JPS62282803A - High-speed steel cutting tool - Google Patents

High-speed steel cutting tool

Info

Publication number
JPS62282803A
JPS62282803A JP12284386A JP12284386A JPS62282803A JP S62282803 A JPS62282803 A JP S62282803A JP 12284386 A JP12284386 A JP 12284386A JP 12284386 A JP12284386 A JP 12284386A JP S62282803 A JPS62282803 A JP S62282803A
Authority
JP
Japan
Prior art keywords
cutting
solidified layer
cutting edge
rapidly solidified
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12284386A
Other languages
Japanese (ja)
Inventor
Yoshio Ashida
芦田 喜郎
Yuichi Seki
勇一 関
Shigenori Kusumoto
栄典 楠本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP12284386A priority Critical patent/JPS62282803A/en
Publication of JPS62282803A publication Critical patent/JPS62282803A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PURPOSE:To obtain excellent finished surface roughness by forming a quick- coagulation layer with a secondary dendrite space of 6 mum or less on an addendum section made of high-speed steel of a cutting tool. CONSTITUTION: A quick-coagulation layer 1 is formed by being coagulated from a liquid phase at a cooling speed of about 600 deg.C/sec or more, and the secondary dendrite space becomes 6 mum or less under such high-speed cooling. Concurrently, the second layer grain of a carbide or the like becomes about 1 mum or less. For example, a beam is illuminated from the direction of a flank 3 after the rough machining of an addendum 2 to perform the finish machining of the addendum 2. The addendum 2 is tempered after beam illumination and is machined so that the quick-coagulation layer about 0.1 mm or more in width is formed from the addendum 2 to the flank 3 and a rake face 4. The flank width X and rake face width Y are made about 0.1 mm or more. Accordingly, high-precision finished surface roughness can be improved.

Description

【発明の詳細な説明】 3発明の詳細な説明 〔産業上の利用分野] 本発明は優れた仕上げ面粗さを与えることのできる高速
度鋼切削工具に関するものである。尚、本発明における
高速度鋼とは、JISで規定される高速度鋼や一般に粉
末高速度鋼と呼ばれる鋼種は勿論のこと、1次炭化物を
含有すると共に合金炭化物の析出による焼戻し2次硬化
が生じるt[ffiを含むものである。
Detailed Description of the Invention 3 Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a high-speed steel cutting tool capable of providing excellent finished surface roughness. In addition, the high-speed steel in the present invention is not only a high-speed steel specified by JIS or a steel type generally called powder high-speed steel, but also a steel type that contains primary carbides and has undergone tempering secondary hardening due to precipitation of alloy carbides. This includes the resulting t[ffi.

瞳芝来の技術] 切削加工は研削加工に比較すると一般に仕上げ面粗さが
劣るが加工効率・経済性ともに優れているため汎用され
ている。しかしながら切削加工による仕上げ面粗さは、
製品の外観価値のみならず性能にも影響を及ぼす場合が
多いため切削加工の仕上げ面粗さの向上が求められてし
する。このため、近年立方晶窒化硼素(CBN)等の新
し5s素材が開発されサブミクロンオーダの仕上げ面粗
さが得られるようになってきてはいる。し力)しこれら
の新しい素材は素材自体が高価であると共に適用範囲が
制限され、また製造工程も複雑な場合力(多いといった
問題点を包含している。そこで適用範囲が広く、製造も
容易であり、しかも価格も低度である高速度鋼工具の切
削加工仕上げ面粗さの向上が求められている。
Hitoshiba Rai's technology] Cutting processing generally has inferior finished surface roughness compared to grinding processing, but it is widely used because it is superior in both processing efficiency and economy. However, the finished surface roughness due to cutting is
Since this often affects not only the appearance value of the product but also its performance, there is a need to improve the finished surface roughness of the cutting process. For this reason, new 5S materials such as cubic boron nitride (CBN) have been developed in recent years, and it has become possible to obtain a finished surface roughness on the order of submicrons. However, these new materials have problems such as the materials themselves are expensive, the range of application is limited, and the manufacturing process is complex. Therefore, there is a need to improve the finished surface roughness of high-speed steel tools, which are also inexpensive.

[発明が解決しようとする問題点コ 高速度鋼中にはW、Mo、Cr、V等の合金元素からな
る粗大1次炭化物が多く含まれており、その脱落や偏析
に起因した刃先欠損が刃先・刃面粗さを悪化させ従って
仕上げ面粗さをも悪化させている。この1次炭化物が微
細化し靭性も向上した粉末高速度鋼を素材にすれば刃先
・月面粗さ4まある程度改善され仕上げ面粗さも多少は
向上する。しかし例えばブローチ切削の場合、通常の溶
製高速度鋼の仕上げ面粗さが、Rmix = 8 t1
m程度であるのに対し粉末高速度鋼ではR,、、=6μ
m程度になるにすぎず、一方では製造工程の複雑化に伴
う経費上昇も問題となる。
[Problems to be Solved by the Invention] High-speed steel contains many coarse primary carbides made of alloying elements such as W, Mo, Cr, and V, and cutting edge damage occurs due to their falling off and segregation. This worsens the roughness of the cutting edge and blade surface, and therefore the finished surface roughness. If powdered high-speed steel, which has finer primary carbides and improved toughness, is used as a material, the cutting edge/lunar surface roughness will be improved to some extent, and the finished surface roughness will also be improved to some extent. However, for example, in the case of broach cutting, the finished surface roughness of ordinary ingot high speed steel is Rmix = 8 t1
m, whereas in powder high-speed steel R,... = 6μ
However, on the other hand, there is also the problem of increased costs due to the complexity of the manufacturing process.

このため、切削速度を増大させる方法で仕上げ面粗さの
向上をはかることも考えられる。しかしながら切削速度
の向上は工具の昇温を招くものであるところ、高速度鋼
は600℃以上で軟化するという特性上の欠点があり、
切削速度の向上にも限界がある。切削速度を増加させる
方策では工作m械の動力や剛性等の性能強化が必要であ
り、工作機械の改良が図られ或はまた被剛材に合せて工
具の形状や切削条件の最適化が図られている。しかしこ
れらの従来技術は限界点に達しており、新しい技術によ
る仕上げ面粗さにすぐれた高速度鋼切削工具の開発が求
められている。
Therefore, it may be possible to improve the finished surface roughness by increasing the cutting speed. However, increasing the cutting speed leads to an increase in the temperature of the tool, and high-speed steel has the disadvantage of softening at temperatures above 600°C.
There is also a limit to improving cutting speed. To increase the cutting speed, it is necessary to improve the power and rigidity of the machine tool, and it is necessary to improve the machine tool or to optimize the tool shape and cutting conditions to suit the material to be stiffened. It is being However, these conventional techniques have reached their limits, and there is a need for the development of high-speed steel cutting tools with excellent finished surface roughness using new techniques.

