 3 being grown along a congealing progress direction and a celllike structure part 4 by homogeneous core formation. And, it is machined so as to cause this celllike congealing structure 4 to come to a cutting edge. Since a side of the celllike congealing structure part is more excellent in abrasion resistance than the dendrite congealing structure part, a suchlike cutting edge part is formed in the celllike structure part 4, whereby it can be made into such one that is very excellent in the abrasion resistance.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は切削性能特に耐摩耗性にすぐれた高速度鋼切削
工具に関するものである。尚本発明における高速度鋼と
は、JISで規定される高速度鋼や一般に粉末高速度鋼
と呼ばれる鋼種は勿論のこと、1次炭化物を含むと共に
合金炭化物の析出による焼戻し2次硬化が生じる鋼種を
含むものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a high-speed steel cutting tool with excellent cutting performance, particularly wear resistance. In addition, the high-speed steel in the present invention includes not only the high-speed steel specified by JIS and the steel type generally called powder high-speed steel, but also the steel type that contains primary carbides and undergoes secondary hardening during tempering due to the precipitation of alloy carbides. This includes:

[従来の技術] 近年における切削加工の高能率化・高精度化の要求に応
えるべく高速度鋼切削工具も種々の改良がなされている
。例えば特開昭59−83718号公報によれば、高速
度鋼表面にレーザビームを照射して溶融急冷凝固させ一
次炭化物を固溶させた後、焼戻すことによって2次硬化
を著しく促進させて硬度及び靭性を改善しその結果とし
て耐摩耗性の向上をはかるという手段が提案されている
[Prior Art] Various improvements have been made to high-speed steel cutting tools in order to meet the recent demands for higher efficiency and higher precision in cutting. For example, according to Japanese Unexamined Patent Publication No. 59-83718, the surface of high-speed steel is irradiated with a laser beam to melt, rapidly solidify, and form a solid solution of primary carbides, and then tempered to significantly accelerate secondary hardening and increase hardness. Measures have also been proposed to improve toughness and, as a result, to improve wear resistance.

[発明が解決しようとする問題点コ しかるに本発明者等がより深く研究・検討を重ねたとこ
ろによると、レーザビーム等の照射によって形成される
急冷凝固層は常に単一組織を呈するというのではなく、
また組織の違いによって工具の耐摩耗性も異なってくる
ことを見出した。
[Problems to be Solved by the Invention] However, the inventors of the present invention have conducted deeper research and consideration, and have found that the rapidly solidified layer formed by irradiation with a laser beam or the like always exhibits a single structure. Without,
We also found that the wear resistance of tools differs depending on the structure.

本発明はレーザビーム等の照射によって形成された急冷
凝固層の組織を特定化することにより、耐摩耗性が良好
で且つ寿命や性能の安定性及び信頼性にすぐれた高速度
鋼切削工具を提供しようとするものである。
The present invention specifies the structure of the rapidly solidified layer formed by irradiation with a laser beam, etc., thereby providing a high-speed steel cutting tool with good wear resistance and excellent stability and reliability in terms of life and performance. This is what I am trying to do.

c問題点を解決する為の手段] 本発明はセル状凝固組織に富んだ急冷凝固層を刃先部に
有するものであることを特徴とする特許である。
c. Means for Solving Problems] The present invention is a patent characterized in that the cutting edge portion has a rapidly solidified layer rich in cellular solidified structures.

[作用] 本発明者等が研究した結果、レーザビーム照射等によっ
て得られる急冷凝固層形成部は、第1図に示す拡大断面
図の様になっており、高速度!11の刃先予定部に形成
された急冷凝固層2は凝固進行方向に沿って成長するデ
ンドライト組織部3及び均一核生成によるセル状組織部
4によって大別構成されていることがわかった。尚第1
図中に示した4′の領域はそれらの中間的組織を示して
いるが、本発明の主旨に徴するならばこの部分もセル状
組織部であると認識するのが相当である。そこで次に高
速度鋼バイトを用いて切削試験を行ない急冷凝固層内刃
先形成位置と刃先逃げ面の摩耗量の関係を調べたところ
第2図の結果を得た。5はすくい面、6は逃げ面、ax
fは研削位置を示す。
[Function] As a result of research conducted by the present inventors, the rapidly solidified layer forming area obtained by laser beam irradiation etc. is as shown in the enlarged cross-sectional view shown in Fig. 1, and it is found that the rapid solidification layer formation area is formed at high speed! It was found that the rapidly solidified layer 2 formed at the expected cutting edge of No. 11 is roughly divided into a dendrite structure part 3 that grows along the direction of solidification progress and a cellular structure part 4 due to uniform nucleation. The first
The region 4' shown in the figure shows an intermediate structure between them, but in keeping with the gist of the present invention, it is appropriate to recognize that this region is also a cellular structure. Next, a cutting test was conducted using a high-speed steel cutting tool to investigate the relationship between the position of the cutting edge in the rapidly solidified layer and the amount of wear on the flank of the cutting edge, and the results shown in Figure 2 were obtained. 5 is rake face, 6 is flank face, ax
f indicates the grinding position.

