JPH0192033A - Manufacture of high speed steel cutting tool - Google Patents
Manufacture of high speed steel cutting toolInfo
- Publication number
- JPH0192033A JPH0192033A JP25095687A JP25095687A JPH0192033A JP H0192033 A JPH0192033 A JP H0192033A JP 25095687 A JP25095687 A JP 25095687A JP 25095687 A JP25095687 A JP 25095687A JP H0192033 A JPH0192033 A JP H0192033A
- Authority
- JP
- Japan
- Prior art keywords
- tempering
- speed steel
- cutting edge
- formation
- irradiation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 59
- 229910000997 High-speed steel Inorganic materials 0.000 title claims abstract description 32
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000000463 material Substances 0.000 claims abstract description 30
- 238000005496 tempering Methods 0.000 claims abstract description 29
- 229910000831 Steel Inorganic materials 0.000 claims description 5
- 239000010959 steel Substances 0.000 claims description 5
- 238000000034 method Methods 0.000 abstract description 16
- 238000010791 quenching Methods 0.000 abstract description 13
- 230000000171 quenching effect Effects 0.000 abstract description 12
- 238000011282 treatment Methods 0.000 abstract description 8
- 230000015572 biosynthetic process Effects 0.000 abstract description 7
- 230000015271 coagulation Effects 0.000 abstract 1
- 238000005345 coagulation Methods 0.000 abstract 1
- 238000005336 cracking Methods 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 230000003746 surface roughness Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 150000001247 metal acetylides Chemical group 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- 108010010737 Ceruletide Proteins 0.000 description 1
- 241001655798 Taku Species 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007712 rapid solidification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Welding Or Cutting Using Electron Beams (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は長時間使用しても被剛材の切削面を平滑に仕上
げることのできる高速度鋼切削工具の製造方法に関する
ものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method of manufacturing a high-speed steel cutting tool that can finish the cut surface of a rigid material smoothly even after long-term use.
本発明に係る高速度鋼とは、JISで規定されている高
速度鋼や通常粉末高速度鋼と呼ばれる鋼種はもちろん1
次炭化物を含み、しかも合金炭化物析出による焼戻し2
次硬化が生じる鋼種を含むものである。The high-speed steel according to the present invention includes not only high-speed steel specified by JIS and steel types usually called powder high-speed steel, but also 1
Tempering 2 containing secondary carbides and due to alloy carbide precipitation
This includes steel types that undergo post-hardening.
[従来の技術]
切削加工の高能率化・高精度化の要請にもとづいて近年
高速度鋼切削工具に関しても種々の改良が行なわれ特に
刃先部の耐摩耗性、靭性及び硬度の向上がはかられてい
る0例えば特開昭59−83718号では、高速度鋼素
材を焼入れした後これにレーザを照射することにより素
材鋼中に大量に含まれる1次炭化物を固溶せしめ、表層
部組織が炭化物を殆んど含まないものとし、その後特定
の温度で焼戻すことによって固溶している炭化物を微細
析出させ2次硬化を著しく促進させ硬度、靭性、耐摩耗
性を向上させる方法が示されている。[Prior Art] In response to demands for higher efficiency and higher accuracy in cutting, various improvements have been made to high-speed steel cutting tools in recent years, with improvements in wear resistance, toughness, and hardness of the cutting edge in particular. For example, in JP-A No. 59-83718, a high-speed steel material is quenched and then irradiated with a laser to dissolve a large amount of primary carbide contained in the steel material, thereby reducing the surface structure. A method has been shown in which the steel is made to contain almost no carbides, and then tempered at a specific temperature to cause fine precipitation of solid-dissolved carbides, significantly promoting secondary hardening and improving hardness, toughness, and wear resistance. ing.