本発明はこの様な事i青に鑑みてなされたものであって
、高速度鋼切削工具の刃先部を、従来の切削速度等の切
削条件を変更しなくても(量れた仕上げ面粗さが得られ
る構成とした高速度鋼切削工具を提供することを目的と
するものである。
The present invention was made in view of the above-mentioned problems, and it is possible to improve the cutting edge of a high-speed steel cutting tool without changing the conventional cutting conditions such as cutting speed (with a high finished surface roughness). It is an object of the present invention to provide a high-speed steel cutting tool having a structure that allows the cutting tool to be used in a variety of ways.

[問題点を解決するための手段] 本発明は少なくとも刃先部が高速度鋼よりなる切削工具
であって、該切削工具の刃先部に2次デンドライト間障
が6μm以下の急冷凝固層が形成されたものであること
にその要旨を有するものである。
[Means for Solving the Problems] The present invention provides a cutting tool in which at least the cutting edge portion is made of high-speed steel, in which a rapidly solidified layer with secondary dendrite defects of 6 μm or less is formed at the cutting tool edge portion. Its gist lies in the fact that it is

[作用コ 本発明は上記の様に構成されるが、要するに高速度切削
工具(以下単に工具という)刃先部に急冷凝固層が形成
されたものである。急冷凝固層の形成に当っては高速で
瞬間的な加熱処理が可能な手段例えばレーザや電子ビー
ム等の高エネルギー密度ビームを工具刃先部に照射する
方法が最も好ましく、この方法によれば急速加熱及び急
速冷却が可能であり、凝固層の形状等の制御か容易であ
る。また刃先部に含まれるW、Co、Cr、V等の合金
元素と炭素からなる粗大1次炭化物は、急冷凝固層中に
固溶しており、表層部は1次炭化物を殆んど含まないも
のとなっていて、急冷凝固層を形成していない通常の高
速度鋼や1次炭化物が更に微細化されている通常の粉末
高速度鋼よりも仕上げ面粗さのすぐれたものとなる。
[Operations] The present invention is constructed as described above, but in short, it is a high-speed cutting tool (hereinafter simply referred to as a tool) in which a rapidly solidified layer is formed at the cutting edge. When forming a rapidly solidified layer, it is most preferable to use a method that allows instant heat treatment at high speed, such as a method in which the tool tip is irradiated with a high energy density beam such as a laser or an electron beam. Rapid cooling is possible, and the shape of the solidified layer can be easily controlled. In addition, coarse primary carbides made of alloying elements such as W, Co, Cr, and V and carbon contained in the cutting edge are dissolved in the rapidly solidified layer, and the surface layer contains almost no primary carbides. The finished surface roughness is superior to that of ordinary high-speed steel that does not have a rapidly solidified layer or ordinary powdered high-speed steel that has finer primary carbides.

更に急冷凝固層は、耐凝着性の改善或は層表面に形成さ
れる酸化皮膜の保護作用により、構成刃先の生成が抑制
され、仮に構成刃先が生成しても層表面が安定化するこ
とが期待される。このように刃先部に急冷凝固層を形成
することによって刃先の性状が改善され、その刃先性状
が被剛材の仕上げ面に容易に転写されることが相乗して
優れた仕上げ面粗さが得られる。
Furthermore, the rapidly solidified layer suppresses the formation of built-up edges due to improved adhesion resistance or the protective effect of the oxide film formed on the layer surface, and even if built-up edges are formed, the layer surface is stabilized. There is expected. By forming a rapidly solidified layer on the cutting edge in this way, the properties of the cutting edge are improved, and the properties of the cutting edge are easily transferred to the finished surface of the stiffened material, resulting in excellent finished surface roughness. It will be done.

尚急冷凝固層は、600℃/秒以上の冷却速度で液相か
ら凝固させることによって形成されるものであって、こ
の様な高速冷却が達成されることによって2次デンドラ
イト間隔が6μm以下となり、同時に凝固層中の炭化物
等の第2相粒子が1μm以下となるのである。これに対
し冷却速度が600℃/秒未満の場合は、2次デンドラ
イト間隔が6μmを超えると共に1μm以上の炭化物等
第2相粒子が析出する。後者の場合は、第1図に示すよ
うに通常の高速度鋼や粉末高速度鋼と同程度の仕上げ面
粗さしか得られない。この原因は■刃先からの脱落片の
サイズが通常の高速度鋼や粉末高速度鋼の脱落片サイズ
と変わらないものとなること、■凝固層中に固溶される
合金元素量が、冷却速度: 600℃/秒以上の時より
も少なくなる結果、刃先部に形成される酸化被膜厚さが
薄くしかも不均一になる点にあると考えられ、これらの
結果、耐凝着性を改善する効果や構成刃先を抑制する効
果、或はまた構成刃先を安定化する効果が失われ、結果
として仕上げ面粗さの向上効果が得られなくなるのであ
る。
The rapidly solidified layer is formed by solidifying from the liquid phase at a cooling rate of 600°C/sec or more, and by achieving such high-speed cooling, the secondary dendrite interval becomes 6 μm or less, At the same time, second phase particles such as carbides in the coagulated layer become 1 μm or less. On the other hand, when the cooling rate is less than 600° C./sec, the secondary dendrite spacing exceeds 6 μm and second phase particles such as carbides of 1 μm or more are precipitated. In the latter case, as shown in FIG. 1, only the same level of finished surface roughness as ordinary high-speed steel or powdered high-speed steel can be obtained. The reason for this is: ■ The size of the pieces falling off from the cutting edge is the same as that of ordinary high-speed steel or powdered high-speed steel, and ■ The amount of alloying elements solid-solved in the solidified layer increases with the cooling rate. : As a result, the thickness of the oxide film formed on the cutting edge becomes thinner and more uneven than when the temperature is 600°C/sec or higher, and as a result, it has the effect of improving adhesion resistance. The effect of suppressing the built-up cutting edge, or the effect of stabilizing the built-up cutting edge is lost, and as a result, the effect of improving the finished surface roughness cannot be obtained.