この結果によると、研削位置がd及びeである場合は耐
摩耗性が特にすぐれていることがわかる。即ち本発明者
等はデンドライト凝固組織部よりもセル状凝固組織部の
方が耐摩耗性には優れているという結論に達したもので
あり、これはセル状組織の均一さによるものと思われる
。従って切削工具の刃先部をセル状組織部4で形成して
おけば工具の耐摩耗性はきわめてすぐれたものとなり、
その結果工具寿命並びに切削性能ともに安定性や信頼性
が良好なものとなるのである。
According to the results, it can be seen that the wear resistance is particularly excellent when the grinding positions are d and e. In other words, the present inventors have come to the conclusion that the cellular solidified structure has better wear resistance than the dendrite solidified structure, and this is thought to be due to the uniformity of the cellular structure. . Therefore, if the cutting edge of the cutting tool is formed with the cellular structure 4, the wear resistance of the tool will be extremely high.
As a result, both the tool life and cutting performance are stable and reliable.

尚前記切削試験の実施条件は次の通りであった。The conditions for conducting the cutting test were as follows.

(イ)高速度鋼バイト:5KH55種(素材)逃げ角 
  2゜ すくい角  10゜ (ロ)急冷凝固層形成条件: CO2レーザ照射(波長:10.6um)出カニ5Kw スポット径:1mmす 加工速度  :5m/分 (ハ)焼戻し条件:550℃×3回 (ニ)切削条件 : 被削材: 30M440 (Ho2O3)切削速度ニア
m7分 送り   : 0.05mm/rev 切削長 :100m (但し円筒端面連続切削) 次にセル状凝固組織の粒径と逃げ面摩耗量に関して高速
度鋼バイトによる切削試験を行なった。
(a) High speed steel bit: 5KH55 type (material) clearance angle
2゜ Rake angle 10゜ (B) Rapid solidification layer formation conditions: CO2 laser irradiation (wavelength: 10.6um) Output 5Kw Spot diameter: 1mm Machining speed: 5m/min (C) Tempering conditions: 550℃ x 3 times (d) Cutting conditions: Work material: 30M440 (Ho2O3) Cutting speed near m7 minute feed: 0.05 mm/rev Cutting length: 100 m (continuous cutting on the cylindrical end face) Next, the grain size of the cellular solidified structure and flank wear A cutting test using a high-speed steel tool was conducted to determine the amount.

試験実施条件は急冷凝固層内刃先形成位置と刃先逃げ面
の摩耗量の関係における前記切削試験の場合と同じとし
た。但しレーザ照射条件の加工速度は0.1〜10m/
分とし、バイト刃先形成位置は第2jldの位置であっ
てセル状凝固組織部が刃先となる様に研削加工を行なっ
た。試験結果は第3図に示す通りであり、セル状凝固組
織部の耐摩耗性はセル径に依存すること、特にセル径が
8μmを超えると従来の粉末高速度鋼切削工具(本図に
おける比較量)とほとんど変らないものとなることがわ
かる。その原因はセル径が8μmを超えると粉末高速度
鋼の結晶粒径とほぼ同程度となっており、耐摩耗性向上
のために必要な微細組織が得られないことに起因するも
のと思われる。
The test conditions were the same as in the cutting test described above regarding the relationship between the cutting edge formation position in the rapidly solidified layer and the amount of wear on the cutting edge flank surface. However, the processing speed under laser irradiation conditions is 0.1 to 10 m/
The grinding process was performed so that the cutting edge forming position was the second jld position and the cellular solidified tissue part became the cutting edge. The test results are shown in Figure 3, and it is clear that the wear resistance of the cellular solidified structure depends on the cell diameter, especially when the cell diameter exceeds 8 μm. It can be seen that there is almost no difference from the amount). The reason for this seems to be that when the cell diameter exceeds 8 μm, the crystal grain size is almost the same as that of powdered high-speed steel, and the microstructure required to improve wear resistance cannot be obtained. .

この様なセル状凝固組織を刃先に有する切削工具を得る
手段としては、高速度鋼の刃先形成予定部に急冷凝固層
を形成した後セル状凝固組織部が刃先にくる様に機械加
工を行なうか、或は例えば凝固経過中に超音波等を照射
して刃先形成予定部位の溶融金属に振動を与えることに
より急冷凝固層内のセル状凝固組織部が占める割合を高
めて刃先形成位置の許容範囲を拡大した後で前記の様な
機械加工を行なってもよい。また耐摩耗性を高めるため
には500〜600℃の温度で焼戻しを行なうことによ
り2次硬化現象を生ぜしめ急冷凝固組織の形成を促進さ
せることが好ましい。
In order to obtain a cutting tool having such a cellular solidified structure at the cutting edge, a rapidly solidified layer is formed in the area where the cutting edge is to be formed of high-speed steel, and then machining is performed so that the cellular solidified structure is located at the cutting edge. Alternatively, for example, by irradiating ultrasonic waves or the like during the solidification process to give vibration to the molten metal in the area where the cutting edge is to be formed, the proportion occupied by the cellular solidified structure within the rapidly solidified layer can be increased and the acceptable cutting edge forming position can be achieved. After the range has been expanded, machining as described above may be performed. Further, in order to improve wear resistance, it is preferable to perform tempering at a temperature of 500 to 600°C to cause a secondary hardening phenomenon and promote the formation of a rapidly solidified structure.