しかしながらこの様な従来方法における焼入処理の温度
は、素材鋼中の1次炭化物をできるだけ多く固溶させ、
且つ結晶粒粗大化等の問題を生じない、という観点から
決められたものであり、融点よりも30〜50℃低い融
点直下の、温度で焼入れされている。このように処理さ
れた焼入材は硬度、剛性共に高く、しかも靭性、塑性変
形能は非常に小さいものである。一方、レーザ照射によ
り溶融及び急冷凝固した層(以下、急冷凝固層という)
では、その層に隣接する高速度鋼素材部分(以下、母材
部分ということがある)との間に引張応力が働く、この
ため、焼入処理後にレーザ照射を行なうと前記引張応力
が急冷凝固層の破断力より大きい場合は割れが発生し、
これに起因して刃先・刃面粗さを悪化させ、その結果被
剛材の仕上げ面粗さをも悪化させるおそれがある。However, the temperature of the quenching treatment in such conventional methods is such that as much primary carbide as possible is dissolved in the raw material steel,
This was determined from the viewpoint of not causing problems such as coarsening of crystal grains, and is quenched at a temperature just below the melting point, which is 30 to 50 degrees Celsius lower than the melting point. The hardened material treated in this way has high hardness and rigidity, and has very low toughness and plastic deformability. On the other hand, a layer melted and rapidly solidified by laser irradiation (hereinafter referred to as a rapidly solidified layer)
In this case, tensile stress acts between the layer and the adjacent high-speed steel material part (hereinafter referred to as the base material part). Therefore, when laser irradiation is performed after quenching, the tensile stress is rapidly solidified. If it is larger than the breaking force of the layer, cracking will occur;
Due to this, the roughness of the cutting edge/blade surface may be deteriorated, and as a result, the roughness of the finished surface of the rigid material may also be deteriorated.
そこで本発明者らは焼入温度をコントロールすることに
より高エネルギー密度ビーム(以下単にビームというこ
とがある)照射の際の割れの発生を抑制する技術に想到
し先に出願を行なった(特願昭6l−122844)。Therefore, the present inventors came up with a technology to suppress the occurrence of cracks during high energy density beam (hereinafter simply referred to as beam) irradiation by controlling the quenching temperature, and filed a patent application. (Sho 6l-122844).
[発明が解決しようとする問題点]
上記出願発明によりビーム照射の際の割れの発生を抑制
するという目的は一応達成されたのであるが、割れの発
生が前述の様に主として母材部分の引張応力とビーム照
射の際の急冷凝固層の破断力の力関係に起因するという
観点からすれば、先出願で採用した焼入温度の調整とい
う手段よりも焼入れ後ビーム照射前に焼戻し工程を付加
すると共にこの焼戻し温度を調整するという手段を採用
することによって、焼戻し工程で生じるもろさを除去す
ると共に残留応力を除去することができ、その結果ビー
ム照射時の割れの発生はより効果的に防止できるのでは
ないかと考えられた。[Problems to be Solved by the Invention] Although the above applied invention has achieved the objective of suppressing the occurrence of cracks during beam irradiation, as mentioned above, the occurrence of cracks is mainly due to tension in the base material. From the perspective that this is caused by the force relationship between stress and the rupture force of the rapidly solidified layer during beam irradiation, a tempering process should be added after quenching and before beam irradiation, rather than adjusting the quenching temperature that was adopted in the previous application. At the same time, by adjusting the tempering temperature, it is possible to remove the brittleness that occurs during the tempering process and remove residual stress, and as a result, the occurrence of cracks during beam irradiation can be more effectively prevented. It was thought that it might be.
本発明はこの様な着想の下になされたものであって、高
速度鋼切削工具(以下切削工具ということがある)素材
を焼入れした後、一定温度範囲の下で焼戻しを行なうこ
とによって、ビーム照射の際の割れの発生及びそれに伴
なう刃先・刃面粗さの悪化を防止し、その結果として被
剛材の仕上げ面粗さに関する性能を向上させ、且つ切削
工具の耐摩耗性及び靭性も優れた高速度鋼切削工具の製
造方法を提供しようとするものである。The present invention was made based on such an idea, and after hardening a high-speed steel cutting tool (hereinafter sometimes referred to as cutting tool) material, it is tempered under a certain temperature range to form a beam. It prevents the occurrence of cracks during irradiation and the accompanying deterioration of the cutting edge and blade surface roughness, and as a result, improves the performance regarding the finished surface roughness of the rigid material, and improves the wear resistance and toughness of cutting tools. It is also an object of the present invention to provide a method for manufacturing an excellent high-speed steel cutting tool.
