JPH04124242A - Aluminum alloy excellent in wear resistance and its manufacture - Google Patents

Aluminum alloy excellent in wear resistance and its manufacture

Info

Publication number
JPH04124242A
JPH04124242A JP24642890A JP24642890A JPH04124242A JP H04124242 A JPH04124242 A JP H04124242A JP 24642890 A JP24642890 A JP 24642890A JP 24642890 A JP24642890 A JP 24642890A JP H04124242 A JPH04124242 A JP H04124242A
Authority
JP
Japan
Prior art keywords
wear resistance
aluminum alloy
alloy
solidifying
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24642890A
Other languages
Japanese (ja)
Inventor
Masakazu Hirano
正和 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP24642890A priority Critical patent/JPH04124242A/en
Publication of JPH04124242A publication Critical patent/JPH04124242A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To secure the excellent wear resistance of an aluminum alloy by adding specified elements to an Al-Si series alloy to reinforce its matrix, furthermore continuously executing local remelting and solidifying and rapidly solidifying the alloy. CONSTITUTION:The compsn. of an alloy is regulated to a one essentially consisting of, by weight, 8 to 17% Si, constituted of one or >=2 kinds among 0.5 to 2% Mn, 0.5 to 1% Cr, 0.5 to 1% Zr, 1 to 3% Fe and 1 to 3% Ni, one or >=2 kinds among 0.001 to 0.1% Na, 0.001 to 0.1% Sb and 0.001 to 0.1% Sr and the balance Al with impurities. The ingot having the above componental compsn. or the material in an intermediate stage of the Al alloy is irradiated with the pencil of electron beams from its surface, and local remelting and solidifying are continuously executed to rapidly solidify the alloy. In this way, the material in which Si grains are finely and uniformly distributed and the matrix holding the above is solid and excellent in wear resistance can be obtd.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は耐摩耗性の優れたアルミニウム合金及びその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an aluminum alloy with excellent wear resistance and a method for producing the same.

(従来の技術及び解決しようとする課題)アルミニウム
合金は、軽量で塑性加工も容易であるため、近年の軽量
化要求と相俟って輸送機器や機械部品の多くに使用され
ており、従来の鉄系材料に代わって、耐摩耗性が要求さ
れる部品にもアルミニウム合金が使用されることが多く
なっている。
(Conventional technology and problems to be solved) Aluminum alloys are lightweight and easy to plastically process, so in conjunction with the recent demand for weight reduction, they are used in many transportation equipment and machine parts. Aluminum alloys are increasingly being used in place of iron-based materials for parts that require wear resistance.

しかし、現在のアルミニウム合金の耐摩耗性はこのよう
な要求に対して必ずしも十分応えているとは言えない。
However, it cannot be said that the wear resistance of current aluminum alloys necessarily satisfies these demands.

すなわち、従来、耐摩耗性アルミニウム合金はシルミン
系に代表されるAU−8j系合金の鋳物や押出材が主流
であった。Al−3j系合金は、初晶及び過共晶の硬い
Si粒子が材料表面に分布している結果、優れた耐摩耗
性を有し、更にこのSi粒子を支えるマトリックスの強
度が高い程、耐摩耗性が優れる。しかし、その耐摩耗性
をもっても上記要求に対して十分とは云えない。
That is, conventionally, wear-resistant aluminum alloys have been mainly cast or extruded materials of AU-8j-based alloys, typified by Silumin-based alloys. Al-3j alloys have excellent wear resistance as a result of primary and hypereutectic hard Si particles distributed on the material surface, and the higher the strength of the matrix supporting these Si particles, the higher the wear resistance. Excellent abrasion resistance. However, even its wear resistance is not sufficient to meet the above requirements.

したがって、上記のような耐摩耗性の更なる向上という
強い要求に応えるためには、この性能を更に高める必要
かあ。すなわち、81粒子の分布を微細均一とし、マト
リックスの強度を向上させる必要がある。
Therefore, in order to meet the strong demand for further improvement in wear resistance as mentioned above, it is necessary to further improve this performance. That is, it is necessary to make the distribution of the 81 particles fine and uniform and to improve the strength of the matrix.