尚急冷凝固層を形成する手段は本発明を限定するもので
はないが制御や操作の簡便さを考慮すると、レーザビー
ム、電子ビーム、イオンビーム等の高エネルギー密度ビ
ーム照射によるのが好ましい。
The means for forming the rapidly solidified layer is not limited to the present invention, but in consideration of ease of control and operation, it is preferable to use high energy density beam irradiation such as a laser beam, electron beam, or ion beam.

また本発明における高速度鋼切削工具とは工具全体が高
速度鋼よりなるものだけでなく、切削に関与する刃先部
のみが高速度鋼よりなるものを含み、例えばリーマ、ブ
ローチ、シェービングカッター、ビニオンカッター、ク
ラックカッター、ベベルカッター、エンドミル、ホブ、
フォーミングラック、切断溶切削工具(コールドソー)
、フレージングカッター、フライス、ドリル及びこれら
の工具に使用されるチップやブレードが例示される。
Furthermore, the high-speed steel cutting tools in the present invention include not only tools in which the entire tool is made of high-speed steel, but also tools in which only the cutting edge part involved in cutting is made of high-speed steel, such as reamers, broaches, shaving cutters, vinyl cutters, etc. On cutter, crack cutter, bevel cutter, end mill, hob,
Forming rack, cutting cutting tool (cold saw)
, phrasing cutters, milling cutters, drills, and tips and blades used in these tools.

[実施例] 以下各実施例について述べるが、各実施例においてはC
O2レーザ(波長10.1!μm)の照射により急冷凝
固層を形成した。尚実施例2〜8においては切削に関与
する刃先部のみにセル状凝固組織を含む急冷凝固層を形
成したものを「本発明品」と称した。また各実施例で用
いている比較品とは、従来の焼入・焼戻し条件に従フて
作成されたものであるが、(レーザ処理)と付記あるも
のは本発明品と同素材・同条件で処理したもので、刃先
がデンドライト状組織部からなるものである。
[Example] Each example will be described below.
A rapidly solidified layer was formed by irradiation with an O2 laser (wavelength: 10.1 μm). In Examples 2 to 8, those in which a rapidly solidified layer containing a cellular solidified structure was formed only at the cutting edge involved in cutting were referred to as "products of the present invention." In addition, the comparative products used in each example were made according to conventional hardening and tempering conditions, but those with the annotation "(laser treatment)" were made from the same materials and under the same conditions as the inventive products. The cutting edge consists of a dendrite-like structure.

実施例1 バイト 素材を5KH55としレーザを照射したレーザ処理品1
.レーザ照射時に超音波による振動を付与したレーザ処
理品2.レーザ処理を行なわない比較品1.及び素材を
Kl(A30としレーザ処理を行なわない比較品2を用
意した。
Example 1 Laser treated product 1 made of 5KH55 bit material and irradiated with laser
.. Laser-treated product subjected to ultrasonic vibration during laser irradiation 2. Comparative product without laser treatment 1. A comparison product 2 was prepared in which the material was Kl (A30) and no laser treatment was performed.

レーザ処理条件は次の通りとした。The laser processing conditions were as follows.

出力   :5Kw スポット径:1mmす 加工速度 :3m/分 また超音波の周波数:jOMHzとした。Output: 5Kw Spot diameter: 1mm Processing speed: 3m/min Further, the frequency of ultrasonic waves was set to jOMHz.

これらのバイトを用いて逃げ面摩耗量が0.2mmに達
するまでの切削長を測定した。
Using these cutting tools, the cutting length until the amount of flank wear reached 0.2 mm was measured.

第4図はバイト斜視図であり5′はすくい面。Figure 4 is a perspective view of the cutting tool, and 5' is the rake face.

6′は逃げ面をあられす。6' will rain on the flank.

第5図(A) 、 CB)は第4図におけるV−V線断
面図をあられすが、第5図(A)はレーザ処理品1の場
合であり第5図(B)はレーザ処理品2の場合である。
Figures 5(A) and CB) are cross-sectional views taken along the line V-V in Figure 4. Figure 5(A) is for laser-treated product 1, and Figure 5(B) is for laser-treated product. This is case 2.

ao l al r  a2 las I  84 +
  asは再研削位置をあられし、この場合の数字1〜
Sは再研削回数をあられすく第6図参照)。
ao l al r a2 las I 84 +
as indicates the re-grinding position, in this case the number 1~
S indicates the number of times of re-grinding (see Figure 6).

尚切削条件は次の通りとした。The cutting conditions were as follows.

被削材 : S0M440 (Ha 300 )速度=
7m/分 送   リ    :  0.05mm/rev切削方
法二円筒端面連続切削 逃げ面最大摩耗量が0.2 mmに達するまでの切削長
で比較した試験結果を第6図に示す。
Work material: S0M440 (Ha 300) Speed =
7 m/minute feed: 0.05 mm/rev Cutting method: Two cylindrical end faces, continuous cutting, flank face. The test results are shown in Fig. 6, comparing the cutting length until the maximum wear amount reaches 0.2 mm.

