JPS5943816A - Manufacture of spheroidal graphite cast iron parts - Google Patents

Manufacture of spheroidal graphite cast iron parts

Info

Publication number
JPS5943816A
JPS5943816A JP15564782A JP15564782A JPS5943816A JP S5943816 A JPS5943816 A JP S5943816A JP 15564782 A JP15564782 A JP 15564782A JP 15564782 A JP15564782 A JP 15564782A JP S5943816 A JPS5943816 A JP S5943816A
Authority
JP
Japan
Prior art keywords
cast iron
spheroidal graphite
graphite cast
weight
granular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP15564782A
Other languages
Japanese (ja)
Other versions
JPS6347773B2 (en
Inventor
Kazuo Sato
和雄 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Toyo Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp, Toyo Kogyo Co Ltd filed Critical Mazda Motor Corp
Priority to JP15564782A priority Critical patent/JPS5943816A/en
Publication of JPS5943816A publication Critical patent/JPS5943816A/en
Publication of JPS6347773B2 publication Critical patent/JPS6347773B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D5/00Heat treatments of cast-iron

Abstract

PURPOSE:To provide high fatigue strength and high wear resistance by forming granular pearlite in spheroidal graphite cast iron contg. specified amounts of C, Si, Mn, P, S, Cu, Sn, Mo and Mg while specifying the granular pearlite formation rate and the carbon content of the matrix, and carrying out working and quenching for surface hardening. CONSTITUTION:The composition of spheroidal graphite cast iron is composed of, by weight, 2.6-4% C, 1.5-3.5% Si, 0.1-1% Mn, <0.15% P, <0.03% S, 0.3- 1.5% Cu or 0.03-1.6% Sn, 0.03-0.1% Mo, 0.025-0.1% Mg and the balance Fe. Granular pealite is formed in the cast iron so as to regulate the granular pearlite formation rate to 35-65% and the carbon content of the matrix to 0.3- 0.65%, and working and quenching for surface hardening are carried out.

Description

【発明の詳細な説明】 本発明は、焼入性、加工性の両方に優れた球状黒鉛鋳鉄
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing spheroidal graphite cast iron that is excellent in both hardenability and workability.

従来より、球状黒鉛鋳鉄部品の熱処理方法は槙々提案さ
れており、特開昭56−116853号公報には、Mo
 o、o 3〜0.09重す%、CuQ、3〜1,5重
量%を含有する球状黒鉛鋳鉄を焼鈍して組織をフェライ
ト化し、その後オーステンパー処理し、ショットピーニ
ングする方法が、また特開昭57−19320号公報に
は、球状黒鉛鋳鉄を焼準してパーライト化し、その後に
オーステンパー処理する方法が開示されている。
In the past, many heat treatment methods for spheroidal graphite cast iron parts have been proposed, and Japanese Patent Application Laid-Open No. 56-116853 describes a method for heat treatment of spheroidal graphite cast iron parts.
There is also a special method in which spheroidal graphite cast iron containing 3 to 0.09% by weight of o, o and 3 to 1.5% by weight of CuQ is annealed to make the structure ferrite, and then austempered and shot peened. JP-A-57-19320 discloses a method in which spheroidal graphite cast iron is normalized to pearlite, and then austempered.

ところで、第1図に示すように、基地組織をフェライト
化した球状黒鉛鋳鉄Aは、熱処理に際して所定の硬度に
達するまでの時間、即ちオーステナイト化時間に長時間
を要し、焼入性が悪い問題がある。一方、パーライト化
した球状黒鉛鋳鉄Bは、オーステナイト化時間が短かく
焼入性が良好で、高周波等による迅速加熱でも十分なカ
ーボン濃度が得られ、硬さ深度も任意に選定でき、表面
層に疲労強度に有利な圧縮応力を与えることかできる利
点がある。
By the way, as shown in Fig. 1, spheroidal graphite cast iron A with a ferrite base structure has the problem of poor hardenability because it takes a long time to reach a predetermined hardness during heat treatment, that is, it takes a long time to change to austenite. There is. On the other hand, pearlitized spheroidal graphite cast iron B has a short austenitization time and good hardenability, and even with rapid heating using high frequency etc., a sufficient carbon concentration can be obtained, the hardness depth can be arbitrarily selected, and the surface layer It has the advantage of being able to provide compressive stress that is beneficial for fatigue strength.