本発明は、か\る要請に応えるべくなされたものであっ
て、従来の工業的な大型鋳塊によっては得ることのでき
ない優れた耐摩耗性が確保できるアルミニウム合金を提
供し、またその製造方法を提供することを目的とするも
のである。
The present invention was made in response to such demands, and provides an aluminum alloy that can ensure excellent wear resistance that cannot be obtained with conventional large industrial ingots, and a method for producing the same. The purpose is to provide the following.

(課題を解決するための手段) 前記課題を解決するため、本発明者は、化学成分並びに
製造条件について新たな観点から鋭意研究を重ねた結果
、ここに本発明をなしたものである。
(Means for Solving the Problems) In order to solve the above-mentioned problems, the present inventor has conducted extensive research on chemical components and manufacturing conditions from a new perspective, and as a result, has hereby accomplished the present invention.

すなわち、本発明は、Si:8〜17%を必須成分とし
て、Mn:0.5〜2%、Cr:0.5〜1%、Zr:
 O、−5−1%、Fe:1−3%及びNi:1−3%
のうちの1種又は2種以上と、Na:0.001〜0.
1%、Sb:O,OOl 〜0.1%及びSr:0゜0
01〜0.1%のうちの1種又は2種以上を含み、必要
に応じて更にCu: 0 、5〜4%及びMg:0.3
〜2%のうちの1種又は2種を含み、残部がAl及び不
純物からなる成分組成を有し、81粒子が微細均一に分
布していることを特徴とする耐摩耗性の優れたアルミニ
ウム合金を要旨とするものである。
That is, in the present invention, Si: 8-17% is an essential component, Mn: 0.5-2%, Cr: 0.5-1%, Zr:
O, -5-1%, Fe: 1-3% and Ni: 1-3%
one or more of the following, and Na: 0.001 to 0.
1%, Sb:O,OOl~0.1% and Sr:0゜0
Cu: 0, 5-4% and Mg: 0.3.
An aluminum alloy with excellent wear resistance, characterized by having a composition containing one or two of ~2% of aluminum, the remainder consisting of Al and impurities, and having 81 finely uniformly distributed particles. The main points are as follows.

また、その製造方法は、上記成分組成を有するアルミニ
ウム合金の鋳塊、或いは板、押し出し材。
In addition, the manufacturing method includes an ingot, a plate, or an extrusion material of an aluminum alloy having the above-mentioned composition.

鋳造材などの中間工程材について、その表面よりエレク
トロンビームの線束を照射して局部的な再溶解及び凝固
を連続的に行い急冷凝固させることを特徴とする耐摩耗
性の優れたアルミニウム合金の製造方法を要旨とするも
のである。
Production of an aluminum alloy with excellent wear resistance, which involves irradiating an intermediate process material such as a cast material with an electron beam from the surface to continuously locally remelt and solidify the material and rapidly solidify it. The gist is the method.

以下に本発明髪更に詳述する。The hair according to the present invention will be explained in more detail below.

(作用) まず、本発明における化学成分の限定理由について説明
する。
(Function) First, the reason for limiting the chemical components in the present invention will be explained.

本発明のアルミニウム合金は、アルミニウム合金のうち
最も耐摩耗性が優れるAl2−5i系を主成分系とし、
Si粒子を支持する強固なマトリックスを得るため、M
n、 Cr−Zr、 Fe、Ni−Cu、Mgを添加す
る。更に、Si粒子微細化を促進するためにSr、Sb
、Naを添加するのである。
The aluminum alloy of the present invention has Al2-5i system as the main component which has the best wear resistance among aluminum alloys,
In order to obtain a strong matrix supporting the Si particles, M
n, Cr-Zr, Fe, Ni-Cu, and Mg are added. Furthermore, in order to promote Si particle refinement, Sr, Sb
, Na is added.