尚第1図におけるレーザ処理条件と切削条件は次の通り
である。
The laser processing conditions and cutting conditions in FIG. 1 are as follows.

レーザ処理条件 材 質 ・5K)155 (1100℃焼入)出  力
  :5Kw スポット径+1mm 照射速度二0.1〜4m/分 切削条件(バイト) 被削材:548C(Hs : 250)切削速度=7m
/分 送   リ    :  0.1  mm/ rev。
Laser treatment conditions Material: 5K) 155 (1100℃ quenching) Output: 5Kw Spot diameter + 1mm Irradiation speed 20.1~4m/min Cutting conditions (bite) Work material: 548C (Hs: 250) Cutting speed = 7m
/ minute feed: 0.1 mm/rev.

円筒端面連続切削;切削長 50m 次にレーザ及び電子ビームを例にとり急冷凝固層形成条
件としてのビーム照射条件を説明する。
Continuous cutting of cylindrical end face; cutting length 50 m Next, beam irradiation conditions as rapidly solidified layer forming conditions will be explained using a laser and an electron beam as examples.

尚高速度鋼にレーザを照射する場合の照射条件の設定は
、吸引エネルギー密度とビーム移動速度によって決定す
る方法も論理上は可能である(特開昭59−83718
)が、一般にはエネルギーの吸収率を特定することが困
難であるので、吸収エネルギー密度による条件の設定は
具体的でない。このため本発明におけるビーム照射は次
の様に行なった。
In addition, it is theoretically possible to set the irradiation conditions when irradiating high-speed steel with a laser by determining the attraction energy density and the beam movement speed (Japanese Patent Laid-Open No. 59-83718
) However, since it is generally difficult to specify the energy absorption rate, setting conditions based on absorbed energy density is not specific. For this reason, beam irradiation in the present invention was performed as follows.

くレーザ照射条件〉 幅Dmm以上、深さ0.1 mm以上の急冷凝固層を形
成させる為に必要な高エネルギー密度ビームの照射条件
は、照射面内の1点が照射されている時間(相互作用:
T)とその時のビーム強度(照射エネルギー密度;W)
でほぼ決定されるものである。ビーム照射時におけるビ
ーム強度(J/cm2)と相互作用時間(秒)との関係
を第2図に示す。一般に好ましいT及びWの範囲は5X
10−’秒≦T≦10−1秒    ・・・■2 X 
10’ J/crn2≦W≦2 x 10 ’ J/c
m” −・■であって上記範囲外においては、第2図に
示す様に(イ)蒸発する。(ロ)急冷凝固層深さが不足
する。(A)急冷凝固層内に欠陥を生じる。(ニ)冷却
速度不足で凝固しない等の問題を生じ必要な特性が得ら
れないこととなる。ここで、T及びWはレーザの発掘方
法及び照射方法によって異なり次のような条件が与えら
れる。
Laser irradiation conditions> The high energy density beam irradiation conditions necessary to form a rapidly solidified layer with a width of Dmm or more and a depth of 0.1 mm or more are as follows: Action:
T) and the beam intensity at that time (irradiation energy density; W)
This is almost determined by FIG. 2 shows the relationship between beam intensity (J/cm2) and interaction time (seconds) during beam irradiation. Generally preferred range of T and W is 5X
10-' seconds≦T≦10-1 seconds...■2 X
10' J/crn2≦W≦2 x 10' J/c
m” -・■ outside the above range, as shown in Figure 2, (a) evaporation occurs. (b) the depth of the rapidly solidified layer is insufficient. (A) defects occur in the rapidly solidified layer. (d) Insufficient cooling rate may cause problems such as non-solidification, making it impossible to obtain the necessary characteristics.Here, T and W vary depending on the laser excavation method and irradiation method, and the following conditions are given. .

(1)1本又は平行な数本の連続発振ビームを刃先に沿
って走査し、1本又は重複部に熱影響層の存在しない一
部が重複した急冷凝固層を形成させる場合。
(1) When one or several parallel continuous wave beams are scanned along the cutting edge to form a rapidly solidified layer in which a part of the heat-affected layer where no heat-affected layer does not exist overlaps in one beam or in an overlapping area.

T=−Xo、0B(秒)       ・・・■■ ここでS=ニスポット([Ilm) ■=走査速度(m/I[1in) P=レーザ出力(にW) (2)1本又は平行な数本のパルス発振ビームを刃先に
沿って走査し、1本又は重複部に熱影響層の存在しない
一部が重複した急冷凝固層を形成させる場合。
T=-Xo, 0B (seconds)...■■ Here, S=Nispot ([Ilm) ■=Scanning speed (m/I [1in)] P=Laser output (in W) (2) Single or parallel When several pulse oscillation beams are scanned along the cutting edge to form a rapidly solidified layer in which a part of the heat-affected layer where no heat-affected layer exists overlaps in one beam or in an overlapping area.

さらに追加条件として、連続した凝固層を得るには が必要である〔(1)はd=100%の場合であること
がわかる]。
Furthermore, as an additional condition, it is necessary to obtain a continuous solidified layer [it can be seen that (1) is the case when d=100%].

ここでs、v、pは(1) と同じ d=デユーティ (%) f=周波数(Hz) (3)刃先と交差する方向に振動させながら、ざらに刃
先と平行方向にビームを走査し急冷凝固層を形成させる
場合。
Here, s, v, and p are the same as in (1) d = Duty (%) f = Frequency (Hz) (3) While vibrating in the direction intersecting the cutting edge, scan the beam roughly parallel to the cutting edge and rapidly cool it. When forming a coagulated layer.

T=−XT(秒)       ・・・■W = −x
 6 x 103(J/cm’)   ・(@XV *パルス発振ではそれぞれdをかける。
T=-XT (seconds)...■W=-x
6 x 103 (J/cm') ・(@XV *For pulse oscillation, multiply by d.

ここでs、v、pは(1)と同じ。D=振幅(mm)、
T=■又は■で得られるTの値。さらにf0=振動周波
数(Hz)とすると、連続した凝固層を得るためには■
、@(パルス発振では■。
Here, s, v, and p are the same as in (1). D=amplitude (mm),
T=value of T obtained by ■ or ■. Furthermore, if f0 = vibration frequency (Hz), in order to obtain a continuous solidified layer, ■
, @(■ in pulse oscillation.

