JPS5983718A - Surface treatment of high speed steel - Google Patents

Surface treatment of high speed steel

Info

Publication number
JPS5983718A
JPS5983718A JP19510582A JP19510582A JPS5983718A JP S5983718 A JPS5983718 A JP S5983718A JP 19510582 A JP19510582 A JP 19510582A JP 19510582 A JP19510582 A JP 19510582A JP S5983718 A JPS5983718 A JP S5983718A
Authority
JP
Japan
Prior art keywords
speed steel
high speed
primary
speed
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19510582A
Other languages
Japanese (ja)
Other versions
JPH0128809B2 (en
Inventor
Yoshio Ashida
芦田 喜郎
Yuichi Seki
勇一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP19510582A priority Critical patent/JPS5983718A/en
Publication of JPS5983718A publication Critical patent/JPS5983718A/en
Publication of JPH0128809B2 publication Critical patent/JPH0128809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To enhance the cutting property of high speed steel without deteriorating the toughness thereof, by a method wherein the surface of high speed steel subjected to hardening treatment is irradiated with laser light to dissolve the primary carbide in the surface layer in a matrix to form a solid solution and the irradiated high speed steel is further tempered to finely precipitate the primary carbide. CONSTITUTION:After high speed steel is once subjected to hardening treatment, the surface thereof is irradiated with laser light of absorption energy density of 2,000J/cm<2> or more at a beam moving speed of 2m/min or more to be melted. Hard primary carbides of Mo, W, V or the like in the surface of the high speed steel are dissolved in a matrix to form a solid solution with a uniform crystal structure. The treated high speed steel is subjected to tempering treatment at 500-600 deg.C to precipitate the primary carbides in the solid solution in a fine form and a secondary hardening amount is increased to enhance anti-wear property, that is, cutting property without lowering toughness.

Description

【発明の詳細な説明】 本発明は、高速度鋼の特性殊に切削性能を改善する為の
表面処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a surface treatment method for improving the properties of high-speed steel, particularly its cutting performance.

一般の高速度鋼中にはW、、Mo、、Cr、、v等の合
金元素からなる1次炭化物が多量台まれており(通常焼
入状態で10重量%前後)、切削性能の向上に多大な影
響を与えている。そして切削性向上に関する研究は上記
1次炭化物の形態に着目したものが多く、基本的には下
記2つの流れに分けることができる。
General high-speed steel contains a large amount of primary carbide made of alloying elements such as W, Mo, Cr, and V (usually around 10% by weight in the hardened state), which improves cutting performance. It has had a huge impact. Many studies on improving machinability have focused on the form of the primary carbide described above, and can basically be divided into the following two streams.

(1)1次炭化物量の増加 MOlWlv等の炭化物生成元素を、それに見合う量の
Cと共に多量添加し、1次炭化物量を増加させることに
よって耐摩耗性を高めようとするものであり、硬質のM
C型炭化物を形成する■の効果が最も大きいとされてい
る。そしてJISM格では1968年に高C−高V系(
DSKH5B、5KH54,5K)I57等が追加され
、その後も更に合金元素ホを増加或いは調整したものが
開発されつつある。しかし何れにしても、1次炭化物禾
を増加させたものは偏析が生じ易く、又角状の粗大炭化
物も増加して靭性が極端に劣化するという問題があり、
更に合金元素量が多く価格が高騰するという事情もあっ
て、現在のところ特殊な用途(難削材の加工)に使用さ
れているにすぎない。
(1) Increasing the amount of primary carbides This is an attempt to increase wear resistance by adding a large amount of carbide-forming elements such as MOLWlv along with a corresponding amount of C to increase the amount of primary carbides. M
It is said that the effect of forming C-type carbide is the greatest. In 1968, the JISM rating system was established as high C-high V system (
DSKH5B, 5KH54, 5K) I57, etc. were added, and after that, products with further increased or adjusted alloy elements are being developed. However, in any case, products with increased primary carbide thickness tend to cause segregation, and angular coarse carbides also increase, resulting in an extreme deterioration of toughness.
Furthermore, because the amount of alloying elements is large and the price is soaring, it is currently only used for special purposes (machining difficult-to-cut materials).