Siは耐摩耗性確保のために必要不可欠の元素であるが
、8%未満では充分な耐摩耗性が得られず、また17%
を超えるとその効果が飽和し、且つ加工性が劣化するの
で、Si量は8〜17%の範囲とする。
Si is an essential element for ensuring wear resistance, but if it is less than 8%, sufficient wear resistance cannot be obtained;
If it exceeds this, the effect will be saturated and the workability will deteriorate, so the amount of Si should be in the range of 8 to 17%.

Mn、Cr、Zr、Fe、Niは、いずれも強制固溶さ
せることによってマトリックスを強化することができ、
耐摩耗性を向上させる重要な元素であるので、これらの
1種又は2種を適量で添加する。
Mn, Cr, Zr, Fe, and Ni can all strengthen the matrix by forcing them into solid solution.
Since these are important elements for improving wear resistance, one or two of these elements are added in appropriate amounts.

しかし、Mn、Cr、Zrがそれぞれ0.5%未満。However, Mn, Cr, and Zr are each less than 0.5%.

Fe、Niがそれぞれ1%未満では、充分な耐摩耗性が
得られない。また、Mnが2%超、Cr、 Zrがそれ
ぞれ1%超、Feが3%超、Niが3%超では、その効
果が飽和し、且つ加工性が劣化する。
If Fe and Ni are each less than 1%, sufficient wear resistance cannot be obtained. Furthermore, if Mn exceeds 2%, Cr and Zr each exceed 1%, Fe exceeds 3%, and Ni exceeds 3%, the effect is saturated and workability deteriorates.

Cu、M、gは同様にマトリックスを強化して耐摩耗性
を向上させる効果があるが、強制固溶させた後に熱処理
を施して、析出硬化によりマトリックスを強化するもの
であり、製品の目的・形状に応じて、それらの1種又は
2種を必要に応じて添加する。しかし、Cuが0.5%
未満、Mgが0.3%未満では効果が少なく、またCu
が4%超、Mgが2%超では効果が飽和し、加工性が劣
る。
Cu, M, and g also have the effect of strengthening the matrix and improving wear resistance, but after being forced into solid solution, heat treatment is performed to strengthen the matrix through precipitation hardening, and the purpose of the product Depending on the shape, one or two of them may be added as necessary. However, Cu is 0.5%
If the Mg content is less than 0.3%, the effect will be small;
When Mg exceeds 4% and Mg exceeds 2%, the effect is saturated and workability is poor.

Na、Sb、Srは、Si粒子の微細化促進のため、本
合金鋳造時に添加して初期の粒子を細かくし、エレクト
ロビーム処理時のSi粒子微細化効果を高めるものであ
り、それらの1種又は2種を適量で添加する。いずれも
、0.001%未満では効果がなく、また0、1%を超
えると効果が飽和する。
Na, Sb, and Sr are added at the time of casting this alloy to make the initial particles finer and enhance the Si particle refinement effect during electrobeam treatment in order to promote the refinement of Si particles. Or add two types in appropriate amounts. In either case, there is no effect if it is less than 0.001%, and the effect is saturated if it exceeds 0.1%.

上記の如く成分調整したアルミニウム合金は、通常の工
業的に製造された金型鋳塊或いは連続鋳塊よりはるかに
早い速度で急速冷却させることにより、従来の鋳塊では
得られない微細な81粒子の組織が得られ、且つ多量の
合金成分を強制固溶させることができる。その結果、得
られた材料を通常の工業的方法で加工すると、Si粒子
が微細均一に分布し、且つそれを保持するマトリックス
が強固で耐摩耗性が著しく優れた材料が得られるもので
ある。
The aluminum alloy whose composition has been adjusted as described above is rapidly cooled at a much faster rate than ordinary industrially manufactured mold ingots or continuous ingots, resulting in fine 81 grains that cannot be obtained with conventional ingots. structure, and a large amount of alloy components can be forced into solid solution. As a result, when the obtained material is processed by a normal industrial method, a material is obtained in which the Si particles are finely and uniformly distributed, the matrix that holds them is strong, and the wear resistance is extremely excellent.