しかしながら、第2図に示すように、加工性という面か
らみると、パーライト地の球状黒鉛鋳鉄Bては、刃具閏
耗隈がフェライト地の球状黒鉛鋳鉄Aのものに比して著
しく高く、加工性において著しく劣る問題がある。
However, as shown in Fig. 2, from the viewpoint of workability, the cutting tool wear of spheroidal graphite cast iron B with pearlite base is significantly higher than that of spheroidal graphite cast iron A with ferrite base. There is a problem of being significantly inferior in terms of gender.

本発明は、かかる問題に鑑みてなされたものであって、
焼入性、加工性のいずれにも優れ、したがって高疲労強
度、高耐摩耗性を有する球状黒鉛鋳鉄部品の製造方法を
提供することを目的としている。
The present invention has been made in view of such problems, and includes:
The object of the present invention is to provide a method for manufacturing spheroidal graphite cast iron parts that are excellent in both hardenability and workability, and therefore have high fatigue strength and high wear resistance.

このため、本発明においては、C2,6〜4.0重量%
、Si  1.5〜3.5重M%、MnQ、1〜1.0
重壜%1Po、15重量%以下、50.03市率%以下
、Cu O,3〜1.5重−i<又はSn O,03〜
1.6信置%、MOo、03〜0.1重量%、Mg0.
025〜01重量%、Fe残部からなる球状黒鉛鋳鉄を
、粒状パーライト化率35〜65%で、かつ基地炭素量
0.3〜0.65%となるように粒状パーライト化した
後、加工し、次いで表面6更化焼入れするようにしたこ
とを基本的な特徴としている。
Therefore, in the present invention, C2,6 to 4.0% by weight
, Si 1.5-3.5w M%, MnQ, 1-1.0
Heavy bottle% 1Po, 15% by weight or less, 50.03% by weight or less, Cu O, 3 to 1.5 weight-i < or Sn O, 03 to
1.6% by weight, MOo, 03-0.1% by weight, Mg0.
Spheroidal graphite cast iron consisting of 0.025 to 0.01% by weight and the balance of Fe is processed after being made into granular pearlite with a granular pearlite conversion rate of 35 to 65% and a base carbon content of 0.3 to 0.65%, The basic feature is that the surface is then six-fermented and hardened.

この場合、球状黒鉛鋳鉄の化学組成の限定理由は以下の
通りである。
In this case, the reason for limiting the chemical composition of the spheroidal graphite cast iron is as follows.

C:2.6%以下ではSiとの飽和度の関係で鋳造欠陥
特に引は巣、チルを発生する。
C: At 2.6% or less, casting defects, especially cavities and chills, occur due to the saturation degree with Si.

4.0%以上ではSiとの飽和度の関係でざく巣、70
−テイシヨン等の欠陥を招(。
If it is 4.0% or more, the saturation level with Si will cause a nest, 70
-Causes defects such as tission (.

Si : l、5%以下ではCとの飽和度の関係で鋳造
性(浦動性)を阻害する。
Si: 1. If it is less than 5%, castability (rollability) is inhibited due to the saturation degree with C.

3.5%以上ではCとの飽和度の関係で流動性は向上す
るがざく巣、フローティジョンを招く。
If it exceeds 3.5%, the fluidity will improve due to the saturation level with C, but this will lead to stagnation and flotation.

Mn : Mnは必然的に溶解何科より入る量として0
.1%以上に、又、Mnはパーライト化の強い元素と同
時に1,0%以上ではj、l、+J性を阻害する。
Mn: Mn is necessarily 0 as the amount that enters the solution from any family.
.. At 1% or more, Mn is an element that strongly causes pearlitization and at the same time at 1.0% or more, it inhibits j, l, and +J properties.

11’:o、is%以上では多量のステダイトを形成し
、靭性を阻害する。
If the content is 11': o, is% or more, a large amount of steadite is formed, which impairs toughness.

S:0.03%以上では多量のMgを要し、結果的に酸
化物等の介在物を多く発生する。
If S: 0.03% or more, a large amount of Mg is required, resulting in the generation of many inclusions such as oxides.

Cu:Q、3呪以下では焼鈍時、パーライトが分解し基
地中に均一に分布した粒状パーライトが得られない。又
、MOとの併用効果である疲労強度、耐面圧強度特性が
得られない。
Cu: If Q is 3 or less, pearlite decomposes during annealing and granular pearlite uniformly distributed throughout the base cannot be obtained. In addition, the fatigue strength and surface pressure resistance properties that are the effects of combined use with MO cannot be obtained.