レーザ処理品1では研削回数が3.4.5回目[第5図
(A)における研削位置as+a4+asの場合]にお
いてセル状組織が刃先部に現われており、これらは研削
回数が0.1.2回目[第5図(八)における再研削位
置”O+ al * a3の場合コのデンドライト凝固
組織部を刃先部とするバイトよりも耐摩耗性が大であっ
た。
In laser-treated product 1, a cellular structure appears at the cutting edge at the 3rd, 4th, and 5th grinding times [in the case of grinding positions as+a4+as in FIG. In the case of the re-grinding position "O+al*a3" in Fig. 5 (8), the wear resistance was higher than that of the cutting tool having the dendrite solidified structure part as the cutting edge.

レーザ処理品2では超音波撮動を付与しながらレーザ照
射することによってセル状凝固組織部を拡大したので、
耐摩耗性は刃先位置[第5図(B)参照]の如何によら
ずによらず安定しておりレーザ処理品1の再研削位置a
sh fi4+ as  (第5図(A)参照)の場合
と変らなかった。
In laser-treated product 2, the cellular coagulated tissue area was enlarged by laser irradiation while applying ultrasonic imaging.
Wear resistance is stable regardless of the position of the cutting edge [see Figure 5 (B)], and the re-grinding position a of laser-treated product 1
It was no different from the case of sh fi4+ as (see FIG. 5(A)).

以上の結果から明らかな様にレーザ処理品2及び再研削
回数3.4.5回目におけるレーザ処理品1は比較品1
.2の2倍以上の寿命になるという結果が得られた。
As is clear from the above results, laser-treated product 2 and laser-treated product 1 at the 3rd, 4th, and 5th re-grinding times are the comparison product 1.
.. The result was that the lifespan was more than twice as long as that of 2.

尚高エネルギー密度ビーム照射によって急冷凝固層を形
成すると一旦溶融が起こるため表面に凹凸を生じる。最
終製品は必ず所定寸法への仕上加工を必要とするが、ビ
ーム照射表面側から仕上加工した後も急冷凝固層が残る
ためには、仕上加工時の深さ方向除去量を見込んで、0
.1mm以上の深さの急冷凝固層を形成しておくことが
必要と考えられる。
When a rapidly solidified layer is formed by irradiation with a high energy density beam, melting occurs and the surface becomes uneven. The final product always requires finishing processing to the specified dimensions, but in order for the rapidly solidified layer to remain even after finishing processing from the beam irradiation surface side, it is necessary to take into account the amount removed in the depth direction during finishing processing.
.. It is considered necessary to form a rapidly solidified layer with a depth of 1 mm or more.

尚ビーム照射時に欠陥が生じ或はまた表面部が蒸発して
急冷凝固層が得られないといった問題が生じることもあ
り得ること考慮し、急冷凝固層のセル径を8μm以下に
抑えることを加味するならばビームの照射の好適条件は
次の様になるので参考として示す。但し以下の記述にお
いてはT:照射面内の1点が照射さいている時間(相互
作用時問)、W:ビームの照射エネルギー密度である。
In addition, considering that defects may occur during beam irradiation or the surface portion may evaporate and a rapidly solidified layer may not be obtained, the cell diameter of the rapidly solidified layer should be kept to 8 μm or less. Then, the preferred conditions for beam irradiation are as follows, which are shown here for reference. However, in the following description, T is the time during which one point in the irradiation surface is irradiated (interaction time), and W is the irradiation energy density of the beam.

<CO2レーザ照射条件〉 一殻にT及びWの好ましい範囲は 5X10−’秒≦T≦10−秒      ・・・■2
 x 103J/cm”≦W≦2 X 10 ’ J/
cm2”・■であって上記範囲外においては、蒸発する
。急冷凝固層深さが不足する。急冷凝固層内に欠陥を生
しる。冷却速度が不足する等の問題を生じ、しかもセル
径8μm以上のセル状組織となり必要な特性が得られな
いこととなる。ここで、T及びWはレーザの発振方法、
照射方法によって異なり次のような条件が与えられる。
<CO2 laser irradiation conditions> The preferred range of T and W per shell is 5X10-' seconds≦T≦10-seconds...■2
x 103J/cm"≦W≦2
cm2"・■ outside the above range, evaporation occurs. The depth of the rapidly solidified layer is insufficient. Defects occur in the rapidly solidified layer. Problems such as insufficient cooling rate occur, and the cell diameter This results in a cellular structure of 8 μm or more, making it impossible to obtain the necessary characteristics.Here, T and W are the laser oscillation method,
The following conditions are given depending on the irradiation method.

(1)刃先に平行な1本又は数本の連続発振ビームを同
時に並列走査させ、一部が重複した急冷凝固層を形成さ
せる場合。
(1) When one or several continuous wave beams parallel to the cutting edge are simultaneously scanned in parallel to form a rapidly solidified layer that partially overlaps.

T冨−Xo、08   (秒)       ・・・■
■ W = −x 6 x 10 ’ (J/am’)  
  =■xV ここでS=ニスポット(mm) V=走査速度(m/m1n) P=レーザ出力(Kw) (2)刃先に平行な1本又は数本のパルス発振ビームを
同時に並列して走査させ、一部が重複した急冷凝固層を
形成させる場合。
Ttomi-Xo, 08 (seconds) ...■
■ W = -x 6 x 10'(J/am')
= ■ x V where S = Nispot (mm) V = Scanning speed (m/m1n) P = Laser output (Kw) (2) Scanning one or several pulse oscillation beams parallel to the cutting edge simultaneously in parallel to form a partially overlapping rapidly solidified layer.