急冷凝固させる手段は、上記化学成分を有する鋳塊或い
は中間工程材(板、押し出し材、鋳造材など)に対し、
その表面からエレクトロンビームの線束を照射して1局
部的な再溶解及び凝固を連続的に行い、急冷凝固させる
ものである。
The means for rapidly solidifying is to
A beam of electron beam is irradiated from the surface to continuously perform local remelting and solidification, resulting in rapid solidification.

エレクトロンビームの照射は、−・般に10−4〜10
−!′Torrの真空中にて加熱されたタングステンフ
ィラメントから発生したエレクトロンに高電圧をかけ、
加速されたエレクトロンビームを被溶解部に照射するこ
とにより、エレクトロンの運動エネルギーを熱エネルギ
ーに変えて溶解するものであるが、エネルギー密度が極
めて高いので、深い溶は込みが得られ、そのため、厚い
鋳塊や中間工程材の再溶解又は再溶融が可能となる。
The electron beam irradiation is generally 10-4 to 10
-! 'A high voltage is applied to electrons generated from a tungsten filament heated in a vacuum of Torr.
By irradiating the part to be melted with an accelerated electron beam, the kinetic energy of the electrons is converted into thermal energy and melted.As the energy density is extremely high, deep weld penetration can be obtained, resulting in a thick It becomes possible to remelt or remelt ingots and intermediate process materials.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

(実施例) 第1表に示す化学成分を有するアルミニウム合金の小型
鋳塊(50tx 200 x 400)を作製し、これ
に第2表に示す溶解条件で鋳塊表面よりエレクトロンビ
ームを照射して局部的な急速再溶解及び急速冷却凝固を
行った。この場合、得られた冷却速度は104℃/mi
nであり、同寸法の従来法による金型鋳塊の10℃/w
inに比べて著シ・<早い冷却速度であった。
(Example) A small ingot (50tx 200 x 400) of aluminum alloy having the chemical composition shown in Table 1 was prepared, and an electron beam was irradiated from the surface of the ingot under the melting conditions shown in Table 2 to locally melt the ingot. Rapid remelting and rapid cooling solidification were performed. In this case, the obtained cooling rate was 104°C/mi
n, and the mold ingot made by the conventional method with the same dimensions is 10℃/w
The cooling rate was significantly faster than in.

更に、この鋳塊を一般の工業的条件にて調整した。すな
わち、450℃X24hrの均質化処理を行い、250
〜350℃の熱間圧延及び冷間圧延により6mmの板厚
とした。この後、Nα8、Na 9の材料については4
95°C×30分の溶体化処理後水焼入し、190″C
X12hrの熱処理を行った。
Furthermore, this ingot was adjusted under general industrial conditions. That is, homogenization treatment was performed at 450°C for 24 hours, and
It was made into a board thickness of 6 mm by hot rolling and cold rolling at ~350°C. After this, for the materials of Nα8 and Na9, 4
After solution treatment at 95°C for 30 minutes, water quenching was performed at 190″C.
Heat treatment was performed for 12 hours.

この材料の性能(硬度、摩耗特性)を調べた結果を第3
表に示す。
The results of investigating the performance (hardness, wear characteristics) of this material are shown in the third section.
Shown in the table.

なお、耐摩耗試験は、3mmX6mmの試験片と回転ド
ラム(鋼製#24o仕上げ)を摩擦速度2〜5m/se
c、摩擦力5kg/cm2、潤滑油なしで摩擦試験し、
摩耗による重量減にて摩耗特性を評価した。
In addition, the wear resistance test was performed using a 3 mm x 6 mm test piece and a rotating drum (steel #24o finish) at a friction speed of 2 to 5 m/sec.
c. Friction test without lubricating oil, friction force 5 kg/cm2,
Wear characteristics were evaluated based on weight loss due to wear.

第3表より明らかなように、本発明例は、従来例に比べ
、著しく優れた耐摩耗性を示している。
As is clear from Table 3, the examples of the present invention exhibit significantly superior wear resistance compared to the conventional examples.