(2)1次炭化物の偏析の@減及び微細化高速度鋼の切
削性能を向上させるに当っては、耐摩耗性の他靭性も改
善する必要がある。特に高V系高速度鋼の様に1次炭化
物を多く含有するものでは、靭性の改善が特に重要とな
り、その為には1次炭化物の偏析を軽減すると共に、そ
の結晶を微細化するのが有効である。こうした基本思想
に沿う代表的な改善策としてESR法と粉末冶金法が挙
げられる。しがし前者のESR法では、1次炭化物の偏
析は相当抑制されるものの炭化物粒度は粗大化する傾向
があり、又元々炭化物の分布が均一な小物部品には効果
が少なく、且つ製造工程が複雑であるので価格も高騰す
る。また後者の粉末冶金法の場合は、1次炭化物の偏析
がなく且つ粒子も微細化されるので靭性は相当改善され
るものの、通常の溶解材と同成分では耐摩耗性が劣化す
る傾向があり、しかも製造工程が複雑で製品コストが高
くなる。
(2) Reduction and refinement of primary carbide segregation In order to improve the cutting performance of high-speed steel, it is necessary to improve not only wear resistance but also toughness. In particular, for steels containing a large amount of primary carbides, such as high-V high-speed steels, improving toughness is particularly important, and for this purpose, it is necessary to reduce the segregation of primary carbides and refine the crystals. It is valid. ESR method and powder metallurgy method are cited as typical improvement measures based on this basic idea. However, in the former ESR method, although the segregation of primary carbides is considerably suppressed, the carbide grain size tends to become coarser, and it is less effective for small parts that originally have a uniform distribution of carbides, and the manufacturing process is Due to its complexity, the price also increases. In addition, in the case of the latter powder metallurgy method, there is no segregation of primary carbides and the particles are made finer, so toughness is considerably improved, but if the composition is the same as that of ordinary melted materials, wear resistance tends to deteriorate. Moreover, the manufacturing process is complicated and the product cost is high.

この様に従来法では、高速度鋼の耐摩耗性を高めようと
すると靭性が犠牲となり、靭性を改善しようとすると経
済性に問題がでてくる。従って靭性を劣化させることな
く耐摩耗性を高めることができ、しかも容易且つ廉価に
生産し得る様な技術の開発が待たれている。
As described above, in conventional methods, when trying to increase the wear resistance of high-speed steel, toughness is sacrificed, and when trying to improve toughness, economical problems arise. Therefore, there is a need for the development of a technology that can increase wear resistance without deteriorating toughness and that can be produced easily and at low cost.

本発明者等はこうした状況を踏まえ、合金成分量の調整
だけでは本質的な改善を図ることが困難であると考え、
成形後の表面処理法を工夫することによって表面特性を
改善すべく鋭意研究を進めてきた。本発明はかかる研究
の結果完成されたものであって、その構成は、焼入れ処
理した高速度鋼の表面にレーザービームを、吸収エネル
ギー密度200037cm2以上、ビームと被処理物と
の相対移動速度(以下ビーム移動速度という)2m/分
以上で照射して鋼表面を溶融し、表面層の1次炭化物を
マ) IJフックス中固溶せしめ、その後焼戻し処理す
ることによって固溶した炭化物を微細析出させるところ
に要旨が存在する。
In view of this situation, the present inventors believe that it is difficult to achieve essential improvements simply by adjusting the amount of alloy components.
We have been conducting intensive research to improve surface properties by devising post-molding surface treatment methods. The present invention was completed as a result of such research, and its configuration is such that a laser beam is applied to the surface of hardened high-speed steel, the absorbed energy density is 200,037 cm or more, and the relative movement speed between the beam and the workpiece (hereinafter referred to as The steel surface is melted by irradiation at a beam moving speed of 2 m/min or more, and the primary carbides in the surface layer are dissolved in a solid solution in an IJ hook, and then tempered to finely precipitate the solid-dissolved carbides. There is a summary in .