1.5%以上ではCu元素による前述の効果は飽和し、
コストアップとなる。
At 1.5% or more, the above-mentioned effect of the Cu element is saturated,
This will increase costs.

Sn: S nはCuの代替え元素として使用するもの
で強力なパーライト化元素である。
Sn: Sn is used as a substitute element for Cu and is a strong pearlitizing element.

0.03%以下では基地中に均一に分布した粒状パーラ
イトが得られない。
If it is less than 0.03%, granular pearlite uniformly distributed in the matrix cannot be obtained.

1.6%以上では粒界に析出し、結果、強度特性を低下
する。又、効果も飽和しコストアップになる。
If it exceeds 1.6%, it will precipitate at grain boundaries, resulting in a decrease in strength properties. Moreover, the effect becomes saturated and the cost increases.

Mo: 0.03%以下ではCu併用による効果(疲労
強度特性、面ト1:、強度、耐摩耗性)を得られず又、
焼入れ性も低下し、均一な組織か得られない。
If Mo: 0.03% or less, the effects (fatigue strength characteristics, surface strength, wear resistance) cannot be obtained by using Cu in combination, and
Hardenability also deteriorates, and a uniform structure cannot be obtained.

0.1%以上では複炭化物を形成し、耐摩耗性は向上す
る反面、ギヤー等に最も必要な疲労強度特性を大[11
に低下する。
If it exceeds 0.1%, double carbides are formed, which improves wear resistance, but increases the fatigue strength properties most necessary for gears, etc. [11
decreases to

Mg: M gは溶湯の脱硫、脱酸を行い黒鉛を球状化
させるためのηi要な元素である。
Mg: Mg is an essential element for desulfurizing and deoxidizing the molten metal and making the graphite spheroidal.

0.025%以下ではこの効果は不十分となり球状化が
行なわれなく靭性のある球状黒鉛鋳鉄とし難い。
If it is less than 0.025%, this effect will be insufficient and spheroidization will not occur, making it difficult to obtain tough spheroidal graphite cast iron.

0.10%以上では球状化は十分行なわれる。At 0.10% or more, spheroidization is sufficiently achieved.

しかし脱硫、脱酸時に生成した硫化物、酸化物(M g
 巣)が溶湯中に残留し、靭性低下を起す。
However, sulfides and oxides (Mg
cavities) remain in the molten metal and cause a decrease in toughness.

本発明においては、上記化学組成を有する球状黒鉛鋳鉄
素材の組織調整を粒状パーライト化処理によって行ない
、粒状パーライト化率35〜65幅で、かつ基地炭素量
が0.3〜0.65%となるように粒状パーライト化す
る。
In the present invention, the structure of the spheroidal graphite cast iron material having the above-mentioned chemical composition is adjusted by a granular pearlite treatment, so that the granular pearlite conversion rate ranges from 35 to 65 and the base carbon content is from 0.3 to 0.65%. It becomes granular pearlite.

この粒状パーライト化処理は、良好な焼入性と加工性(
切削性)の両方を同時に付与するため行なうもので、具
体的には、850〜1000℃の温度下で0.5時間以
上加熱した後空冷し、次いで670〜760℃の温度下
で0.5〜8.0時間加熱した後、空冷又は水冷(徐冷
可能)する2段階の熱処理によって行なうことができる
This granular pearlite treatment has good hardenability and workability (
This is done in order to simultaneously impart both machinability and machinability. Specifically, it is heated at a temperature of 850 to 1000°C for 0.5 hours or more, then air cooled, and then heated to a temperature of 670 to 760°C for 0.5 It can be carried out by a two-step heat treatment of heating for ~8.0 hours and then cooling with air or water (slow cooling is possible).

上記第1段の熱処理は、チルの分解と同時に粒状パーラ
イト化するためであり、粒状パーライトを均一に分布さ
せるためには、空冷が必要で、徐冷(炉冷)では均一分
布は得られない。また、850°C以下では、チルの分
解が行なえず、1000℃以上では結晶粒の粗大化を招
くので好ましくない。そして、有効なチルの分解を行な
うため、0.5時間以上は加熱を続ける必要がある。加
熱後の冷却を徐冷で行なうとすると、オーステナイト化
処理において粒界に不純物を晶出し、脆化の原因となる
The first heat treatment described above is to simultaneously decompose the chill and turn it into granular pearlite.In order to uniformly distribute the granular pearlite, air cooling is necessary, and gradual cooling (furnace cooling) cannot achieve uniform distribution. . Furthermore, if the temperature is below 850°C, the chill cannot be decomposed, and if it is above 1000°C, the crystal grains will become coarse, which is not preferable. In order to effectively decompose the chill, it is necessary to continue heating for 0.5 hours or more. If cooling after heating is performed by slow cooling, impurities will crystallize at grain boundaries during austenitization treatment, causing embrittlement.