さらに追加条件として、連続した凝固層を得るには が必要である[(1)はd=100%の場合である]。As an additional condition, to obtain a continuous solidified layer is necessary [(1) is the case when d=100%].

ここでs、v、pは(1)と同じ。Here, s, v, and p are the same as in (1).

d=デユーティ (%) f−周波数(Hz) (3)刃先に交差する方向に振動させながら、さらに刃
先と平行方向にビームを走査し急冷凝固層を形成させる
場合。
d = Duty (%) f - Frequency (Hz) (3) When the beam is scanned in a direction parallel to the cutting edge while vibrating in a direction intersecting the cutting edge to form a rapidly solidified layer.

W = −x 6 x 10 ’ (J/cm2)  
  ・・・(if)XV *パルス発振ではそれぞれdをかける。
W = -x 6 x 10' (J/cm2)
...(if)XV *In each pulse oscillation, multiply by d.

ここでs、v、pは(1)と同じ。Dは振幅(am) 
Here, s, v, and p are the same as in (1). D is amplitude (am)
.

T′は■又は■で得られるTの値。ざらにfθは振動周
波数(Hz)とすると連続した凝固層を得るためには■
、[株](パルス発振では■、■も)の他に次の条件が
必要である。
T' is the value of T obtained by ■ or ■. Roughly speaking, fθ is the vibration frequency (Hz), and in order to obtain a continuous solidified layer, ■
In addition to , [shares] (also ■ and ■ for pulse oscillation), the following conditions are required.

−x 18.7< S              ・
・・Of θ fθ>10  (Hz)         ・・・@く
電子ビーム照射条件〉 金属表面でのビームエネルギーの吸収率が異なるために
Wに関する条件範囲が変化する(■は同じ、■が変わる
)。照射方法によるW及びTを決定する条件式はレーザ
照射の場合と同じである。
-x 18.7< S ・
...Of θ fθ>10 (Hz) ... @ electron beam irradiation conditions> Because the absorption rate of beam energy on the metal surface is different, the condition range regarding W changes (■ is the same, ■ is changed). The conditional expressions for determining W and T depending on the irradiation method are the same as in the case of laser irradiation.

又、上限、下限値の設定理由も同じである。Moreover, the reason for setting the upper and lower limit values is also the same.

5×10″′4秒≦T≦10−1秒     ・・・■
3 x 10 ’ J/cIIl”≦W≦3 X 10
 ’J/cm2・・・■゛尚、レーザがYAG (イツ
トリウム、アルミニウム、ガーネット)レーザであった
場合も吸収率の関係上電子ビーム照射条件とほぼ同じに
なることが予想される。
5×10'''4 seconds≦T≦10-1 seconds...■
3 x 10 'J/cIIl''≦W≦3 x 10
'J/cm2...■゛Even if the laser is a YAG (yttrium, aluminum, garnet) laser, it is expected that the conditions for irradiation with the electron beam will be almost the same due to the absorption rate.

尚本実施例中レーザ処理品2に対して付与されるべき振
動数は次の様にして決定した。まず超音波の周波数と急
冷凝固層断面デンドライト凝固組織部が占める面積率の
関係を求めた。結果を第7図に示す。
In this example, the frequency of vibration to be applied to the laser-treated product 2 was determined as follows. First, we determined the relationship between the frequency of ultrasound and the area ratio occupied by the dendrite solidified structure in the cross section of the rapidly solidified layer. The results are shown in FIG.

本実施例におけるレーザ照射条件においては、2次デン
ドライト間隔から判断して冷却速度が3X10’℃/秒
程度と推達されるがその数値の10倍以上の周波数の超
音波を付与することによって大幅なセル状凝固組織域の
拡大が達成されている。工具として求められる最小の深
さ幅を持った急冷凝固層で達成可能な冷却速度を10’
℃/秒と考えれば、付与すべき超音波振動の周波数を1
0MHz程度とすることによってほぼ全面がセル状凝固
組織からなる急冷凝固層が得られることになる。
Under the laser irradiation conditions in this example, the cooling rate is estimated to be about 3X10'°C/sec judging from the secondary dendrite spacing, but by applying ultrasonic waves with a frequency more than 10 times that value, the cooling rate can be significantly reduced. An expansion of the cellular coagulation tissue area has been achieved. The cooling rate that can be achieved with a rapidly solidified layer with the minimum depth width required for a tool is 10'.
℃/sec, the frequency of the ultrasonic vibration to be applied is 1
By setting the frequency to about 0 MHz, a rapidly solidified layer consisting almost entirely of a cellular solidified structure can be obtained.