本発明では高速度鋼を一旦焼入れ処理した後、その表面
に高エネルギー密度のレーザービームを特定速度以上の
移動速度で照射させることによって表面の1次炭化物を
711ンクス中に固溶させ、靭性に悪影響を及ぼす1次
炭化物を殆んど含まない表面層を形成させると共に、そ
の後の焼戻しによって固溶した炭化物を微細析出させ、
2次硬化量を大幅に増大させることによって耐摩耗性、
ひいては切削性能の向上を図ったものである。
In the present invention, after the high-speed steel is hardened, the surface is irradiated with a high-energy-density laser beam at a moving speed of a certain speed or higher, thereby dissolving the primary carbides on the surface into the 711 inx and improving its toughness. Forming a surface layer that contains almost no harmful primary carbides, and finely precipitating solid-dissolved carbides through subsequent tempering.
Wear resistance is improved by significantly increasing the amount of secondary hardening.
This also aims to improve cutting performance.

以下実験経過を追って本発明の構成及び作用効果を明確
にしていく。
The structure and effects of the present invention will be clarified by following the experimental progress.

一般にレーザーは非常に高いエネルギー密度を有してお
り、材料表面に局部的な急熱急冷を与えることができる
。特に表面のみを溶融させることによって得られる急冷
凝固層の組織は、通常の熱処理組織に比べて1次炭化物
の形態、合金元素の固溶析出状態、結晶粒径等の点でか
なりの違いが期待され、硬度をはじめ機械的性質を大幅
に高める可能性がある。そこでまず高速度鋼として5K
H9の焼入れ処理材を選択し、下記の条件でレーザービ
ーム照射処理を行った場合のレーザー照射部とその影響
を受けていない母材部分との内部組織を光学顕微鏡によ
り比較した。
Lasers generally have very high energy density and can locally heat and cool the surface of a material. In particular, the structure of the rapidly solidified layer obtained by melting only the surface is expected to be significantly different from the normal heat-treated structure in terms of the morphology of primary carbides, solid solution precipitation state of alloying elements, crystal grain size, etc. It has the potential to significantly improve mechanical properties including hardness. Therefore, first of all, 5K is used as a high-speed steel.
A H9 hardened material was selected and subjected to laser beam irradiation treatment under the following conditions, and the internal structures of the laser irradiated area and the unaffected base material area were compared using an optical microscope.

〔照射条件〕[Irradiation conditions]

熱 源 :CO2レーザー 出カニ 8 KW〜5KW エネルギー密度: 2B00〜4800 J/σ2ビー
ム移動速移動速度ニア m/部 :自然冷却 その結果は第1図(レーザー照射部の図面代用顕微鏡写
真)、及び第2図(母材部の図面代用顕微鏡写真)に示
す通りであり、通常の熱処理材(母材:第2図)では多
く認められる1次炭化物が、レーザー照射部(第1図)
では完全に消滅しており、レーザー照射により1次炭化
物がマトリックス中に固溶し極めて均一な結晶組織が得
られている。
Heat source: CO2 laser output 8 KW to 5 KW Energy density: 2B00 to 4800 J/σ2 Beam travel speed Travel speed near m/part: Natural cooling The results are shown in Figure 1 (a photomicrograph of the laser irradiation area in place of a drawing), and As shown in Fig. 2 (micrograph substituted for a drawing of the base metal), primary carbides, which are often observed in ordinary heat-treated materials (base metal: Fig. 2), are found in the laser irradiated part (Fig. 1).
In this case, the primary carbide has completely disappeared, and the primary carbide is dissolved in the matrix by laser irradiation, resulting in an extremely uniform crystal structure.