〔問題点を解決する為の手段]
本発明は高速度鋼切削工具素材を焼入れして更に540
〜700℃の温度で焼戻した後、高エネルギー密度ビー
ムを照射することによって刃先部あるいは刃先形成予定
部を溶融及び急冷凝固し、更に焼戻し及び仕上加工をす
ることにより刃先部に急冷凝固層を有する高速度鋼切削
工具を得ることを要旨とするものである。[Means for solving the problem] The present invention further hardens a high-speed steel cutting tool material to 540%
After tempering at a temperature of ~700°C, the cutting edge or the area where the cutting edge will be formed is melted and rapidly solidified by irradiation with a high energy density beam, and then tempered and finished to form a rapidly solidified layer on the cutting edge. The gist is to obtain a high speed steel cutting tool.
[作用]
本発明は上記の様に構成され、前述の様に切削工具素材
を焼入れした後ビーム照射前に一定温度範囲での焼戻し
を行なうことによって、焼戻し工程によって生じるもろ
さを除去し、残留応力を低減し、ビーム照射時の割れの
発生を防止するものである。以下にその作用を説明する
。尚、本発明に係る高速度鋼切削工具とは工具全体が高
速度鋼よりなるものはもちろん、切削に関与する刃先部
のみが高速度鋼であるものも含まれる。[Function] The present invention is constructed as described above, and by hardening the cutting tool material as described above and then tempering it in a certain temperature range before beam irradiation, the brittleness caused by the tempering process is removed and the residual stress is reduced. This reduces the amount of cracking caused by beam irradiation and prevents cracks from occurring during beam irradiation. The effect will be explained below. Note that the high-speed steel cutting tool according to the present invention includes not only a tool in which the entire tool is made of high-speed steel, but also a tool in which only the cutting edge portion involved in cutting is made of high-speed steel.
まず、本出願人等は代表的な溶製高速度鋼5KH51,
5KH55,及び粉末高速度鋼であるKHA30を種々
の温度で焼入れした後焼戻しをした。これを供試材とし
て熱処理条件と硬さの関係を調査した。結果は第1図に
示すとおりであった。First, the present applicant et al.
5KH55 and KHA30, which is a powdered high speed steel, were quenched at various temperatures and then tempered. This was used as a test material to investigate the relationship between heat treatment conditions and hardness. The results were as shown in Figure 1.
第1図から明らかな様に、焼戻し温度が560℃を超え
ると焼入硬さも低下するが、高速度鋼においては焼戻し
温度が700℃以下であれば1(1c 40程度の硬さ
は十分に得られる。ところで切削工具の母材は切削を直
接性なう部分ではないから、切削に直接関与する刃先部
に要求される程の硬さが必要とされるものではなく、刃
先部を保持するに足りる強度を備えておりさえすれば良
く、むしろ硬すぎる場合は色々な弊害を招く、この観点
からは通常HRC40程度の硬さがあればよいとされる
。即ち、焼戻し温度が530〜700℃であれば、切削
工具の母材に必要とされる硬度は当然に維持されるので
ある。As is clear from Figure 1, when the tempering temperature exceeds 560°C, the quenched hardness also decreases, but in high-speed steel, if the tempering temperature is below 700°C, a hardness of about 1 (1c) 40 is sufficient. By the way, since the base material of a cutting tool is not a part that directly undergoes cutting, it does not need to be as hard as the cutting edge, which is directly involved in cutting, and it is not necessary to have the same hardness as the cutting edge that is directly involved in cutting. It is sufficient that the material has sufficient strength, but if it is too hard, it will cause various problems.From this point of view, it is generally said that a hardness of about HRC 40 is sufficient.That is, the tempering temperature is 530 to 700°C. If so, the hardness required for the base material of the cutting tool is naturally maintained.
次に焼入・焼戻処理を行なった高速度鋼工具の刃先部或
は刃先形成予定部位にビームを照射し、割れの発生状況
と焼入温度の関係を調査したところ第2図に示す通りの
結果を得た。尚、割れ発生状況の判定尺度としては下記
の5段階評価を採用した。Next, we irradiated the cutting edge of the high-speed steel tool that had undergone quenching and tempering treatment with a beam, and investigated the relationship between the occurrence of cracks and the quenching temperature, as shown in Figure 2. I got the result. The following 5-level evaluation was adopted as a criterion for determining the occurrence of cracks.
1・・・・・・割れ発生せず。1... No cracking occurred.
2・・・・・・目視では識別できないが20倍拡大によ
り視認可能な微細な割れ発生。2...Minute cracks that cannot be visually identified but are visible under 20x magnification.