■も)の他に次の条件が必要である。In addition to (■), the following conditions are also required.

■ −x l 6 、7 < S            
  ・・・■f。
■ −x l 6 , 7 < S
...■f.

folio  (Hz)          、@く電
子ビーム照射条件〉、<イツトリウム、アルミニウム、
ガーネットレーザ照射条件〉金属表面でのビームエネル
ギーの吸収率が異なるためにWに関する条件範囲が変化
する(■は同じ、■が変わる)。照射方法によるW及び
Tを決定する条件式は同じである。又、上限、下限値の
設定理由は、レーザ照射の場合と同じである。
folio (Hz), @electron beam irradiation conditions>, <yttrium, aluminum,
Garnet laser irradiation conditions> Since the absorption rate of beam energy on the metal surface is different, the condition range regarding W changes (■ is the same, ■ is changed). The conditional expressions for determining W and T depending on the irradiation method are the same. Further, the reason for setting the upper limit and lower limit is the same as in the case of laser irradiation.

5X10−’秒≦T≦10−1秒      ・・・■
3 x 10 ” 47cm2≦W≦3 X 103J
/am’ ・=■′以上の様な照射条件で急冷凝固層が
形成されるが、切削工具に関与する刃先部全体に急冷凝
固層が形成されることは必ずしも必要でなく、工具の種
類によっては刃先の一部のみに形成される場合もある。
5X10-' seconds≦T≦10-1 seconds...■
3 x 10” 47cm2≦W≦3 x 103J
/am'・=■' A rapidly solidified layer is formed under the above irradiation conditions, but it is not always necessary to form a rapidly solidified layer over the entire cutting edge involved in the cutting tool, and it may depend on the type of tool. may be formed only on a part of the cutting edge.

また、多刃工具にあっては必ずしも全ての刃に急冷凝固
層が形成されるものではなく、一部の刃の刃先部、更に
は該刃先部の更に一部のみに形成されることもある。
In addition, in the case of multi-blade tools, the rapidly solidified layer is not necessarily formed on all the blades, but may be formed only on the cutting edge of some blades, or even only on a part of the cutting edge. .

尚、本発明の係る高速度切削工具は、工具全体が高速度
鋼よりなるもののみならず普通鋼等に高速度鋼を溶接或
は焼ばめ施して刃先加工したもの、即ち切削に関与する
刃先部のみを高速度鋼で構成したものも含まれる。
In addition, the high-speed cutting tool according to the present invention is not only a tool whose entirety is made of high-speed steel, but also a tool whose cutting edge is processed by welding or shrink-fitting high-speed steel to ordinary steel, that is, a tool that participates in cutting. This also includes those in which only the cutting edge is made of high-speed steel.

急冷凝固層が形成されると刃先仕上げ加工が行なわれる
が、仕上がり段階における急冷凝固層の大きさは、刃先
から逃げ面にかけて0.1 mm以上1刃先からすくい
面にかけて0.1 m+n以上の幅を有するものとする
。この様な幅の設定理由は次の通りである。即ち、仕上
げ切削用工具では逃げ面摩耗幅0.1 +nmで工具寿
命を管理する場合が多く、この範囲内の逃げ面粗さは仕
上げ面に転写されていると考えられる。一方、すくい面
上で切り屑の凝着が生じ構成刃先の核が形成されるのは
、刃先から約0.1 a++n以内の部分と考えられる
。そこで少なくとも刃先から逃げ面側及びすくい面側に
かけて0.1 mm以上の範囲を急冷凝固層とする必要
があるのである。
Once the rapidly solidified layer is formed, the cutting edge is finished.The size of the rapidly solidified layer at the finishing stage is 0.1 mm or more from the cutting edge to the flank, and 0.1 m+n or more from the cutting edge to the rake face. shall have the following. The reason for setting such a width is as follows. That is, in many cases, the life of a finishing cutting tool is controlled by a flank wear width of 0.1 + nm, and it is thought that the flank roughness within this range is transferred to the finished surface. On the other hand, it is thought that the area within about 0.1 a++n from the cutting edge is where chips adhere to the rake face and the core of the built-up cutting edge is formed. Therefore, it is necessary to form a rapidly solidified layer in a range of at least 0.1 mm from the cutting edge to the flank and rake sides.

尚、急冷凝固層形成前の工具素材の処理状態は、任意の
温度で焼入れしたもの、焼入れ、焼戻ししたもの、或は
また焼鈍しただけのものでもよい。究極的には急冷凝固
層形成部以外の部分に対して工具として必要とされる物
性により決定されるべきものであるが、通常の焼入温度
以下の温度で焼入れし、靭性、加工性を上げ、かつ適度
の剛性をもたせたものが望ましい。急冷凝固層形成後は
、一旦溶融することによる表面凹凸が避けられないので
必ず仕上げ加工が必要とされる。急冷凝固層中には残留
応力、残留オーステナイトが存在するので、仕上加工は
、500〜600℃で1回又は複数回の焼戻し処理後に
行なうことが好ましい。
The processing state of the tool material before the formation of the rapidly solidified layer may be quenched at any temperature, quenched, tempered, or simply annealed. Ultimately, this should be determined by the physical properties required for the tool for parts other than the rapidly solidified layer forming part, but it is possible to improve toughness and workability by quenching at a temperature below the normal quenching temperature. It is desirable that the material has a certain degree of rigidity. After forming the rapidly solidified layer, finishing processing is always required because surface irregularities are unavoidable due to once melting. Since residual stress and retained austenite are present in the rapidly solidified layer, finishing is preferably performed after one or more tempering treatments at 500 to 600°C.