またこのレーザー照射処理材について焼戻し処理温度と
2次硬化の関係を調べたところ、第8図の結果が得られ
た。この図よりレーザー照射の影響を受けていない母材
部分では、焼戻し温度を上げるにつれて硬度は低下し、
特に焼戻し温度が約600°Cを越えると硬度は急激に
低下する。これに対しレーザー照射部では異質の傾向が
見られ、500〜600℃の焼戻しによって急激な2次
硬化を生じ、最終製品表層部(レーザー照射部)の焼戻
し硬さはHv 1100まで上昇し、焼戻し軟化抵抗も
優れていることが確認された。又第4図は、レーザービ
ーム出方を8KW又は5KWとし焼戻し温度を550 
’Cに設定した他は上記と同様の処理を行い、表面から
の距離と硬度との関係を調べた実験グラフである。この
図より、レーザー出方を8KWとするとレーザー照射面
から約700μm15KWとすると約1200μmの深
さに亘って表面硬化層が得られており、レーザー出方を
高めるにつれて2次硬化層を深くすることができる。し
かし硬化層の硬度はほぼHvllooで一定値を示して
おり、硬度に与えるレーザー出方の影響は殆んど認めら
れない。
When the relationship between the tempering temperature and the secondary hardening of this laser irradiation treated material was investigated, the results shown in FIG. 8 were obtained. This figure shows that in the base metal part that is not affected by laser irradiation, the hardness decreases as the tempering temperature increases.
In particular, when the tempering temperature exceeds about 600°C, the hardness decreases rapidly. On the other hand, a different tendency is observed in the laser irradiated area, and rapid secondary hardening occurs due to tempering at 500 to 600°C, and the tempering hardness of the final product surface layer (laser irradiated area) increases to Hv 1100, and the tempering It was confirmed that the softening resistance was also excellent. In addition, in Figure 4, the laser beam output direction is 8KW or 5KW, and the tempering temperature is 550.
This is an experimental graph obtained by examining the relationship between distance from the surface and hardness by performing the same processing as above except that the hardness was set to 'C. From this figure, when the laser output is 8KW, the surface hardened layer is obtained over a depth of approximately 700μm from the laser irradiation surface and when the laser output is 15KW, the surface hardened layer is approximately 1200μm deep, and as the laser output is increased, the secondary hardened layer becomes deeper. Can be done. However, the hardness of the hardened layer shows a constant value of approximately Hvlloo, and the influence of the laser output direction on the hardness is hardly recognized.

第5図はレーザー照射後550 ℃で1時間焼入れを行
った高切削鋼について、表層部硬化層(レーザー処理部
)と母材(通常熱処理部)との耐摩耗性を比較した実験
グラフである。尚試験条件は下記の通りとした。
Figure 5 is an experimental graph comparing the wear resistance of the hardened surface layer (laser treated area) and base metal (normally heat treated area) for high cutting steel that was quenched at 550°C for 1 hour after laser irradiation. . The test conditions were as follows.

〔試験条件〕〔Test conditions〕

試験法 :大部式摩耗試験 巾     径 相手材 : 5UJ2.1.5 rts 、 X 80
 朋(HiC=60摩擦距離:400m 荷重:8.8Kg この図からも明らかな様に、レーザー照射による表面硬
化層は特に高速摩耗域で優れた耐摩耗性を示した。
Test method: Large part type abrasion test Width Diameter mating material: 5UJ2.1.5 rts, X 80
(HiC=60 Friction distance: 400m Load: 8.8Kg As is clear from this figure, the surface hardened layer formed by laser irradiation showed excellent wear resistance, especially in the high-speed wear region.

第6図は本発明のレーザー照射材と通常の熱処理材を用
いて作製した切削具を使用し、下記の条件で連続切削試
験を行った実験グラフである。
FIG. 6 is an experimental graph in which a continuous cutting test was conducted under the following conditions using a cutting tool made using the laser irradiated material of the present invention and a conventional heat-treated material.

〔切削条件〕[Cutting conditions]

バイト取付角: 0−15−6−6−15−15−Ro
、4突出量:84゜ 切込量:1,5渭 送       リ   二 〇、2 調波削材: S
NCM8 (HRC82)潤  滑 :な し 寿命判定  :完全寿命 又第7図は同様の切削条件(但し被削材は90’毎に巾
10mの溝付けを付したものとし、寿命判定はV ma
z = 0.6mとした)で行った断続切削) 試験結
果を示したものである。
Bit installation angle: 0-15-6-6-15-15-Ro
, 4 Overhang amount: 84° Depth of cut: 1,5 Way feed 2 〇, 2 Harmonic cutting material: S
NCM8 (HRC82) Lubrication: None Life Judgment: Complete life. Figure 7 shows the same cutting conditions (however, the work material is grooved with a width of 10 m every 90', and the life judgment is V ma
This figure shows the results of an intermittent cutting test carried out at z = 0.6 m.