第2段の熱処理は、粒状パーライト化率を35〜65%
にコントロールするために行なう。粒状パーライト35
%以下では加工性は良好であるが、十分な焼入性を得る
にたる炭素濃変とするに長時間を要することとなって好
ましくない。一方、65%以上とすると、逆の傾向、即
ち焼入性は向トするが加工性が悪化する傾向を示す。
The second stage heat treatment reduces the granular pearlite conversion rate to 35-65%.
This is done to control the situation. Granular perlite 35
% or less, the workability is good, but it is not preferable because it takes a long time to achieve the carbon concentration necessary to obtain sufficient hardenability. On the other hand, when it is 65% or more, the opposite tendency occurs, that is, the hardenability improves, but the workability tends to deteriorate.

温度条件として、670℃以下では粒状パーライト化が
困難となり、必要な粒状化を得るためには長時間を要す
ることとなって好ましくない。また、760℃以上では
、急速に黒鉛化が進行し、35%以上の粒状パーライト
が吊られない。処理時間は、少なくとも0.5時間必要
で、8時間以上とすることは、生産性が悪化してコスト
アップを招来する。冷却方法は、操業時間の短縮と基地
中の粒状パーライトの均一分布の目的で空冷又は水冷と
することが好ましい。
As for the temperature condition, if the temperature is 670° C. or lower, it becomes difficult to form granular pearlite, and it takes a long time to obtain the necessary granulation, which is not preferable. Further, at temperatures above 760° C., graphitization progresses rapidly and 35% or more of granular pearlite is not suspended. Processing time is required to be at least 0.5 hours, and if it is longer than 8 hours, productivity will deteriorate and costs will increase. The cooling method is preferably air cooling or water cooling for the purpose of shortening operating time and uniformly distributing granular pearlite in the base.

上記の粒状パーライト化処理の後は、処理した球状黒鉛
鋳鉄部品に対し、必要な形状加工前−を行なう。例えば
、ギヤ類の場合には、ラップ代、研削代を残した状態ま
での加工(シェービング加工)を行なう。
After the above-mentioned granular pearlite treatment, the treated spheroidal graphite cast iron parts are subjected to necessary pre-shaping. For example, in the case of gears, machining (shaving machining) is performed until a lapping allowance and a grinding allowance remain.

上記の加工後においては、表面硬化焼入れ(局部焼入れ
)を行なう。この表面硬化焼入旧は、a7;周波等によ
り850〜1000℃の温1f′で3秒以上局部加熱を
行ない、しかる後、オイル、ソルト等で焼入れし、所定
温度まで冷却した後、電気炉に移動し、電気炉内で60
秒かそれ以上の時間の間、所定の温度に維持し、その後
空冷又は水冷により冷却することにより行なう。
After the above-mentioned processing, surface hardening quenching (local quenching) is performed. This surface hardening and quenching process is performed by locally heating at a temperature of 850 to 1000°C for 3 seconds or more using a frequency etc., then quenching with oil, salt, etc., cooling to a specified temperature, and then heating in an electric furnace. 60 minutes in an electric furnace.
This is done by maintaining a predetermined temperature for a period of seconds or more and then cooling by air or water cooling.

この焼入れは、少なくとも部品の表面上内部に圧縮残留
応力を発生させ、耐摩耗性を向上させるためのもので、
表面層はベーナイト地又はマルテンサイト坤とし、これ
より内部を1次熱処理(粒状パーライト化処理)による
粒状パーライト地としたことを特徴としている。
This hardening is intended to generate compressive residual stress at least on the surface and inside of the part to improve wear resistance.
The surface layer is made of bainite or martensite, and the inside is made of granular pearlite by primary heat treatment (granular pearlite treatment).