本発明の適用される工具は特に制限されないが、例えば
平面形状のみならず、形状の複雑なものであっても粗加
工から仕上げ加工まで一貫して精度良く加工できるブロ
ーチである場合、(イ)多刃総型工具であり、(+1)
逃げ角が通常3゛程度として再研削される、といった特
徴があるので、少なくとも仕上げ刃に急冷凝固層を形成
させておけば仕上げ面内上効果が得られる。また逃げ面
にビームを照射すれば逃げ面の急冷凝固層が広がり再研
削が容易になる。ここで、仕上げ刃とは、少なくとも1
月当りの切り込み量が0となる刃を基準としてその前2
刃、後1刃、計4刃を指すものとする。再研削により切
り込み量0となる刃が変わる時には新たに基準を設定し
、上記関係を満たす4刃が少なくとも仕上げ刃となる。
There are no particular restrictions on the tools to which the present invention is applied, but for example, in the case of a broach that can process not only planar shapes but also complex shapes with high precision from rough machining to finishing machining, (a) It is a multi-edged general tool, (+1)
Since it is characterized in that it is re-ground with a clearance angle of about 3 degrees, at least an effect on the finished surface can be obtained by forming a rapidly solidified layer on the finished blade. Also, if the flank is irradiated with a beam, the rapidly solidified layer on the flank will spread, making re-grinding easier. Here, the finished blade means at least 1
Based on the blade whose cutting depth per month is 0, the previous 2
This refers to a total of 4 blades, 1 blade and 1 rear blade. When the blade with the depth of cut of 0 changes due to re-grinding, a new standard is set, and at least the four blades that satisfy the above relationship become the finishing blades.

穴の仕上げ加工に用いられる高速度鋼リーマも多刃工具
であるが、ブローチと異なり多刃に仕上げ切削部分が存
在する。この仕上げ切削に関与する食い付き刃から外周
刃にかけては、少なくとも1刃当りの送り量に相当する
回置上の急冷凝固層が存在する必要がある。従って外周
刃で摩耗が生じた部分を少なくするように食い付き刃を
後退させるために、食い付き刃逃げ面に平行な再研削が
行なわれる。従って外周刃終端まで急冷凝固層が歯車の
刃面仕上げ加工に用いられるシェービングカッターは全
ての刃が仕上げ切削に関与する多刃工具である。従って
全ての刃の刃先に急冷凝固層が形成されることが必要で
ある。
The high-speed steel reamer used for finishing holes is also a multi-blade tool, but unlike a broach, the multi-blade has a finishing cutting part. From the biting edge to the peripheral edge involved in this finishing cutting, it is necessary that there is a rotating rapidly solidified layer corresponding to at least the feed amount per blade. Therefore, in order to retract the biting blade so as to reduce the worn portion of the peripheral cutting edge, re-grinding is performed parallel to the flank of the biting blade. Therefore, a shaving cutter in which a rapidly solidified layer is used for finishing the gear blade surface up to the end of the outer peripheral edge is a multi-edge tool in which all blades participate in finishing cutting. Therefore, it is necessary to form a rapidly solidified layer on the cutting edge of every blade.

尚、本発明における工具は、上記のブローチ。Incidentally, the tool in the present invention is the above-mentioned broach.

リーマ、シェービングカッターのみならず、ピニオンカ
ッター、ベベルカッター、エンドミル、ホブ、フォーミ
ングラック、切断用切削工具、フレージングカッター、
フライス、ドリル等の切削工具及びこれらの工具に使用
されるチップやブレード等を含むものである。以下、実
施例について説明する。
Not only reamers and shaving cutters, but also pinion cutters, bevel cutters, end mills, hobs, forming racks, cutting tools, phrasing cutters,
This includes cutting tools such as milling cutters and drills, as well as chips and blades used in these tools. Examples will be described below.

[実施例] 実施例1 第3図は高速度wISKH51の通常熱処理材に種々の
条件でレーザ照射して急冷凝固層を形成させた場合の得
られた深さを示す。
[Example] Example 1 Fig. 3 shows the depth obtained when a rapidly solidified layer was formed by laser irradiation on a normally heat-treated material of high-speed wISKH51 under various conditions.

出  力  : 1〜5Kw ビームスポット径: OJ 〜2.5 m+n加工速度
=0.3〜8m/分 オシレート方式:100Hz、振幅6mmパルス方式+
200Hz、デユーティ50%連続方式: − 上記条件範囲で照射することにより、少なくとも0.1
 mm以上の深さを有し、2次デンドライト間隔6μm
以下第2相粒子径1μm以下の急冷凝固層が得られた。
Output: 1~5Kw Beam spot diameter: OJ ~2.5 m+n Processing speed = 0.3~8m/min Oscillation method: 100Hz, amplitude 6mm pulse method +
200Hz, duty 50% continuous method: - By irradiating in the above condition range, at least 0.1
It has a depth of more than mm, and the secondary dendrite spacing is 6 μm.
A rapidly solidified layer having a second phase particle size of 1 μm or less was obtained.

第4図は急冷凝固層の構造を示す図面代用顕微鏡写真(
倍率:400倍)であって、写真下方が母材側である。
Figure 4 is a micrograph (substituting for a drawing) showing the structure of the rapidly solidified layer.
Magnification: 400 times), and the lower part of the photograph is the base material side.

また第5図は従来方法で処理した高速度鋼母材組織の図
面代用顕微鏡写真(倍率・400倍)である。
Moreover, FIG. 5 is a micrograph (magnification: 400 times) used as a drawing of the structure of a high-speed steel base material treated by a conventional method.

実施例2 高速度鋼5KH59の通常熱処理材に電子ビーム照射に
よって刃先に急冷凝固層を形成させたバイトを用いて切
削試験を行なった。第6図にその結果を示す。急冷凝固
層を形成させたバイトLの仕上げ面粗さが優れているこ
とがわかる。照射条件、試験条件は以下の通りである。
Example 2 A cutting test was conducted using a cutting tool in which a normally heat-treated material of high-speed steel 5KH59 was irradiated with an electron beam to form a rapidly solidified layer on the cutting edge. Figure 6 shows the results. It can be seen that the finished surface roughness of the tool L on which the rapidly solidified layer was formed is excellent. Irradiation conditions and test conditions are as follows.

(照射条件) 出  カニ400W スポット径: 0.5 mm 走査速度:5m/min 照射方向:逃げ面に垂直 (切削試験条件) 被削材: S CM 440 (Ha:300)切削速
度=7〜17m/min 送   リ  :  O,OF+〜0.1  mm/r
ev。
(Irradiation conditions) Out crab 400W Spot diameter: 0.5 mm Scanning speed: 5m/min Irradiation direction: Perpendicular to the flank (Cutting test conditions) Work material: S CM 440 (Ha: 300) Cutting speed = 7 to 17m /min Feed: O, OF+~0.1 mm/r
ev.