3・・・・・・目視可能な割れの総延長50mm+未満
或は割れ起点数4点以下。3...The total length of visible cracks is less than 50 mm+ or the number of crack origins is 4 or less.
4・・・・・・目視可能な割れの総延長50mm以上1
00ma+未満或は割れ起点数5点以上9点以下。4... Total length of visible cracks 50mm or more1
Less than 00ma+ or the number of crack starting points is 5 or more and 9 or less.
5・・・・・・目視割れの総延長toomm以上或は割
れ起点数10点以上。5...The total length of visual cracks is toomm or more or the number of crack starting points is 10 or more.
第2図から明らかな様に焼入れ後ビーム照射前に530
℃より高い温度で焼戻処理を行なえば割れの発生は防止
できることがわかった。尚焼戻温度が530〜560℃
の範囲においては焼戻硬度が焼入状態と殆んど同じであ
るにも拘らず割れが完全に抑制されている。このことは
焼戻工程の温度範囲が上記のものであれば、焼入工程で
生じるもろさが十分に除去され、残留応力も十分に抑制
され、母材部分と急冷凝固層間の引張応力がビーム照射
時の急冷凝固層の破断力より小さくコントロールされる
ことを示している。As is clear from Figure 2, after quenching and before beam irradiation, the
It was found that cracking could be prevented if the tempering treatment was performed at a temperature higher than ℃. In addition, the tempering temperature is 530 to 560℃
In this range, cracking is completely suppressed even though the tempered hardness is almost the same as that in the quenched state. This means that if the temperature range of the tempering process is within the above range, the brittleness generated in the quenching process will be sufficiently removed, the residual stress will also be sufficiently suppressed, and the tensile stress between the base material and the rapidly solidified layer will be reduced by the beam irradiation. This shows that the breaking force of the rapidly solidified layer is controlled to be smaller than that of the rapidly solidified layer.
ところで本発明において使用されるビームは高速加熱の
可能な高エネルギービームであれば、各種レーザや電子
ビーム或はその他のものであってもよくビームの種類を
特に限定するものではない。次にレーザ及び電子ビーム
を例にとりビームの照射条件を説明する。By the way, the beam used in the present invention may be any type of laser, electron beam, or other beam as long as it is a high-energy beam capable of high-speed heating, and the type of beam is not particularly limited. Next, beam irradiation conditions will be explained using laser and electron beams as examples.
高速度鋼にレーザを照射する場合の照射条件の設定は、
吸収エネルギー密度とビーム移動速度によって決定する
方法も論理上は可能である(特開昭59−83718)
が、一般にはエネルギーの吸収率の特定は困難であるの
で、吸収エネルギー密度による条件の設定は具体的でな
い、このため本発明においてはエネルギー照射密度によ
る条件の設定を行なった。Setting the irradiation conditions when irradiating high-speed steel with a laser is as follows:
A method of determining the absorption energy density and beam movement speed is also theoretically possible (Japanese Patent Laid-Open No. 59-83718).
However, since it is generally difficult to specify the energy absorption rate, it is not specific to set conditions based on absorbed energy density.Therefore, in the present invention, conditions were set based on energy irradiation density.
即ち幅Da−以上、深さ0.1 am以上の急冷凝固層
を形成させる為に必要な高エネルギー密度ビームの照射
条件は、照射面内の1点が照射されている時間(相互作
用;T)とその時のビーム強度(照射エネルギー密度;
W)でほぼ決定されるものである。5KH55にレーザ
及び電子ビームを照射したときのビーム強度(J/cm
”)と相互作用時間との関係をあられす実験結果を第3
図に示す。In other words, the irradiation conditions for the high energy density beam necessary to form a rapidly solidified layer with a width of Da- or more and a depth of 0.1 am or more are the time during which one point in the irradiation surface is irradiated (interaction; T ) and the beam intensity at that time (irradiation energy density;
W). Beam intensity (J/cm) when 5KH55 is irradiated with laser and electron beam
”) and the interaction time.
As shown in the figure.