得られた材料のミクロ組織についても、第1図に示す従
来例Na 10に比べ2本発明例NO〕8は第2図に示
すように著しく微細な分散粒子の存在が認められる。他
の本発明例も同様のミクロ組織を有していることが確認
された。
Regarding the microstructure of the obtained material, as compared to the conventional example Na 10 shown in FIG. 1, the presence of significantly finer dispersed particles in the present invention example No. 8, as shown in FIG. 2, was observed. It was confirmed that other examples of the present invention also had similar microstructures.

[以下余白] 筑 実 (発明の効果) 以上詳述したように、本発明によれば、従来の耐摩耗性
Al−5i系合金よりも著しく優れた耐摩耗性を有する
材料を提供できるので、耐摩耗性の更なる要求に十分応
えることができる。
[Blank below] Chikumi (Effects of the Invention) As detailed above, according to the present invention, it is possible to provide a material that has wear resistance significantly superior to conventional wear-resistant Al-5i alloys. It can fully meet further demands for wear resistance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は実施例で得られたアルミニウム合金
の金属組織を示す顕微鏡写真(xl○0)で、第1図は
従来例の場合、第2図は本発明例の場合を示している。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚 第 第
Figures 1 and 2 are micrographs (xl○0) showing the metal structure of the aluminum alloy obtained in the example. Figure 1 shows the conventional example, and Figure 2 shows the example of the present invention. ing. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Si:8〜17%を必
須成分として、Mn:0.5〜2%、Cr:0.5〜1
%、Zr:0.5〜1%、Fe:1〜3%及びNi:1
〜3%のうちの1種又は2種以上と、Na:0.001
〜0.1%、Sb:0.001〜0.1%及びSr:0
.001〜0.1%のうちの1種又は2種以上を含み、
残部がAl及び不純物からなる成分組成を有し、Si粒
子が微細均一に分布していることを特徴とする耐摩耗性
の優れたアルミニウム合金。
(1) In weight% (the same applies hereinafter), Si: 8-17% as an essential component, Mn: 0.5-2%, Cr: 0.5-1
%, Zr: 0.5-1%, Fe: 1-3% and Ni: 1
~3% of one or more types and Na: 0.001
~0.1%, Sb:0.001~0.1% and Sr:0
.. Contains one or more of 001 to 0.1%,
An aluminum alloy with excellent wear resistance, characterized by having a composition in which the remainder consists of Al and impurities, and in which Si particles are finely and uniformly distributed.
(2)更にCu:0.5〜4%及びMg:0.3〜2%
のうちの1種又は2種を含む請求項1に記載のアルミニ
ウム合金。
(2) Furthermore, Cu: 0.5-4% and Mg: 0.3-2%
The aluminum alloy according to claim 1, comprising one or two of the above.
(3)請求項1又は2に記載の成分組成を有するアルミ
ニウム合金の鋳塊、或いは板、押し出し材、鋳造材など
の中間工程材について、その表面からエレクトロンビー
ムの線束を照射して局部的な再溶解及び凝固を連続的に
行い急冷凝固させることを特徴とする耐摩耗性の優れた
アルミニウム合金の製造方法。
(3) An aluminum alloy ingot having the composition set forth in claim 1 or 2, or an intermediate process material such as a plate, an extrusion material, or a cast material, is irradiated with an electron beam beam from its surface to locally A method for producing an aluminum alloy with excellent wear resistance, characterized by continuous remelting and solidification followed by rapid solidification.
JP24642890A 1990-09-17 1990-09-17 Aluminum alloy excellent in wear resistance and its manufacture Pending JPH04124242A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24642890A JPH04124242A (en) 1990-09-17 1990-09-17 Aluminum alloy excellent in wear resistance and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24642890A JPH04124242A (en) 1990-09-17 1990-09-17 Aluminum alloy excellent in wear resistance and its manufacture

Publications (1)

Publication Number Publication Date
JPH04124242A true JPH04124242A (en) 1992-04-24