潤 滑:水溶性切削油 逃げ角=2゜ すくい角:10゜ 第7図に仕上加工方法を示す。刃先粗加工後逃げ面3方
向からビームを照射し刃先仕上加工を行なった。ビーム
照射後焼戻し、刃先から逃げ面3、すくい面4にかけて
急冷凝固層が0.1 mm以上′  ゛の幅となるよう
にした。(al)は仕上加工前、  (al)は仕上加
工後をあられす。5は高速度鋼素材である。他の実施例
としては刃先加工後すくい面4方向からビームを照射し
、刃先仕上加工を行なう方法[(bl)=(b2)]、
すくい而4が形成されるべき方向からビームを照射し、
刃切り、刃先仕上加工を行なう方法[(cl) −= 
(c−) ] 、逃げ面3が形成されるべき方向からビ
ームを照射し、刃切り1刃先仕上加工を行なう方法[(
dt) −’ (al) ]がある。いずれも急冷凝固
層(逃げ面)幅X、及び急冷凝固層(すくい面)幅Yは
0.1 mm以上とする。
Lubrication: Water-soluble cutting oil Relief angle = 2° Rake angle: 10° Figure 7 shows the finishing method. After rough machining of the cutting edge, beams were irradiated from three directions on the flank surface to finish the cutting edge. After beam irradiation, the material was tempered so that the rapidly solidified layer had a width of 0.1 mm or more from the cutting edge to the flank face 3 and rake face 4. (al) is before finishing, (al) is after finishing. 5 is a high speed steel material. Another example is a method of finishing the cutting edge by irradiating a beam from four directions on the rake surface after cutting the cutting edge [(bl)=(b2)];
Irradiate the beam from the direction where the scoop 4 is to be formed,
How to cut the blade and finish the blade edge [(cl) -=
(c-) ], a method of irradiating the beam from the direction in which the flank 3 is to be formed and finishing the cutting edge of one blade [(
dt) −' (al) ]. In both cases, the rapidly solidified layer (flank surface) width X and the rapidly solidified layer (rake surface) width Y are 0.1 mm or more.

実施例3 高速度鋼5KH55の通常熱処理材に002レーザビー
ム照射することによって、仕上げ刃先に急冷凝固層を形
成させ平ブローチを製造した。
Example 3 A flat broach was manufactured by irradiating a normally heat-treated material of high-speed steel 5KH55 with a 002 laser beam to form a rapidly solidified layer on the finished cutting edge.

これを用いてコネクティングロッド合わせ面切削加工を
行なった。結果を第8図に示す。縦軸は仕上げ面粗さく
Ra)が3μmに達するまでの加工数で示す。再研削の
有無に関わらず、レーザ照射材の加工個数に大幅な増加
が認められた。照射条件、加工条件は以下の通りであっ
た。
This was used to cut the connecting rod mating surface. The results are shown in FIG. The vertical axis shows the number of processes until the finished surface roughness (Ra) reaches 3 μm. Regardless of whether or not regrinding was performed, a significant increase in the number of laser irradiated materials processed was observed. The irradiation conditions and processing conditions were as follows.

(照射条件) 出  力 :5Kw スポット径+ 1.0 mm 走査速度:3m/min 照射方向:逃げ面に垂直 (切削加工条件) 被削材: S 48 C(Ha:250)コネクティン
グロッド合わせ面 切削速度: 10 III/min 切り込み量: 4.8 mm/5troke潤 滑 :
油性切削油 加工長 :22mm レーザ照射は、第9図に例示するごとく、所定の焼入れ
焼戻しの後刃先粗加工を行なって得られる刃先逃げ面3
に対して行なった。仕上げ加工は、更に焼戻しだ後実施
した。(a) は刃先2を粗加工後急冷凝固層1を形成
させたブローチ断面図、(b)は刃先の仕上げ加工をし
た刃部断面図である。5は高速度鋼素材、6は刃先仕上
げ加工前の刃部断面である。
(Irradiation conditions) Output: 5Kw Spot diameter + 1.0 mm Scanning speed: 3m/min Irradiation direction: Perpendicular to the flank surface (Cutting conditions) Work material: S48C (Ha: 250) Connecting rod mating surface cutting Speed: 10 III/min Cut depth: 4.8 mm/5 stroke Lubrication:
Oil-based cutting oil machining length: 22 mm Laser irradiation is applied to the flank 3 of the cutting edge obtained by rough machining of the cutting edge after predetermined quenching and tempering, as illustrated in Fig. 9.
I did it for Finishing was performed after further tempering. (a) is a cross-sectional view of a broach in which a rapidly solidified layer 1 is formed after rough machining of the cutting edge 2, and (b) is a cross-sectional view of the broach in which the cutting edge has been subjected to finishing machining. 5 is a high-speed steel material, and 6 is a cross section of the blade before cutting edge finishing processing.

第10図に示すように、照射前には刃先粗加工を行なわ
ず、逃げ面が形成されるべき表面に急冷凝固層1を形成
させた後、切込み量が大きく且つ送り量の少ないクリー
プフィールド研削を適用し、急冷凝固層1の位置に刃切
り、刃先仕上げ加工を同時に行なうことも可能であり、
この方法であれば工程が少なくなり望ましい。(a)は
刃先逃げ面3が形成されるべき高速度鋼索材5の表面に
急冷凝固層を形成させた状態を示す図、(b)は(a)
のA−A’断面図、(c)は(b)の急冷凝固部分を拡
大図し、刃先の加工形態を示す説明である。尚、7は逃
げ面が形成されるべき表面、8は刃先仕上げ加工後の刃
部輪郭である。
As shown in Figure 10, the cutting edge is not rough-processed before irradiation, and after forming a rapidly solidified layer 1 on the surface where the flank surface is to be formed, creep field grinding is performed with a large depth of cut and a small feed rate. It is also possible to perform blade cutting and blade edge finishing at the position of the rapidly solidified layer 1 at the same time by applying
This method is desirable because it requires fewer steps. (a) is a diagram showing a state in which a rapidly solidified layer is formed on the surface of the high-speed steel cable material 5 where the cutting edge flank 3 is to be formed, and (b) is a diagram showing the state in which a rapidly solidified layer is formed on the surface of the high-speed steel cable material 5 where the cutting edge flank surface 3 is to be formed.
AA' sectional view, (c) is an enlarged view of the rapidly solidified portion of (b), and is an explanation showing the processing form of the cutting edge. Note that 7 is the surface on which the flank surface is to be formed, and 8 is the contour of the blade after the cutting edge has been finished.