くレーザ照射条件〉
T及びWの好ましい範囲は
5X10−’秒≦T≦10−1秒 ・・・■2X
10’ J/cm”≦W≦2 x 10 ’ J/c
m2−■であって上記範囲外においては、第3図に示す
様に蒸発する。急冷凝固層深さが不足する。急冷凝固層
内に欠陥を生じる。冷却速度が不足する等の問題を生じ
必要な特性が得られないこととなる。Laser irradiation conditions> The preferred range of T and W is 5X10-' seconds≦T≦10-1 seconds...■2X
10'J/cm"≦W≦2 x 10' J/c
m2-■ outside the above range, evaporation occurs as shown in FIG. Rapid solidification layer depth is insufficient. Defects occur in the rapidly solidified layer. Problems such as insufficient cooling rate occur, and necessary characteristics cannot be obtained.
ここで、T及びWはレーザの発掘方法、照射方法によっ
て異なり次のような条件が与えられる。Here, T and W vary depending on the laser excavation method and irradiation method, and the following conditions are given.
(1)刃先に平行な1本又は数本の連続発振ビームを同
時に並列させ走査し、1本又は重複部に熱影響層の存在
しない一部が重複した急冷凝固層を形成させる場合。(1) When one or several continuous wave beams parallel to the cutting edge are scanned in parallel at the same time to form a rapidly solidified layer in which a portion of the beam where no heat affected layer is present overlaps in one beam or in an overlapping area.
T−−Xo、0B(秒) ・・・■■
W−一二−x 6 x 10 ’ (J/ca+2)
−■xv
ここでS−スポット径(+am)
■!走査速度(m/m1n)
P冨し−ザ出力(Kw)
(2)1本又は平行な数本のパルス発振ビームを刃先に
同時に並列して走査し、1本又は重複部に熱影響層の存
在しない一部が重複した急冷凝固層を形成させる場合。T--Xo, 0B (seconds) ...■■ W-12-x 6 x 10' (J/ca+2)
-■xv Here S-spot diameter (+am) ■! Scanning speed (m/m1n) P depth - output (Kw) (2) One or several parallel pulse oscillation beams are scanned in parallel at the cutting edge at the same time to form a heat-affected layer in one or overlapping areas. In the case where a rapidly solidified layer is formed where a portion of the layer that does not exist overlaps.
さらに追加条件として、連続した凝固層を得るには
<0.1(抄) ・・・■
が必要である[(1)はd−100%の場合であること
がわかる]。Furthermore, as an additional condition, <0.1 (extract)...■ is required to obtain a continuous solidified layer [it can be seen that (1) is for the case of d-100%].
ここでs、v、pは1)と同じ
d諺デエーティ(%)
f−周波数(Hz)
く電子ビーム照射条件〉
金属表面でのビームエネルギーの吸収率が異なるために
Wに関する条件範囲が変化する(■は同じ、■が変わる
)、照射方法によるW及びTを決定する条件式はレーザ
照射の場合と同じである。Here, s, v, and p are the same as in 1) (%) f-frequency (Hz) Electron beam irradiation conditions> The condition range regarding W changes because the absorption rate of beam energy on the metal surface is different. (■ is the same, ■ is different), and the conditional expressions for determining W and T depending on the irradiation method are the same as in the case of laser irradiation.
又、上限、下限値の設定理由も同じである。Moreover, the reason for setting the upper and lower limit values is also the same.
5xlO−’秒≦T≦10−1秒 ・・・
■3 X 102J/cm’≦W≦3 X 10 ’
J/cm”−■。5xlO-' seconds≦T≦10-1 seconds...
■3 X 102J/cm'≦W≦3 X 10'
J/cm”-■.
この場合の処理条件は下記のとおりである。The processing conditions in this case are as follows.
出 カニ100W〜IKW
スポット径:0.1〜2諺璽
速度=0.1〜8m/分
尚、レーザがYAG (イツトリウム、アルミニウム、
ガーネット)レーザである場合、吸収率の関係上電子ビ
ーム照射条件と同じになることが予想される。100W to IKW Spot diameter: 0.1 to 2 Speed = 0.1 to 8 m/min In addition, the laser is YAG (yttrium, aluminum,
In the case of a garnet) laser, it is expected that the conditions will be the same as those for electron beam irradiation due to the absorption rate.