上記電気炉において維持すべき所定温度は、目的とする
部品の負荷に応じて選択する。高1旨荷のギヤ類やシャ
フト類の場合には、220〜390℃の温度範囲として
、表面層をベーナイト地とし、低負荷のギヤ類やシャフ
ト類では、130〜220℃の温度範囲としてマルテン
サイト坤とする。
The predetermined temperature to be maintained in the electric furnace is selected depending on the target load on the parts. For high load gears and shafts, the temperature range is 220 to 390°C, and the surface layer is made of bainitic material, while for low load gears and shafts, the temperature range is 130 to 220°C, which is marten. The site gon' be.

上記のように、球状黒鉛鋳鉄部品の基地組織を粒状パー
ライト地とすれば、第1図にCで示すように、オーステ
ナイト化時間としては、パーライト地Bに近い特性が得
られるので良好なりと人件を確保することができると同
時に、第2図にCで示すように、フェライト地Aとほぼ
同じ良好な加工性を得ることができる。
As mentioned above, if the base structure of the spheroidal graphite cast iron parts is granular pearlite, as shown by C in Figure 1, the austenitization time will be close to that of pearlite B, so it will be easy to use. At the same time, as shown by C in FIG. 2, it is possible to obtain almost the same good workability as ferrite material A.

なお、上記本発明による1次、2次熱処理後にあっては
、応力集中部、例えばギヤ類の場合には歯底部、シャフ
ト類ではコーナ部に、ショットピーニング又はロール加
工により高いlf縮残留応力を発生させ、疲労強度特性
をより一層向上させるようにしてもよい。
After the primary and secondary heat treatment according to the present invention, stress concentration areas, such as tooth bottoms in gears and corner areas in shafts, are subjected to shot peening or roll processing to create high lf shrinkage residual stress. The fatigue strength characteristics may be further improved.

次に、本発明の実施例を示す。Next, examples of the present invention will be shown.

〔実施例〕〔Example〕

CSi  Mn  P   S  Cu  Mo  M
g木騨財3B92.760.250.02 0.011
0.760.080.043比較材3.682.770
.400.0180.013 − − 0.036上記
化学組成から成る球状黒鉛鋳鉄素材を高周波大気溶解炉
にて鋳造により製造し、切削性、および焼入れ性確保の
目的で電気炉によりチル分解を兼ねた920℃X 2.
 OHr加熱後、冷却は粒界に不純物を析出させないた
めに炉冷は避は空冷した。
CSi Mn P S Cu Mo M
g wood stock 3B92.760.250.02 0.011
0.760.080.043 Comparison material 3.682.770
.. 400.0180.013 - - 0.036 920 was produced by casting a spheroidal graphite cast iron material having the above chemical composition in a high-frequency atmospheric melting furnace, and then subjected to chill decomposition in an electric furnace for the purpose of ensuring machinability and hardenability. ℃X 2.
After heating with OHr, furnace cooling was avoided and air cooling was used to prevent impurities from precipitating at grain boundaries.

空冷後720±10℃から予め用意さ灼た750℃の゛
電気炉にて約2.581加熱後処理時間短縮のた ゛め
空冷した。ワークが室温になったのちブラストにより表
面のスケールを除去し、仕上加工を行った。次いで高周
波加熱を890℃、約15秒間行い予め用意された26
0℃のソルト炉へ約2. oHr浸漬し、ベーナイト化
を行なった。処理完了後、約80℃の温水にて洗浄した
After air cooling, the mixture was heated from 720±10°C to 750°C in an electric furnace prepared in advance to reduce the post-treatment time. After the workpiece reached room temperature, surface scale was removed by blasting and finishing was performed. Next, high-frequency heating was performed at 890°C for about 15 seconds to heat the prepared 26
Approximately 2. It was immersed in oHr to form bainite. After the treatment was completed, it was washed with warm water at about 80°C.

1見られた本発明にかかる試験片の仕上加工後およびベ
ーナイト化後の組織を夫々、第3図、第4図に示す。
1. The microstructures of the test piece according to the present invention after finishing processing and after bainiticization are shown in FIGS. 3 and 4, respectively.

本発明方法は、第5図」6よび第6メ[に夫々示すよう
に、リングギヤ1,2を夫々一体に形成するFF用およ
びFR用デフアレンシャンギヤケース3.4の製造に有
利に適用することができる。
The method of the present invention is advantageously applied to the manufacture of differential gear cases 3.4 for FF and FR in which ring gears 1 and 2 are integrally formed, respectively, as shown in Fig. 5"6 and 6, respectively. be able to.