Family

ID=17148335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24642890A Pending JPH04124242A (en) 1990-09-17 1990-09-17 Aluminum alloy excellent in wear resistance and its manufacture

Country Status (1)

Country Link
JP (1) JPH04124242A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861911A1 (en) * 1996-09-03 1998-09-02 Toyota Jidosha Kabushiki Kaisha Alloy having excellent resistance against thermal fatigue, aluminum alloy having excellent resistance against thermal fatigue, and aluminum alloy member having excellent resistance against thermal fatigue
JP2009263720A (en) * 2008-04-24 2009-11-12 Nippon Light Metal Co Ltd Low thermal expansion aluminum alloy sheet material having excellent proof stress, and method for producing the same
JP2016121385A (en) * 2014-12-25 2016-07-07 株式会社Uacj Aluminum alloy sheet for case and case
CN109504881A (en) * 2018-12-14 2019-03-22 广东省海洋工程装备技术研究所 A kind of Al-Si-Cu-Mg-Ni-Sr alloy material and preparation method thereof and piston

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0861911A1 (en) * 1996-09-03 1998-09-02 Toyota Jidosha Kabushiki Kaisha Alloy having excellent resistance against thermal fatigue, aluminum alloy having excellent resistance against thermal fatigue, and aluminum alloy member having excellent resistance against thermal fatigue
EP0861911A4 (en) * 1996-09-03 1999-09-08 Toyota Motor Co Ltd Alloy having excellent resistance against thermal fatigue, aluminum alloy having excellent resistance against thermal fatigue, and aluminum alloy member having excellent resistance against thermal fatigue
JP2009263720A (en) * 2008-04-24 2009-11-12 Nippon Light Metal Co Ltd Low thermal expansion aluminum alloy sheet material having excellent proof stress, and method for producing the same
JP2016121385A (en) * 2014-12-25 2016-07-07 株式会社Uacj Aluminum alloy sheet for case and case
CN109504881A (en) * 2018-12-14 2019-03-22 广东省海洋工程装备技术研究所 A kind of Al-Si-Cu-Mg-Ni-Sr alloy material and preparation method thereof and piston

Similar Documents

Publication Publication Date Title
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
KR100192936B1 (en) Ultra high strength aluminum-base alloys
CN109576536B (en) Special aluminum-manganese alloy powder formula for 3D printing and preparation method and printing method thereof
US4347076A (en) Aluminum-transition metal alloys made using rapidly solidified powers and method
US4668470A (en) Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications
US20170120386A1 (en) Aluminum alloy products, and methods of making the same
JP3222124B2 (en) Ultra high strength AL-CU-LI-MG alloy
US4359352A (en) Nickel base superalloys which contain boron and have been processed by a rapid solidification process
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
CA1281211C (en) Formation of intermetallic and intermetallic-type precursor alloys for subsequent mechanical alloying applications
JPH0236661B2 (en)
CN108998700B (en) Ultra-light high-modulus high-strength cast aluminum-lithium-based composite material and preparation method thereof
US3117002A (en) Aluminum bronze alloy having improved wear resistance by the addition of cobalt, chromium, and manganese
US5078807A (en) Rapidly solidified magnesium base alloy sheet
US4497669A (en) Process for making alloys having coarse, elongated grain structure
EP0670912B1 (en) Light-weight, high strength beryllium-aluminium alloy
JPH04124242A (en) Aluminum alloy excellent in wear resistance and its manufacture
Vaidya et al. Ageing response and mechanical properties of a SiC p/Al-Li (8090) composite
EP0514498B1 (en) Rapidly solidified aluminum lithium alloys having zirconium
US3297435A (en) Production of heat-treatable aluminum casting alloy
US2937941A (en) Aluminum bronze alloy containing manganese and chromium and having improved wear resistance
JPH06145887A (en) Composite high-speed steel sleeve roll and its production
US2944890A (en) Aluminum bronze alloy having improved wear resistance by the addition of cobalt and chromium
JPH0448858B2 (en)
JPH03294447A (en) Aluminum alloy material excellent in high temperature strength and its manufacture