実施例2 ニンドミル 材質 比較量   I  5KH56 2KHA30 3 5KH56(レーザ処理) 本発明品    5KH56 レーザ処理条件 出カニ5Kw 速度:5m/分 スポット径: 1.5 mmす 切削条件 刃数= 2 直径:10m+1す 被削材 :  S K D 11 (Ha−380)送
 リ :  80mm/分 速度: 16mm/分 切込み :1mm 試験結果 加工長さと逃げ面摩耗量の関係を調べた。結果を第8図
に示す。
Example 2 Nindmill material comparison amount I 5KH56 2KHA30 3 5KH56 (laser treatment) Invention product 5KH56 Laser treatment condition Crab 5Kw Speed: 5 m/min Spot diameter: 1.5 mm Cutting conditions Number of teeth = 2 Diameter: 10 m + 1 mm Cutting material: S KD 11 (Ha-380) Feed rate: 80 mm/min Speed: 16 mm/min Depth of cut: 1 mm Test results The relationship between machining length and flank wear amount was investigated. The results are shown in FIG.

本発明品の寿命は比較量1.2より3倍以上向上し、比
較量3よりも1.5倍向上した。
The life of the product of the present invention was improved by more than 3 times as compared to the comparative quantity 1.2, and 1.5 times as compared to the comparative quantity 3.

実施例3 ビニオンカッター 材質  比較量I  KMC3 2KMC3(レーザ処理) 本発明品 KMC3 レーザ処理条件 出カニ5Kw 速度:1m/分 スポット径:15 mmす 切削条件 被剛材     :SCM21 切削ストo−り数: (400v1500w)Str、
/ 分うジアル送り  : O,12ma+/分試験結
果 切削長さとトレリング側摩耗量の関係を調べた。結果を
第9図に示す。
Example 3 Binion cutter material Comparison amount I KMC3 2KMC3 (laser treatment) Invention product KMC3 Laser treatment conditions output crab 5Kw Speed: 1 m/min Spot diameter: 15 mm Cutting conditions Rigidity material: SCM21 Cutting stroke number : (400v1500w)Str,
/min Dial feed: O, 12ma+/min Test results The relationship between the cutting length and the amount of wear on the trailing side was investigated. The results are shown in Figure 9.

本発明品の摩耗は比較量1に比べて極端に減少し、比較
量2に対しても約273となった。
The wear of the product of the present invention was extremely reduced compared to Comparison Quantity 1, and was about 273 compared to Comparison Quantity 2.

実施例4 ストレートシャンクドリル(10mmφ)材質 比較量   I  5KH51 23KH51(TiN コーティング処理) 3 3KH51(レーザ処理) 本発明品    5KH5ル レーザ処理条件 出力+5Kw 速度:5m/分 スポット径: 1.Ommす 切削条件 被削材  S 50 C(l(a 250)穴 径:1
0mmす 送   リ  :     0.18mm/rev速 
度: 比較材1,2  18m/分レーザ処理材  2
5m/分 板 厚: 20t (貫通) 試験結果 穴加数を比較した。
Example 4 Straight shank drill (10 mmφ) material comparison amount I 5KH51 23KH51 (TiN coating treatment) 3 3KH51 (laser treatment) Invention product 5KH5 Laser treatment conditions Output + 5Kw Speed: 5 m/min Spot diameter: 1. Omm Cutting conditions Work material S 50 C (l (a 250) hole diameter: 1
0mm feed: 0.18mm/rev speed
Degree: Comparison material 1, 2 18m/min laser treated material 2
5m/divided plate Thickness: 20t (through) Test results The number of holes was compared.

結果を第10図に示す。The results are shown in FIG.

本発明品は寿命は比較品103倍、比較品3の1.5倍
となりコーティングドリル(比較量2)に近づいた。
The life of the product of the present invention was 103 times that of the comparative product and 1.5 times that of comparative product 3, approaching that of the coated drill (comparative amount 2).

実施例5 みぞフライス 材質 比較量  I  5KH55 2KHA50 3KH’A30(レーザ処理) 本発明品   KHA 50 レーザ処理条件 出カニ3Kw 速度:5m/分 スポット径: 1.0mmす 切削条件 被削材:  S 40 C(Ha 150)切削速度:
  17.6 m7分 送り速度:  90mm/分 溝深さ:  1.14mm 試験結果 溝切加工数で比較した。結果を第11図に示す。
Example 5 Groove milling material comparison amount I 5KH55 2KHA50 3KH'A30 (laser treatment) Invention product KHA 50 Laser treatment conditions Output crab 3Kw Speed: 5 m/min Spot diameter: 1.0 mm Cutting conditions Work material: S 40 C (Ha 150) Cutting speed:
17.6 m 7 min Feed rate: 90 mm/min Groove depth: 1.14 mm Test results Comparison was made based on the number of grooves cut. The results are shown in FIG.

本発明品は寿命が比較量1.2のほぼ2.5倍。The product of the present invention has a lifespan approximately 2.5 times that of the comparative product 1.2.

比較量3の1.2倍となった。The amount was 1.2 times that of comparison amount 3.