ここでは、仕上げ面平均粗さくRa)が3μm以上とな
ったら、すくい面4側より逃げ面最大摩耗幅だけ再研削
を行なった。
Here, when the average roughness (Ra) of the finished surface became 3 μm or more, re-grinding was performed from the rake face 4 side by the maximum wear width of the flank face.

実施例4 高速度鋼5KH55の通常熱処理材をレーザビーム照射
し、刃先に急冷凝固層を形成させリーマとシェービング
カッターを製造した。これを用いた加工結果を第11図
及び第12図に示す。何れの場合にも、急冷凝固層の形
成により、仕上げ面粗さの向上が記められた。第12図
において(a)はレーザ処理したシェービングカッター
による゛加工結果を示す図、(b)は従来処理方法によ
る比較材での加工結果を示す。尚第13図において(a
)はリーマ外周刃の横断面形状の一例を示す図、(b)
は急冷凝固層形成部位であり、9は食い付き刃、10は
外周刃を示す。また第14図は丸型シェービングカッタ
ーのセレーション部分の縦断面図を示す。これらはり−
マとシェービングカッターの一般的な形状と急冷凝固層
形成部位を示すものである。照射条件、加工条件は以下
の通りである。。
Example 4 A normally heat-treated material of high-speed steel 5KH55 was irradiated with a laser beam to form a rapidly solidified layer on the cutting edge to produce a reamer and a shaving cutter. The results of machining using this are shown in FIGS. 11 and 12. In both cases, it was noted that the finished surface roughness improved due to the formation of the rapidly solidified layer. In FIG. 12, (a) shows the results of machining with a laser-treated shaving cutter, and (b) shows the results of machining with a comparative material using the conventional treatment method. In addition, in Figure 13 (a
) is a diagram showing an example of the cross-sectional shape of the reamer peripheral blade, (b)
is a region where a rapidly solidified layer is formed, 9 is a biting edge, and 10 is a peripheral edge. Further, FIG. 14 shows a longitudinal cross-sectional view of the serration portion of the round shaving cutter. These beams
This figure shows the general shape of a shaver and a shaving cutter, and the area where the rapidly solidified layer is formed. The irradiation conditions and processing conditions are as follows. .

(照射条件) 出  力 :5Kw スポット径: 1.Ommφ 走査速度: 5 m/min 照射方向:逃げ面に垂直 (リーマ切削条件) 被削材: S 40 C(Ha:210)切削速度: 
10.8m/a+in 送   リ  : 0.1〜 0.4  mm/rev
(Irradiation conditions) Output: 5Kw Spot diameter: 1. Ommφ Scanning speed: 5 m/min Irradiation direction: Perpendicular to the flank surface (reamer cutting conditions) Work material: S 40 C (Ha: 210) Cutting speed:
10.8m/a+in Feed: 0.1~0.4 mm/rev
.

加工深さ:25+[1m 加工穴径:101 (シェービングカッター切削条件) 被削材: S CM 415 ()II!l:140)
(モジュール:3.歯数、27.圧力角;20°、ねじ
れ角:0°) シェービング代: 0.05mm カッター回転数:150rpm プランジ送り速度: 0.7mm/min実施例5 高速度!5KH56をレーザビーム照射し、刃先に急冷
凝固層を形成させエンドミルを製作した。これを用いた
加工結果を第15図に示す。
Machining depth: 25+[1m Machining hole diameter: 101 (shaving cutter cutting conditions) Work material: S CM 415 ()II! l:140)
(Module: 3. Number of teeth, 27. Pressure angle: 20°, helix angle: 0°) Shaving allowance: 0.05 mm Cutter rotation speed: 150 rpm Plunge feed speed: 0.7 mm/min Example 5 High speed! An end mill was manufactured by irradiating 5KH56 with a laser beam to form a rapidly solidified layer on the cutting edge. Fig. 15 shows the processing results using this.

仕上げ面粗さ、逃げ面摩耗量ともに比較材1(S KH
56を従来方法で処理したもの)及び比較材2 (KH
A50を従来方法で処理したもの)に比較して2〜3倍
の性能向上を示した。
Comparison material 1 (S KH) for both finished surface roughness and flank wear amount
56 treated by the conventional method) and comparative material 2 (KH
It showed a two to three times improvement in performance compared to A50 (processed using conventional methods).

(照射条件) 出  カニ5Kw 走査速度: 5 m/m1n (焼戻し条件) 焼戻し:540℃×3回 (切削条件) 被削材: S K D 11 (Ha:380)切削速
度:80m/分 切り込み: 0.1 mm 尚第16図に従来ブローチ(SKH55)による仕上面
粗さとレーザ照射ブローチ(SKI55)による仕上面
粗さを示す。この場合の処理条件は次の通りである。
(Irradiation conditions) Out crab 5Kw Scanning speed: 5 m/m1n (Tempering conditions) Tempering: 540℃ x 3 times (Cutting conditions) Work material: S K D 11 (Ha: 380) Cutting speed: 80m/min Depth of cut: 0.1 mm Fig. 16 shows the finished surface roughness with the conventional broach (SKH55) and the finished surface roughness with the laser irradiation broach (SKI55). The processing conditions in this case are as follows.

レーザ処理 出  力    :5Kw スポット径:1mmφ 加工速度 =3m/分 被削材 : S 50 C()la 245) 、25
wx 50”切削速度 :6m/分 切込み量 : 0.04〜Omm/刃 図に見られる通り本発明の工具を用いたものは加工長が
延びても良好な仕上面粗さが維持された。
Laser processing output: 5Kw Spot diameter: 1mmφ Processing speed = 3m/min Work material: S 50 C()la 245), 25
wx 50'' Cutting speed: 6 m/min Depth of cut: 0.04 to Omm/As seen in the blade diagram, the tool using the present invention maintained good finished surface roughness even when the machining length was increased.