以上の様な照射条件で急冷凝固層が形成されるが、切削
工具に関与する刃先部会体に急冷凝固層が形成されるこ
とは必ずしも必要でなく、工具の種類によっては刃先の
一部のみに形成される場合もある。*た、多刃工具にあ
っては必ずしも全ての刃に急冷凝固層が形成されるもの
ではなく、−部の刃の刃先部、更に該刃先部の更に一部
のみに形成されることもある。Although a rapidly solidified layer is formed under the above irradiation conditions, it is not always necessary to form a rapidly solidified layer on the cutting edge assembly involved in the cutting tool, and depending on the type of tool, it may be formed only on a part of the cutting edge. may be formed. *In addition, in the case of multi-blade tools, the rapidly solidified layer is not necessarily formed on all the blades, but may be formed only on the cutting edge of the negative part of the blade, or even on a further part of the cutting edge. .
この様な場合、レーザ等が照射されていない刃先部であ
っても、硬度等に関しては少なくとも通常の焼入・焼戻
しをしたものと同等の性能を与えることが必要である。In such a case, even if the cutting edge part is not irradiated with laser or the like, it is necessary to provide at least the same performance in terms of hardness and the like as that of one that has undergone normal hardening and tempering.
従ってレーザ照射等の処理がなされていない刃先部につ
いても、通常の焼入処理を行なったあとで530〜56
0℃で焼戻すことが望ましい。Therefore, even if the cutting edge part has not been subjected to treatments such as laser irradiation, it will be 530 to 56
It is desirable to temper at 0°C.
本発明の係る高速度切削工具は、工具全体が高速度鋼よ
りなるもののみならず普通鋼等に高速度鋼を溶接或は焼
ばめを施して刃先加工したもの、即ち切削に関与する刃
先部のみを高速度鋼で構成したものも含まれる。尚、前
記第2図の調査においてビームは炭酸ガスレーザを用い
た。照射条件は下記の通りとした。The high-speed cutting tool according to the present invention is not only made entirely of high-speed steel, but also has a cutting edge formed by welding or shrink-fitting high-speed steel to ordinary steel, that is, the cutting edge involved in cutting. This also includes those whose only part is made of high-speed steel. In the investigation shown in FIG. 2, a carbon dioxide laser was used as the beam. The irradiation conditions were as follows.
ビームスポット径: 1.00111φ出 力
:5Kw
ビーム移動速度:3m/分
即ち、照射エネルギー密度: 10’ J/c+a”相
互作用時間 : 0.02秒
照射方法;40口X150fL
焼入材表面に、上記条件で間隔8amで平行に15本照
射。Beam spot diameter: 1.00111φ output
: 5Kw Beam movement speed: 3m/min, i.e., irradiation energy density: 10'J/c+a" Interaction time: 0.02 seconds Irradiation method: 40 ports x 150 fL 15 beams were placed parallel to the surface of the hardened material at intervals of 8 am under the above conditions. Main irradiation.
ビーム照射後は、−旦溶融することによる表面凹凸、急
冷凝固層中の残留応力、残留オーステナイトの存在を考
慮すると焼戻し処理が必要となる。焼戻しは好ましくは
500〜600℃で1回又は複数回行なう。After beam irradiation, a tempering treatment is required in consideration of surface irregularities caused by first melting, residual stress in the rapidly solidified layer, and the presence of retained austenite. Tempering is preferably performed at 500 to 600°C once or multiple times.
尚、本発明は上記の作用により高エネルギー密度ビーム
照射時における割れの発生を防止するものであるが、ビ
ームの照射により形成される急冷凝固層の2次デンドラ
イト間隔が6μm以下である場合は、被剛材の仕上面粗
さの向上効果も期待されると共にビーム照射により耐摩
耗性及び靭性の向上も期待される。Although the present invention prevents the occurrence of cracks during high-energy density beam irradiation by the above-mentioned effect, if the secondary dendrite interval of the rapidly solidified layer formed by beam irradiation is 6 μm or less, The effect of improving the finished surface roughness of the rigid material is expected, and the beam irradiation is also expected to improve the wear resistance and toughness.
尚、第4図はレーザビーム照射時のビーム強度と急冷凝
固層最大深さとの関係を示す。この場合、レーザ処理条
件は下記のとおりである。Incidentally, FIG. 4 shows the relationship between the beam intensity during laser beam irradiation and the maximum depth of the rapidly solidified layer. In this case, the laser processing conditions are as follows.