実施例6 ホブ 諸元   材質S KH55,モジュール2.5.圧力
角20°1条数3゜ 溝数12 被削歯車 諸元  平歯車、歯数31.ねじれ角 0° 、  SCM41 5H(l(B 150)82
.5す ×50w 切削条件 速度:9am/分 送り: 4.0 mm/rev タライムカット シフトなし レーザIA埋条件 出力 :  5Kw スポット径: 1.5 IQIIIす 速度 = 3m/分 試験結果 逃げ面最大摩耗量が0.2 mmに達するまでの切削長
及びクレータ深さ0.02mmに達するまでの切削長を
調べた。結果を第12図(A)、(B)に示す。
Example 6 Hob specifications Material S KH55, module 2.5. Pressure angle 20° 1 thread number 3° groove number 12 Work gear specifications Spur gear, number of teeth 31. Helix angle 0°, SCM41 5H(l(B 150)82
.. 5×50w Cutting conditions Speed: 9am/min Feed: 4.0 mm/rev Talime cut without shift Laser IA burial condition Output: 5Kw Spot diameter: 1.5 IQIII speed = 3m/min Test result Flank surface maximum wear The cutting length until the amount reached 0.2 mm and the cutting length until the crater depth reached 0.02 mm were investigated. The results are shown in FIGS. 12(A) and (B).

本発明品は比較量1.2にくらベクレータ、逃げ面摩耗
ともに減少し、寿命が向上した。
In the product of the present invention, both vector wear and flank wear were reduced by 1.2 compared to the comparison amount, and the service life was improved.

実施例7 ベベルカッタ 材質      5KH51 被削歯車諸元 ピッチ円径: 154.08mm 歯数=36 ねじれ角: 351 歯1fti : 23.Omm 歯丈: 10.5 mm 材質: S0M415)1a 150)切削条件 速度:  43m/分 送 リ:  0.12 mm /ブレードレーザ処理条
件 試験結果 摩耗深さの関係を調べた。結果を第13図に示す。また
切削長90mでの多刃の逃げ面摩耗を調べた。結果を第
14図に示す。
Example 7 Bevel cutter material 5KH51 Work gear specifications Pitch circle diameter: 154.08 mm Number of teeth = 36 Helix angle: 351 Teeth 1fti: 23. Omm Tooth height: 10.5 mm Material: S0M415) 1a 150) Cutting conditions Speed: 43 m/minute feed Re: 0.12 mm/blade laser treatment conditions Test results The relationship between wear depth was investigated. The results are shown in FIG. We also investigated flank wear of the multi-blade at a cutting length of 90 m. The results are shown in FIG.

本発明品は比較量1.2に比べてクレータが減少し、逃
げ面摩耗も減少して寿命が向上した。
The product of the present invention had fewer craters and less flank wear than the comparative product 1.2, resulting in an improved life.

実施例8 リーマ 材質     5KH5ル −ザ処理条件 出力   :5Kw スポット径: 1.Ommす 速度   =3m/分 切削条件 被削材 :  540C(Ha 210)速度: 10
.8m 7分 送   リ    :     0.1 〜0.4  
+nn+/revリーマ代:  0.3mm 加工穴径= 10口mφ 試験結果 (R□8及びRa)との関係で示す。
Example 8 Reamer material 5KH5 ruser processing conditions Output: 5Kw Spot diameter: 1. Omm speed = 3m/min Cutting conditions Work material: 540C (Ha 210) Speed: 10
.. 8m 7 minutes feed: 0.1 ~ 0.4
+nn+/rev Reamer allowance: 0.3 mm Processed hole diameter = 10 mφ Shown in relation to test results (R□8 and Ra).

本発明品は刃先部をセル状組織としたことにより刃先部
組織が微細化、高靭性化し耐凝着性が改善されるものと
思われる。そのため、本実施例のように仕上面粗さも向
上したものと思われる。
It is thought that the product of the present invention has a cellular structure at the cutting edge, which makes the structure of the cutting edge finer and tougher, and improves adhesion resistance. Therefore, it seems that the finished surface roughness was improved as in this example.