第6.7図からも明らかな様に、本発明法に従ってレー
ザー照射及び焼戻し処理を行ったものは、従来の熱処理
材に比べて優れた切削性を有している。殊に高度の靭性
が要求される断続切削においても優れた性能を有してい
ることが分かる。
As is clear from FIG. 6.7, the material subjected to laser irradiation and tempering according to the method of the present invention has superior machinability compared to conventional heat-treated materials. It can be seen that it has excellent performance especially in interrupted cutting where a high degree of toughness is required.

この様に本発明では、焼入れ処理後表面にレーザービー
ムを照射することによって、表層部における粗大1次炭
化物の析出をなくすと共に、その後に行われる特定温度
の焼戻し処理により2次硬化を著しく促進せしめ、もっ
て硬度及び靭性の双方を高めて切削性を大幅に改善する
ことができる。
In this way, in the present invention, by irradiating the surface with a laser beam after the hardening treatment, precipitation of coarse primary carbides in the surface layer is eliminated, and secondary hardening is significantly accelerated by the subsequent tempering treatment at a specific temperature. , thereby increasing both hardness and toughness and significantly improving machinability.

しかしこうした効果はレーザービーム照射時の吸収エネ
ルギー密度及びビーム移動速度によって相当変動する傾
向があり、目的達成の為には吸収エネルギー密度を20
00 J/am2以上、ビート移動速度を2m/分以上
に設定しなければならない。
However, these effects tend to vary considerably depending on the absorbed energy density during laser beam irradiation and the beam movement speed.
00 J/am2 or more, and the beat movement speed must be set to 2m/min or more.

但し吸収エネルギー密度とは次式より算出される値を言
う。
However, the absorbed energy density refers to a value calculated from the following formula.

吸収エネルギー密度(J74肩) の通りである。即ち吸収エネルギー密度については、前
記第6図で該密度を大きくする程硬化層を深くすること
ができることを明らかにしたが、レーザー照射による溶
融層(即ち硬化層)の深さと吸収エネルギー密度の関係
を更に詳細に検討したところ、第8図に示す結果が得ら
れた。この図からも明らかな様に、レーザー照射によっ
て表層部に硬化層を形成する為には、吸収エネルギー密
度を少なくとも2000 J/cm2以上としなければ
ならないことが分かる。そしてこれ以上であれば吸収エ
ネルギー密度を大きくする程焼戻し処理後の硬化層は深
くなり切削性は向上するが、この照射効果は約4000
 JkIn2で飽和状態に達し、それ以上の吸収エネル
ギー密度の増大はレーザー発生装置の出力を無為に増大
するだけとなる。一方策9図は、ビーム移動速度とレー
ザー処理ままの炭化物の体積率並びにその後の焼戻し処
理(550°C×1hr)を施したときの硬さとの関係
を示した実験グラフであり、この図より、レーザー照射
による硬化促進効果を有意に発揮させる為には、ビーム
移動速度を200z/’分以上に設定すべきであること
が分かる。
Absorbed energy density (J74 shoulder) is as follows. That is, regarding the absorbed energy density, it was clarified in Fig. 6 above that the larger the density, the deeper the hardened layer can be. When we examined this in more detail, we obtained the results shown in Figure 8. As is clear from this figure, in order to form a hardened layer on the surface layer by laser irradiation, the absorbed energy density must be at least 2000 J/cm2 or more. If it is higher than this, as the absorbed energy density increases, the hardened layer after tempering becomes deeper and the machinability improves, but this irradiation effect is approximately 4000
A saturation state is reached at JkIn2, and any further increase in the absorbed energy density will only increase the output of the laser generator. On the other hand, Figure 9 is an experimental graph showing the relationship between the beam movement speed, the volume fraction of carbide as treated by the laser, and the hardness when the subsequent tempering treatment (550°C x 1 hr) is performed. It can be seen that in order to significantly exhibit the effect of accelerating curing by laser irradiation, the beam movement speed should be set to 200 z/'min or more.