出カニ1〜5Kw
ビームスポット径;0.3〜2.5 am加工速度:0
.1〜8m/分
パルス方式
%式%
:50
本発明に係る工具はリーマ、ブローチ、シェービングカ
ッター、ピニオンカッター、ラックカッター、ベベルカ
ッター、エンドミル、ホブ。Crab output 1~5Kw Beam spot diameter: 0.3~2.5am Processing speed: 0
.. 1 to 8 m/min pulse method % formula %: 50 The tools according to the present invention are reamers, broaches, shaving cutters, pinion cutters, rack cutters, bevel cutters, end mills, and hobs.
フォーミングラック、切断用切削工具、フレージングカ
ッター、フライス、ドリル及びこれら工具に使用される
チップやブレード等が含まれることはいうまでもない。Needless to say, the products include forming racks, cutting tools, phrasing cutters, milling cutters, drills, and chips and blades used in these tools.
以下実施例について説明する。Examples will be described below.
[実施例]
本発明方法によって、ブローチを製造し、切削試験を行
ない従来例と比較した。[Example] A broach was manufactured by the method of the present invention, and a cutting test was conducted to compare it with a conventional example.
第5図(a)〜 (d)にその製造方法を示す。尚(e
)は図(b)のE−E’拡大断面図、(f)は図(C)
のF−F’拡大断面図である。The manufacturing method is shown in FIGS. 5(a) to 5(d). Shang (e
) is an enlarged sectional view taken along line E-E' in figure (b), and (f) is an enlarged cross-sectional view of figure (C).
FIG.
高速度鋼素材(SKH55)1の刃先部形成予定位置へ
高エネルギービーム2を照射し[第5図(a) ] 、
急冷凝固層3を形成した後、焼戻処理を行ない高速度鋼
ブローチ素材4とする[第5図(b) ] 、次に砥石
5で溝切り加工を行なう[第5図(c) ] 、次に刃
先を仕上げ加工し高速度鋼ブローチ6を得る[第5図(
d) ] 、尚7は母材、8はすくい面、9は逃げ面で
ある。A high-energy beam 2 is irradiated to the planned cutting edge formation position of the high-speed steel material (SKH55) 1 [Fig. 5(a)],
After forming the rapidly solidified layer 3, a tempering treatment is performed to obtain a high-speed steel broach material 4 [FIG. 5(b)], and then grooving is performed with a grindstone 5 [FIG. 5(c)]. Next, finish machining the cutting edge to obtain a high-speed steel broach 6 [Figure 5 (
d)], 7 is the base material, 8 is the rake face, and 9 is the flank face.
この様にして作製したブローチは全く割れが発生してお
らず、切削試験を行なったところ第6図に示すように被
剛材の仕上面粗さも向上しまた第7図に示すように耐摩
耗性向上効果も得られた。The broach produced in this way had no cracks at all, and cutting tests showed that the finished surface roughness of the stiffened material was improved as shown in Figure 6, and the wear resistance was improved as shown in Figure 7. It also had the effect of improving sex.
[発明の効果]
本発明は上記の様に構成されるので、急冷凝固層の形成
に際して割れ発生を防止することができると共に被剛材
の仕上げ面粗さを向上させ且つ切削工具の耐摩耗性及び
靭性等の性能を向上させることができる。[Effects of the Invention] Since the present invention is configured as described above, it is possible to prevent the occurrence of cracks during the formation of a rapidly solidified layer, improve the finished surface roughness of the rigid material, and improve the wear resistance of the cutting tool. and performance such as toughness can be improved.