この場合には、リングギヤ1,2を形成する7ラング部
5.6をギヤケース3.4と一体に形成してSき、ギヤ
を加工する7ランノ部外1部にはシェービング加工の後
、局所焼入稍を施すようにすればよい。この場合の局所
焼入れは、オーステンパー処理とし、高負荷を受合うリ
ングギヤ1゜2に対しては、焼入れ後に、ショットピー
ニング処理を施し、耐疲労強度をより一層向上させるこ
とが好ましい。
In this case, the 7 rungs 5.6 that form the ring gears 1 and 2 are formed integrally with the gear case 3.4, and the outer 1 part of the 7 rungs where the gears are machined is shaved and then localized. What is necessary is to give it a hardened finish. In this case, it is preferable that the local hardening be an austempering process, and for the ring gear 1°2 that receives a high load, a shot peening process is performed after the hardening to further improve the fatigue strength.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は球状黒鉛鋳鉄の基地組織の相違に基づく焼入性
の相違を示す特性図、第2図は球状黒鉛鋳鉄の基地組織
の相違に基づく加工性の相違を示した本発明材にかかる
2次熱処理後およびオーステンパー処理後の試験片の組
織を夫々倍率(×400)の図面代用顕微鏡写真、第5
図、第6図は夫々本発明方法の適用例を示す、リングギ
ヤをイ 一体に形成した車両用・公7アレンシヤルギヤケースの
各断面図である。 特 許 出 願 人  東洋工業株式会社代  理  
人 弁理士 青白 葆外2名第1図 第20 如り数、(東 、警3図 第5図 第6図 手続補正書 昭和57年10月12日 特許庁長官  殿 1、事件の表示 昭和57年特許願第   155647    号2、
発明の名称 球状黒鉛鋳鉄部品の製造法 3補正をする者 事件との関係 特許出願人 4、代理人 5捕2命#2夛2 (自 発) 7、補正の内容 昭和1書中、次の箇所を訂正します。 A1発明の詳細な説明の欄 (1)第3頁第10行目士第5頁第6行目r1.6Jと
あるを、 ro、16Jと訂正し捷す。 (2)第11頁第6行目 「デフアレンシャンギヤケース」とあるを、「デフアレ
ンシャンギヤケース」と訂正します。 昨請求の範囲の欄 111紙の通り。 以      」ニ 特許請求の範囲 r(1)  C2,6〜40重量%、Sil、5〜3.
5重量%、Mn0.1〜1.0重量%、Po、15重量
%以下、50.03重量%以下、CuQ、3〜1.5重
量%又はSn o、o 3〜0.16重量%、Mo O
,03〜0.1重量量%、Mg 0.025〜O,1重
量%、Fe残部からなる球状黒鉛鋳鉄を、粒状パーライ
ト化率35〜65%でかつ基地炭素量03〜0.65と
なるように粒状パーライト化した後、加工し、次いで表
面硬化焼入れするようにしたことを特徴とする球状黒鉛
鋳鉄部品の製造法。」 手続補正書(自発) 昭和57年10月18日 特許庁艮 宮殿 1、事件の表示 昭和57年特許願第   155647    万2、
発明の名称 球状黒鉛鋳鉄部品の製造法 3、補正をする者 事件との関係 特許出願人 4、代理人 明細書の特許請求の範囲の欄。 7、補正の内容 別紙の通り。 特許請求の範囲 r(11C2,6〜40重量%、Sil、5〜3.5重
量%、MnQ、l 〜1.0重量%、PO,15i量%
[F、30.03重社%以下、Cu 03〜15重量%
又はSn o、o 3〜0.16重量%、Mo o、o
 3〜0.1重量%、Mg 0.025〜0.1重量%
、Fe残部からなる球状黒鉛鋳鉄を、粒状パーライト化
率35〜65%でかつ基地炭素量0.3〜0.65とな
るように粒状パーライト化した後、加工し、次いで表面
硬化焼入れするようにしたことを特徴とする球状黒鉛鋳
鉄部品の製造法。」
Fig. 1 is a characteristic diagram showing the difference in hardenability due to the difference in the matrix structure of spheroidal graphite cast iron, and Fig. 2 is a characteristic diagram showing the difference in workability due to the difference in the matrix structure of spheroidal graphite cast iron. The structure of the test piece after the secondary heat treatment and the austempering treatment is shown in the micrographs substituted for drawings at a magnification of (×400), No. 5.
6 and 6 are sectional views of an allencial gear case for a vehicle, in which a ring gear is integrally formed, showing an example of application of the method of the present invention. Patent applicant: Toyo Kogyo Co., Ltd. Agent
Person: Patent attorney Seihaku, 2 people, Fig. 1, Fig. 20, number of cases, (Higashi, Police 3, Fig. 5, Fig. 6, Procedural amendments October 12, 1980, Commissioner of the Patent Office, Tono 1, Indication of the case, 1982) Patent Application No. 155647 2,
Title of the invention: Process for manufacturing spheroidal graphite cast iron parts 3 Relationship with the case of the person making the amendment Patent applicant 4, agent 5 arrested 2 orders #2 2 (voluntary) 7. Contents of the amendment In the Showa 1 book, the following: I will correct the part. A1 Detailed Description of the Invention Column (1) Page 3, line 10, page 5, line 6, r1.6J is corrected to ro, 16J. (2) On page 11, line 6, the words "differential gear case" will be corrected to "differential gear case." As per column 111 of the previous claim. Claims r(1) C2, 6-40% by weight, Sil, 5-3.
5% by weight, Mn 0.1 to 1.0% by weight, Po, 15% by weight or less, 50.03% by weight or less, CuQ, 3 to 1.5% by weight, or Sn o, 3 to 0.16% by weight, Mo O
Spheroidal graphite cast iron consisting of 0.03 to 0.1% by weight, 0.025 to 0.1% by weight of Mg, and the balance of Fe has a granular pearlite ratio of 35 to 65% and a base carbon content of 03 to 0.65. A method for manufacturing spheroidal graphite cast iron parts, which is characterized in that the parts are made into granular pearlite, processed, and then surface hardened and quenched. ” Procedural amendment (spontaneous) October 18, 1980 Patent Office Palace 1, case indication 1981 Patent Application No. 1556472,
Title of the invention: Method for manufacturing spheroidal graphite cast iron parts 3. Relationship with the case of the person making the amendment. Patent applicant 4: Scope of claims in the attorney's specification. 7. Details of the amendments are as shown in the attached sheet. Claims r (11C2, 6-40% by weight, Sil, 5-3.5% by weight, MnQ, 1-1.0% by weight, PO, 15i% by weight
[F, 30.03% or less, Cu 03-15% by weight
or Sn o, o 3-0.16% by weight, Mo o, o
3-0.1% by weight, Mg 0.025-0.1% by weight
, Spheroidal graphite cast iron consisting of Fe remainder is transformed into granular pearlite with a granular pearlite conversion rate of 35 to 65% and a base carbon content of 0.3 to 0.65, processed, and then surface hardened and quenched. A method for manufacturing spheroidal graphite cast iron parts characterized by: ”