ところで高速度鋼の表面硬度を高めるのにレーザービー
ム照射を利用する技術は特開昭55−62119号公報
にも開示されている。しかしこの技術は、公開明細書の
記載からも明らかな様に、焼入れ・焼戻処理した高速度
鋼工具の表面にレーザービームを照射し急速加熱、自己
冷却を行うものであり、本発明の様に(1,)焼入処理
後のレーザー照射によって表層部の組織を殆んど炭化物
を含まないものとし〔炭化物の大きさ1μm以下:第1
図、同体積率2%以下:第9図〕、且つ■レーザー照射
後の焼戻処理により2次硬化させて表面硬度を飛躍的に
高める、という思想は全く示されていない。ちなみに本
発明では上記■の組織を得る為にビーム移動速度を20
0□□□/分以上に設定することが不可欠であるが、前
記公開発明に示された同移動速度は40ひ7分と極めて
遅く、また最終製品の表面硬度にしても前記公開発明で
は高々HRC69(Hv約1000)であるのに対し、
本発明ではHv 1100程度まで高めることができる
By the way, a technique using laser beam irradiation to increase the surface hardness of high-speed steel is also disclosed in Japanese Patent Laid-Open No. 55-62119. However, as is clear from the description in the published specification, this technique involves irradiating the surface of a hardened and tempered high-speed steel tool with a laser beam to rapidly heat and self-cool it, and the present invention is similar to that of the present invention. (1) After the quenching process, the structure of the surface layer is made almost carbide-free by laser irradiation [carbide size is 1 μm or less: 1st
2% or less: FIG. 9], and (2) There is no idea at all that the surface hardness is dramatically increased by secondary hardening by tempering treatment after laser irradiation. Incidentally, in the present invention, in order to obtain the structure described in (■) above, the beam movement speed is set to 20
It is essential to set the speed to 0□□□/min or more, but the moving speed shown in the disclosed invention is extremely slow at 40 minutes, and the surface hardness of the final product is at most low in the disclosed invention. While HRC69 (Hv approx. 1000),
In the present invention, Hv can be increased to about 1100.

本発明は概略以上の様に構成されており、靭性を低下さ
せることなく硬さを大幅に改善することができ、切削性
能の卓越した高速度鋼を提供し得ることになった。
The present invention is roughly configured as described above, and it has been possible to provide a high-speed steel that can significantly improve hardness without reducing toughness and has excellent cutting performance.

【図面の簡単な説明】[Brief explanation of drawings]

第1.2図は鋼材組織を示す図面代用顕微鏡写真、第3
図は焼戻処理温度と硬さの関係を示すグラフ、第4図は
レーザー照射面からの距離と硬さの関係を示すグラフ、
第5図は摩擦速度と比摩耗量の関係を示すグラフ、第6
図は衝撃回数と切削速度の関係を示すグラフ、第7図は
切削速度と切削時間の関係を示すグラフ、第8図は吸収
エネルギー密度と溶融層(硬化層)の深さの関係を示す
グラフ、第9図はビーム移動速度と硬さ及び炭化物の体
積率の関係を示すグラフである。 第1− : 寓 第2図   ・ 第3図 焼入れのt−i+母材)   焼戻し温度(”C)Xl
hr表面からの距離 (pm) 摩擦速度 (m/5ec) 衝撃回数 (X100O回) 切削時間 (min )
Figures 1.2 and 3 are micrographs used as drawings showing the steel structure.
The figure is a graph showing the relationship between tempering temperature and hardness, and Figure 4 is a graph showing the relationship between distance from the laser irradiation surface and hardness.
Figure 5 is a graph showing the relationship between friction speed and specific wear amount.
Figure 7 is a graph showing the relationship between the number of impacts and cutting speed, Figure 7 is a graph showing the relationship between cutting speed and cutting time, and Figure 8 is a graph showing the relationship between absorbed energy density and the depth of the molten layer (hardened layer). , FIG. 9 is a graph showing the relationship between beam moving speed, hardness, and carbide volume fraction. Part 1-: Fig. 2 and Fig. 3 quenching t-i + base material) Tempering temperature ("C) Xl
hr Distance from surface (pm) Friction speed (m/5ec) Number of impacts (X100 times) Cutting time (min)

Claims (1)