[発明の効果] 本発明は上記の様に構成されるから工具刃先部の耐摩耗
性がすぐれたものとなる結果工具の寿命が向上しその安
定性、信頼性も高いものとなった。
[Effects of the Invention] Since the present invention is constructed as described above, the wear resistance of the cutting edge of the tool is excellent, and as a result, the life of the tool is improved and its stability and reliability are also high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は急冷凝固層の拡大断面図、第2面は急冷凝固層
の研削位置と逃げ面摩耗量の関係を示す図、第3図はセ
ル状凝固組織粒径と逃げ面摩耗量の関係を示す図、第4
図はバイト斜視図、第5図(A)、CB)は第4図にお
c’gるv−v断面図、第6図は刃先再研削回数と切削
長の関係を示す図、第7図はレーザ照射時の急冷凝固層
に超音波による振動を与える場合の周波数とデンドライ
ト凝固組織部が占める面積率の関係を示す区、第8図は
エンドミルの加工長さと逃げ面摩耗量の関係を示す図、
第9図はビニオンカッターの切削長とトレリング側摩耗
量の関係を示す図、第10図はストレートシャンクドリ
ルの穴加工数を示す図、第11図はみぞフライスの溝加
工数を示す図、第12図(A)、(B)は普通刃ホブの
切削長を示す図、第13図はベベルカッターの切削長と
クレータ摩耗深さの関係を示す図、第14図は同切削長
90mでの各月の逃げ面摩耗を示す図、第15.18図
はリーマの加工個数と仕上面粗さの関係を示す図である
。 2・・・急冷凝固層   3・・・デンドライト組織部
4・・・セル状組織部   5.5′・・・刃先すくい
面6.6′・・・刃先逃げ面
Figure 1 is an enlarged cross-sectional view of the rapidly solidified layer, the second side is a diagram showing the relationship between the grinding position of the rapidly solidified layer and the amount of flank wear, and Figure 3 is the relationship between the grain size of the cellular solidified structure and the amount of flank wear. Figure 4 showing
The figure is a perspective view of the cutting tool, Figures 5 (A) and CB) are v-v sectional views taken along the c'g line in Figure 4, Figure 6 is a diagram showing the relationship between the number of times the cutting edge is re-grinded and the cutting length, and Figure 7 The figure shows the relationship between the frequency and the area ratio occupied by the dendrite solidified structure when applying ultrasonic vibration to the rapidly solidified layer during laser irradiation, and Figure 8 shows the relationship between the machining length of the end mill and the amount of flank wear. The figure shown,
Fig. 9 is a diagram showing the relationship between the cutting length of a binion cutter and the amount of wear on the trailing side, Fig. 10 is a diagram showing the number of holes machined by a straight shank drill, and Fig. 11 is a diagram showing the number of grooves machined by a groove milling cutter. Figures 12 (A) and (B) are diagrams showing the cutting length of a regular blade hob, Figure 13 is a diagram showing the relationship between the cutting length and crater wear depth of a bevel cutter, and Figure 14 is a diagram showing the cutting length of the same cutting length of 90 m. Figure 15.18 is a diagram showing the flank wear for each month, and Figure 15.18 is a diagram showing the relationship between the number of reamers processed and the finished surface roughness. 2... Rapidly solidified layer 3... Dendrite structure part 4... Cellular structure part 5.5'... Cutting edge rake surface 6.6'... Cutting edge flank surface

Claims (1)

【特許請求の範囲】[Claims] セル状凝固組織に富んだ急冷凝固層を刃先部に有するも
のであることを特徴とする高速度鋼切削工具。
A high-speed steel cutting tool characterized by having a rapidly solidified layer rich in cellular solidified structure at the cutting edge.
JP25930986A 1986-10-30 1986-10-30 High-speed steel cutting tool Pending JPS63114804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25930986A JPS63114804A (en) 1986-10-30 1986-10-30 High-speed steel cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25930986A JPS63114804A (en) 1986-10-30 1986-10-30 High-speed steel cutting tool

Publications (1)

Publication Number Publication Date
JPS63114804A true JPS63114804A (en) 1988-05-19

Family

ID=17332285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25930986A Pending JPS63114804A (en) 1986-10-30 1986-10-30 High-speed steel cutting tool

Country Status (1)

Country Link
JP (1) JPS63114804A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132725A (en) * 2011-12-27 2013-07-08 Univ Of Shiga Prefecture Tool with cutting edge, method of manufacturing the same, and method for manufacturing of manufacturing intermediate product of tool with cutting edge
CN107739814A (en) * 2017-10-24 2018-02-27 天津华德宝航翼光电科技有限公司 A kind of method for effectively improving NC cutting tool Durability

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132725A (en) * 2011-12-27 2013-07-08 Univ Of Shiga Prefecture Tool with cutting edge, method of manufacturing the same, and method for manufacturing of manufacturing intermediate product of tool with cutting edge
CN107739814A (en) * 2017-10-24 2018-02-27 天津华德宝航翼光电科技有限公司 A kind of method for effectively improving NC cutting tool Durability

Similar Documents

Publication Publication Date Title
Khorasani et al. Laser subtractive and laser powder bed fusion of metals: Review of process and production features
US6402438B1 (en) Composite Cutting Tool
US6612204B1 (en) Process for manufacturing a blade of a cutting tool and product manufactured therewith
Islam et al. Laser machining of ceramics: a review
WO2021079586A1 (en) Diamond cutting tool and production method therefor
RU2699469C1 (en) Steel billet machining method with chips crushing
JPH09309020A (en) Three-dimensional machining cemented solid end mill
JPS63114804A (en) High-speed steel cutting tool
JPH0251966B2 (en)
US4163402A (en) Method of machining workpieces after preheating
WO2021157716A1 (en) Method for manufacturing cutting tool
JP2023095112A (en) Cutting tool manufacturing method
JP2021011015A (en) Manufacturing method for diamond-coated rotary cutting tool
JP2021122935A (en) Manufacturing method of cutting tool
Dunleavey et al. Non-conventional machining of metal matrix composites
JP4610102B2 (en) Ball end mill
JPS62282803A (en) High-speed steel cutting tool
JPS61249210A (en) Broach made of high-speed steel possessing high performance
Finn Machining of aluminum alloys
SU1752514A1 (en) Method of treatment of tungsten-cobalt hard alloy tools
JPH0192033A (en) Manufacture of high speed steel cutting tool
Erasenthiran et al. Investigation of normal and slant laser cutting using cw and pulsed CO2 laser for laminated object manufacturing techniques
JPS59191582A (en) Production of blade requiring sharp edge
JPH0537411U (en) Solid End Mill
JPH0663831A (en) Method for boring deep hole in material difficult to be machined