第1図は高速度鋼供試材の焼戻温度と焼戻硬さの関係を
示す図、第2図は焼戻温度と割れ発生頻度の関係を示す
図、第3図はビーム強度と相互作用時間の関係を示す図
、第4図はビーム強度と急冷凝固層最大深さとの関係を
示す図、第5図はブローチの製造方法を示す図、第6図
はブローチの仕上げ面粗さに関する性能を示す図、第7
図はブローチの逃げ面摩耗性の性能を示す図である。
1・・・高速度鋼素材
2・・・高エネルギービーム
3・・・急冷凝固層 4・・・ブローチ素材8
・・・ブローチ刃先すくい面
9・・・ブローチ刃先逃げ面
1豐cQへ−
拓s:、保佃鷹略
第3図
電子ビーム強度(J/CM2)
レーザビーム強度 (J/CM2)
第5図
鯛’h@Wk寞嘴(田)Figure 1 shows the relationship between tempering temperature and tempering hardness of high-speed steel specimens, Figure 2 shows the relationship between tempering temperature and cracking frequency, and Figure 3 shows the relationship between beam strength and tempering hardness. Figure 4 shows the relationship between the working time, Figure 4 shows the relationship between the beam intensity and the maximum depth of the rapidly solidified layer, Figure 5 shows the broach manufacturing method, and Figure 6 shows the finished surface roughness of the broach. Diagram showing performance, No. 7
The figure shows the flank abrasion performance of the broach. 1... High speed steel material 2... High energy beam 3... Rapidly solidified layer 4... Broach material 8
... Broach cutting edge rake surface 9... Broach cutting edge flank surface 1 豐cQ - Takus:, Takashi Yasutsuku Omitted Figure 3 Electron beam intensity (J/CM2) Laser beam intensity (J/CM2) Figure 5 Sea bream'h@Wk Beak (field)
Claims (1)
℃の温度で焼戻した後、高エネルギー密度ビームを照射
することによって刃先部あるいは刃先形成予定部を溶融
及び急冷凝固し、更に焼戻し及び仕上加工をすることに
より刃先部に急冷凝固層を有する高速度鋼切削工具を得
ることを特徴とする高速度鋼切削工具の製造方法。Harden high-speed steel cutting tool material to further increase 540 to 700
After tempering at a temperature of °C, the cutting edge or the area where the cutting edge will be formed is melted and rapidly solidified by irradiation with a high energy density beam, and then further tempered and finished to form a high-speed solidified layer on the cutting edge. A method for producing a high speed steel cutting tool, characterized in that a steel cutting tool is obtained.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25095687A JPH0192033A (en) | 1987-10-05 | 1987-10-05 | Manufacture of high speed steel cutting tool |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25095687A JPH0192033A (en) | 1987-10-05 | 1987-10-05 | Manufacture of high speed steel cutting tool |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0192033A true JPH0192033A (en) | 1989-04-11 |
Family
ID=17215508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25095687A Pending JPH0192033A (en) | 1987-10-05 | 1987-10-05 | Manufacture of high speed steel cutting tool |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0192033A (en) |
-
1987
- 1987-10-05 JP JP25095687A patent/JPH0192033A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Åhman | Microstructure and its effect on toughness and wear resistance of laser surface melted and post heat treated high speed steel | |
JP5328494B2 (en) | Band saw blade and manufacturing method thereof | |
RU2699469C1 (en) | Steel billet machining method with chips crushing | |
JP2023169155A (en) | Method for producing welded steel blank and associated welded steel blank | |
JP2633734B2 (en) | Edge strengthening method | |
JPH0192033A (en) | Manufacture of high speed steel cutting tool | |
JPH0251966B2 (en) | ||
JP2023095112A (en) | Cutting tool manufacturing method | |
Moradi et al. | Investigating the effect of high power diode laser (HPDL) surface treatment on the corrosion behavior of 17-4 PH martensitic stainless steel | |
JPS63278726A (en) | Manufacture of high speed steel cutting tool | |
SU1752514A1 (en) | Method of treatment of tungsten-cobalt hard alloy tools | |
Ming-Jen et al. | Cutting tool wear of laser-surface-melted high speed steels | |
SU1747245A1 (en) | Method of treatment of tungsten-cobalt hard-alloy tools | |
JPS63114804A (en) | High-speed steel cutting tool | |
JP2010253597A (en) | Face milling method and material to be face-milled | |
JPS62282803A (en) | High-speed steel cutting tool | |
RU2764449C1 (en) | Method for mechanical processing of a steel workpiece with chip crushing | |
JPS61249210A (en) | Broach made of high-speed steel possessing high performance | |
Samotugin et al. | Properties of tool steels in plasma hardening with surface melting | |
JPS5983718A (en) | Surface treatment of high speed steel | |
Xue et al. | Laser-based surface modification assisted ultra-precision machining of polycrystalline tin | |
SU982847A1 (en) | Method of machining steel blanks whille heating layer being cut | |
Dobrzański et al. | Effect of laser treatment on changes of the surface layers properties of the hot work alloy tool steels | |
Yaseen et al. | Wear Resistance Improvement of Alloy Steel Using Laser Surface Treatment | |
Lin et al. | Studies on chip control in turning by partially laser hardening of carbon steel |