[発明の効果] 本発明は上記のように高速度鋼切削工具の刃先に急冷凝
固層を形成させることにより、従来得られなかった高精
度の仕上げ面粗さの向上効果が得られる。また、急冷凝
固層の形成必要部位に限定することによって素材費及び
製造費の高騰を抑えることができるのであり、更には切
削工具の使用に際し従来の切削条件及び従来の工作機械
をそのまま使用することができる。
[Effects of the Invention] By forming a rapidly solidified layer on the cutting edge of a high-speed steel cutting tool as described above, the present invention can obtain an effect of improving the finished surface roughness with high precision that has not been previously available. In addition, by limiting the formation of the rapidly solidified layer to the areas where it is necessary, it is possible to suppress the rise in material and manufacturing costs, and furthermore, when using cutting tools, conventional cutting conditions and conventional machine tools can be used as they are. Can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は2次デンドライト間隔と仕上げ面粗さの関係を
示す図、第2図は急冷凝固層形成条件を示す図、第3図
はレーザ照射条件と急冷凝固層幅示す図、第4図は急冷
凝固層の構造を示す顕微鏡写真、第5図は従来方法で処
理した高速度鋼母材組織を示す顕微鏡写真、第6図はバ
イト切削試験における仕上げ面粗さを示す図、第7図は
刃先の仕上げ加工方法を示す図、第8図は平ブローチの
加工結果を示す図、第9図はブローチの刃先の製造方法
を示す断面図、第10図はブローチの製造方法を示す図
、第11図はり−マの穴加工結果を示す図、第12図は
シェービングカッターにおける歯面加工結果を示す図、
第13図はり−マ外周波における急冷凝固層形成部位を
示す図、第14図は丸型シェビングカッターにおけるセ
レーシミンの断面図、第15図はエンドミルの加工結果
を示す図、第16図は実施例及び比較例におけるブロー
チの仕上面粗さをあられす図である。 X・・・急冷凝固層幅(逃げ面) Y・・・急冷凝固層幅(すくい面) 1・・・急冷凝固層     2・・・刃先3・・・刃
先逃げ面     4・・・刃先すくい面5・・・高速
度鋼素材
Figure 1 shows the relationship between secondary dendrite spacing and finished surface roughness, Figure 2 shows the conditions for forming a rapidly solidified layer, Figure 3 shows the laser irradiation conditions and the width of the rapidly solidified layer, and Figure 4 is a photomicrograph showing the structure of the rapidly solidified layer, Fig. 5 is a photomicrograph showing the structure of the high-speed steel base material processed by the conventional method, Fig. 6 is a photo showing the finished surface roughness in a cutting tool cutting test, Fig. 7 8 is a diagram showing the processing result of a flat broach, FIG. 9 is a cross-sectional view showing the method for manufacturing the broach cutting edge, and FIG. 10 is a diagram showing the method for manufacturing the broach. Figure 11 is a diagram showing the hole machining results of the beam machine, Figure 12 is a diagram showing the tooth surface machining results of the shaving cutter,
Fig. 13 shows the region where the rapidly solidified layer is formed in the external frequency of the beam, Fig. 14 is a cross-sectional view of the cereshimin in the round shaving cutter, Fig. 15 shows the machining results of the end mill, and Fig. 16 shows the actual process. FIG. 3 is a diagram showing the finished surface roughness of broaches in Examples and Comparative Examples. X... Width of the rapidly solidified layer (flank surface) Y... Width of the rapidly solidified layer (rake surface) 1... Rapidly solidified layer 2... Cutting edge 3... Flank surface of the cutting edge 4... Rake surface of the cutting edge 5...High speed steel material

Claims (1)

【特許請求の範囲】[Claims] 少なくとも刃先部が高速度鋼よりなる切削工具であって
、該切削工具の刃先部に2次デンドライト間隔が6μm
以下の急冷凝固層が形成されたものであることを特徴と
する高速度鋼切削工具。
A cutting tool in which at least a cutting edge portion is made of high-speed steel, the cutting tool having a secondary dendrite interval of 6 μm at the cutting edge portion.
A high-speed steel cutting tool characterized by having the following rapidly solidified layer formed thereon.
JP12284386A 1986-05-28 1986-05-28 High-speed steel cutting tool Pending JPS62282803A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12284386A JPS62282803A (en) 1986-05-28 1986-05-28 High-speed steel cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12284386A JPS62282803A (en) 1986-05-28 1986-05-28 High-speed steel cutting tool

Publications (1)

Publication Number Publication Date
JPS62282803A true JPS62282803A (en) 1987-12-08

Family

ID=14846007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12284386A Pending JPS62282803A (en) 1986-05-28 1986-05-28 High-speed steel cutting tool

Country Status (1)

Country Link
JP (1) JPS62282803A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983718A (en) * 1982-11-05 1984-05-15 Kobe Steel Ltd Surface treatment of high speed steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5983718A (en) * 1982-11-05 1984-05-15 Kobe Steel Ltd Surface treatment of high speed steel

Similar Documents

Publication Publication Date Title
EP3381595A1 (en) Rotating tool
Ezugwu et al. High speed milling of nickel-based superalloys
Khorasani et al. Laser subtractive and laser powder bed fusion of metals: Review of process and production features
CA2313434A1 (en) Process for manufacturing a blade of a cutting tool and product manufactured therewith
Wojciechowski et al. The evaluation of surface integrity during machining of Inconel 718 with various laser assistance strategies
US3078546A (en) Cutting tool
KR100348927B1 (en) Gear shaping method and device and spiral bevel gear cutter
JP5328494B2 (en) Band saw blade and manufacturing method thereof
RU2699469C1 (en) Steel billet machining method with chips crushing
JPS62282803A (en) High-speed steel cutting tool
JPH0251966B2 (en)
EP4082700A1 (en) Method for manufacturing cutting tool
JP2023095112A (en) Cutting tool manufacturing method
JP2021011015A (en) Manufacturing method for diamond-coated rotary cutting tool
Finn Machining of aluminum alloys
JPS63114804A (en) High-speed steel cutting tool
JP2961106B2 (en) Gear shaper processing method and gear shaper
JPS5942201A (en) Cutting treatment for high hardness-quenched steel
RU2764449C1 (en) Method for mechanical processing of a steel workpiece with chip crushing
JPS61249210A (en) Broach made of high-speed steel possessing high performance
JPH0351535B2 (en)
JPH0192033A (en) Manufacture of high speed steel cutting tool
JPH02221304A (en) Manufacture of high speed steel tool
RU2767366C1 (en) METHOD FOR THERMO-FRICTION CUTTING OF HEATED ROLLED PIPE WITH DIAMETER OF 120-200 mm FROM LOW-CARBON STEEL WITH DISK SAW
Breitzig Machining of Nickel and Nickel alloys