【特許請求の範囲】[Claims] (11焼入れ処理した高速度鋼の表面にレーザービーム
を、吸収エネルギー密度2000 J kn2以上、ビ
ーム移動速度2m/分以上で照射して鋼表面を溶融し、
表面層の1次炭化物をマトリックス中に固溶せしめ、そ
の後焼戻し処理することにより固溶した炭化物を微細析
出せしめることを特徴とする高速度鋼の表面処理方法。
(11 Melt the steel surface by irradiating the surface of the hardened high-speed steel with a laser beam at an absorbed energy density of 2000 J kn2 or more and a beam movement speed of 2 m/min or more,
A method for surface treatment of high-speed steel, characterized by dissolving primary carbides in a surface layer in a matrix, and then subjecting the matrix to a tempering treatment to finely precipitate the dissolved carbides.
JP19510582A 1982-11-05 1982-11-05 Surface treatment of high speed steel Granted JPS5983718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19510582A JPS5983718A (en) 1982-11-05 1982-11-05 Surface treatment of high speed steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19510582A JPS5983718A (en) 1982-11-05 1982-11-05 Surface treatment of high speed steel

Publications (2)

Publication Number Publication Date
JPS5983718A true JPS5983718A (en) 1984-05-15
JPH0128809B2 JPH0128809B2 (en) 1989-06-06

Family

ID=16335593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19510582A Granted JPS5983718A (en) 1982-11-05 1982-11-05 Surface treatment of high speed steel

Country Status (1)

Country Link
JP (1) JPS5983718A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282803A (en) * 1986-05-28 1987-12-08 Kobe Steel Ltd High-speed steel cutting tool
JP2013107143A (en) * 2011-11-17 2013-06-06 Osg Corp Tool and method of manufacturing the same
DE19848025B4 (en) * 1998-10-17 2015-02-05 Oerlikon Trading Ag, Trübbach Process for the surface treatment of tools and tools with treated surface

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS5562119A (en) * 1978-10-30 1980-05-10 Komatsu Ltd Heat treating method for high speed steel tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50812A (en) * 1972-11-14 1975-01-07
JPS5562119A (en) * 1978-10-30 1980-05-10 Komatsu Ltd Heat treating method for high speed steel tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62282803A (en) * 1986-05-28 1987-12-08 Kobe Steel Ltd High-speed steel cutting tool
DE19848025B4 (en) * 1998-10-17 2015-02-05 Oerlikon Trading Ag, Trübbach Process for the surface treatment of tools and tools with treated surface
JP2013107143A (en) * 2011-11-17 2013-06-06 Osg Corp Tool and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0128809B2 (en) 1989-06-06

Similar Documents

Publication Publication Date Title
US20170304952A1 (en) Hot-Formed Previously Welded Steel Part with very High Mechanical Resistance and Production Method
US5906053A (en) Rotary cutting blade having a laser hardened cutting edge and a method for making the same with a laser
US4750947A (en) Method for surface-alloying metal with a high-density energy beam and an alloy metal
KR101996144B1 (en) Hardfacing method of press die
CN111918748B (en) Welding method of coated steel plate
EP0190378B1 (en) Method for surface-alloying metal with a high-density energy beam and an alloy steel
CN114427091B (en) High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof
JPS5983718A (en) Surface treatment of high speed steel
CN1155725C (en) Laser technology for treating surface of cold hard roller, nodular iron casting or gray casting
JP3091059B2 (en) How to strengthen steel
JP4099742B2 (en) Tool steel with excellent weldability and machinability and mold using the same
Reynolds et al. Alternatives to lead as a machinability enhancer in free cutting steels
JPS62196327A (en) Manufacture of high-carbon wire bar for cold forging
JPH02221304A (en) Manufacture of high speed steel tool
CN113684426B (en) High-tungsten steel and preparation method thereof
JP3073629B2 (en) How to strengthen steel
WO2024063151A1 (en) Hot work tool steel powder for additive fabrication and additively fabricated hot work tool steel object
Ming-Jen et al. Cutting tool wear of laser-surface-melted high speed steels
JPH0351535B2 (en)
JPS62282831A (en) Manufacture of high-speed cutting tool
JPH03165906A (en) Manufacture of roll for cold rolling
JPH04124242A (en) Aluminum alloy excellent in wear resistance and its manufacture
Dobrzanski et al. Effect of diode laser surface alloying of hot-work tool steel
JP3091060B2 (en) How to strengthen steel
Dobrzański et al. Effect of laser treatment on changes of the surface layers properties of the hot work alloy tool steels