Claims (1)

【特許請求の範囲】[Claims] はlc2.6〜4.0小量%、 Sil、5〜3.5市
量%、Mn  0.1〜1.0重1セ%、P 0.15
 重量<12を下、5O903重1i%以下、Cu 0
.3〜1.5 YJ 量’Io又はSnO,03〜1.
6!i%、Mo o、o 3〜0.I Llt[、Mg
 0.025〜O,L重@%、Fe残部からなる球状黒
鉛鋳鉄を、粒状パーライト化率35〜65%でかつ基地
炭素量0.3〜0.65%となるように粒状パーライト
化した後、加工し、次いで表面硬化焼入れするようにし
たことを特徴とする球状黒鉛鋳鉄部品の製造法。
is lc2.6-4.0 small amount%, Sil, 5-3.5 market weight%, Mn 0.1-1.0 weight 1%, P 0.15
Weight <12 or less, 5O903 weight 1i% or less, Cu 0
.. 3-1.5 YJ amount 'Io or SnO, 03-1.
6! i%, Mo o, o 3-0. I Llt[, Mg
After spheroidal graphite cast iron consisting of 0.025~O, L weight@% and the balance of Fe is made into granular pearlite so that the granular pearlite conversion rate is 35~65% and the base carbon content is 0.3~0.65%. A method for producing spheroidal graphite cast iron parts, characterized in that the parts are processed and then surface hardened and quenched.
JP15564782A 1982-09-06 1982-09-06 Manufacture of spheroidal graphite cast iron parts Granted JPS5943816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15564782A JPS5943816A (en) 1982-09-06 1982-09-06 Manufacture of spheroidal graphite cast iron parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15564782A JPS5943816A (en) 1982-09-06 1982-09-06 Manufacture of spheroidal graphite cast iron parts

Publications (2)

Publication Number Publication Date
JPS5943816A true JPS5943816A (en) 1984-03-12
JPS6347773B2 JPS6347773B2 (en) 1988-09-26

Family

ID=15610536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15564782A Granted JPS5943816A (en) 1982-09-06 1982-09-06 Manufacture of spheroidal graphite cast iron parts

Country Status (1)

Country Link
JP (1) JPS5943816A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219566A (en) * 1985-03-25 1986-09-29 Toshiba Corp Material for polishing surface plate
JPS62224573A (en) * 1986-03-24 1987-10-02 Toshiba Corp Manufacture of lapping surface table
US5423664A (en) * 1993-07-29 1995-06-13 Hitachi, Ltd. Iron-base alloy for rotary type compressors
JP2001020014A (en) * 1999-07-07 2001-01-23 Denki Kogyo Co Ltd High frequency induction hardening method of cast iron
JP2003055731A (en) * 2001-08-10 2003-02-26 Aisin Takaoka Ltd Spheroidal graphite cast iron excellent in strength, elongation and machinability, and its production method
JP2011038183A (en) * 2010-09-02 2011-02-24 Aisin Takaoka Ltd Cast iron component for vehicle
CN113322369A (en) * 2021-05-31 2021-08-31 东风商用车有限公司 Normalizing-strengthening cast iron, and normalizing-strengthening method and application thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61219566A (en) * 1985-03-25 1986-09-29 Toshiba Corp Material for polishing surface plate
JPS62224573A (en) * 1986-03-24 1987-10-02 Toshiba Corp Manufacture of lapping surface table
US5423664A (en) * 1993-07-29 1995-06-13 Hitachi, Ltd. Iron-base alloy for rotary type compressors
JP2001020014A (en) * 1999-07-07 2001-01-23 Denki Kogyo Co Ltd High frequency induction hardening method of cast iron
JP2003055731A (en) * 2001-08-10 2003-02-26 Aisin Takaoka Ltd Spheroidal graphite cast iron excellent in strength, elongation and machinability, and its production method
JP2011038183A (en) * 2010-09-02 2011-02-24 Aisin Takaoka Ltd Cast iron component for vehicle
CN113322369A (en) * 2021-05-31 2021-08-31 东风商用车有限公司 Normalizing-strengthening cast iron, and normalizing-strengthening method and application thereof
CN113322369B (en) * 2021-05-31 2022-02-18 东风商用车有限公司 Normalizing-strengthening cast iron, and normalizing-strengthening method and application thereof

Also Published As

Publication number Publication date
JPS6347773B2 (en) 1988-09-26

Similar Documents

Publication Publication Date Title
JP2001511479A (en) Method for producing weldable super-strength steel with excellent toughness
KR20150133759A (en) Bainitic microalloy steel with enhanced nitriding characteristics
EP0230716B1 (en) Machinable ductile or semiductile iron
JPS5943816A (en) Manufacture of spheroidal graphite cast iron parts
JPS6119698B2 (en)
KR20200076797A (en) Hot rolled and annealed steel sheet having low strength-deviation, formed member, and manufacturing method of therefor
EP0020357B1 (en) Lower bainite alloy steel article
JPS582572B2 (en) Method for manufacturing strong steel bars with little anisotropy
JPS6156235A (en) Manufacture of high toughness nontemper steel
JPH0570925A (en) Method for carbonitriding heat treatment of high strength gear small in strain
JPS6362568B2 (en)
JP3000838B2 (en) Manufacturing method of austempered ductile cast iron gears
JPS6145686B2 (en)
JPH02101117A (en) Production of high strength steel sheet having satisfactory formability
JPH0213004B2 (en)
JPS6358906B2 (en)
JPS5816024A (en) Production of case hardening steel for high temperature carburization
JPH0227408B2 (en)
JPH02267219A (en) Production of steel plate excellent in carburizability
JPH0447023B2 (en)
JPH02166257A (en) Spheroidal graphite cast iron and its production
JPS627243B2 (en)
JPS6383245A (en) Graphite cast iron member and its production
JPH0243319A (en) Production of case hardening cr-mo steel
KR100311785B1 (en) Manufacturing method of alloy wire rod for cold forging