JP3747982B2 - Manufacturing method of medium and high carbon steel sheet - Google Patents

Manufacturing method of medium and high carbon steel sheet Download PDF

Info

Publication number
JP3747982B2
JP3747982B2 JP20266397A JP20266397A JP3747982B2 JP 3747982 B2 JP3747982 B2 JP 3747982B2 JP 20266397 A JP20266397 A JP 20266397A JP 20266397 A JP20266397 A JP 20266397A JP 3747982 B2 JP3747982 B2 JP 3747982B2
Authority
JP
Japan
Prior art keywords
stage
less
steel
annealing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20266397A
Other languages
Japanese (ja)
Other versions
JPH1129823A (en
Inventor
大樹 赤見
寛 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP20266397A priority Critical patent/JP3747982B2/en
Publication of JPH1129823A publication Critical patent/JPH1129823A/en
Application granted granted Critical
Publication of JP3747982B2 publication Critical patent/JP3747982B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、中・高炭素亜共析鋼熱延鋼板の製造方法に関するものである。
【0002】
【従来の技術】
鋼中のC含有量が概ね0.2〜0.8質量%の、いわゆる中・高炭素鋼は、焼入れ強化が可能であると共に、焼入れ前の焼鈍状態ではある程度の加工性も有している。このため、その熱延鋼板は自動車部品をはじめ各種機械部品や軸受け部品の素材として広く使用されている。部品の製造にあたっては、一般的には打抜加工や曲げ成形が施され、さらに比較的軽度な絞り加工,伸びフランジ成形が施されることもある。また、部品形状が複雑な場合は、二ないし三部品を溶接して製造される場合も多い。ところが、近年部品の製造コストを低減すべく、部品の一体成形や、加工工程の簡略化が進められている。このことは素材側から見ればより加工率の高い(=塑性変形量の大きい)加工に耐えなくてはならないことを意味する。つまり、加工技術の高度化に伴い、素材である中・高炭素鋼板自体にもより高い延性が要求されるようになってきた。
【0003】
鋼材に高い延性を付与するためには、より一層の「軟質化」を図ることが基本となる。従来より中・高炭素鋼材の軟質化には炭化物の球状化が有効であることが知られており、そのためには例えば次のような熱処理方法が採用されている。
▲1▼A1変態点直下に長時間保持する方法。この方法は冷間加工後の球状化に適する。
▲2▼A1変態点とA3変態点の間の温度で一定時間保持した後、A1変態点直下まで徐冷する方法。この方法はパーライト組織の球状化に適し、短時間で球状化が完了するという利点がある。
▲3▼A1変態点を挟んで、A1変態点直下の温度での加熱と、A1変態点とA3変態点の間の温度での加熱を繰り返し実施する方法。この方法は炭化物粒径の均一化に適し、球状化も短時間で完了するという利点がある反面、厳密な温度管理が要求され、コスト面から工業化には必ずしも適さない。
また一般的に、冷間加工を加えた鋼材に熱処理を施せば、冷間加工を加えずに熱処理した場合に比べ、鋼材はより一層軟質になることが知られている。
【0004】
【発明が解決しようとする課題】
しかしながら、中・高炭素鋼の熱延鋼板を高度の一体成形加工のような、加工度の大きい加工に供するためには、上記▲1▼〜▲3▼の熱処理では十分な軟質化が達成できない。冷間加工と上記▲1▼〜▲3▼の熱処理を組み合わせた場合であっても未だ満足できる軟質化のレベルには届かない。
そこで本発明は、従来から広く用いられている中・高炭素鋼の熱延鋼板を、その焼入れ性を維持しながら、加工度の高い一体成形加工にも十分供し得るように軟質化することを目的とする。
【0005】
【課題を解決するための手段】
上記目的は、請求項1の発明、すなわち、質量%でC:0.1〜0.8%,Si:0.15〜0.40%,Mn:0.3〜1.0%,Cu:0.30%以下,Ni:0.25%以下を含有し、Pを0.03%以下,Sを0.01%以下,T.Alを0.1%以下の含有量に制限し、残部がFeおよび不可避的不純物からなる亜共析鋼の熱延鋼板に20%以上30%以下の軽圧下冷間圧延を施し、次いで、Ac1−50℃〜Ac1未満の温度範囲で0.5時間以上(ただし均熱6時間以上を除く)保持する1段目の加熱を行った後、Ac1〜Ac1+100℃の温度範囲で0.5〜20時間保持する2段目の加熱およびAr1−50℃〜Ar1の温度範囲で2〜20時間保持する3段目の加熱を連続して行い、かつ、2段目の保持温度から3段目の保持温度への冷却速度を5〜30℃/hとする3段階焼鈍を施す軟質化された中・高炭素鋼板の製造方法によって達成できる。
ここで、Ac1は昇温過程における鋼のA1変態点(℃)、Ar1は降温過程におけるA1変態点(℃)を意味する。
【0008】
請求項の発明は、請求項1の発明における亜共析鋼を特に、質量%でC:0.1〜0.8%,Si:0.15〜0.40%,Mn:0.3〜1.0%,Cu:0〜0.30%(無添加を含む),Ni:0〜0.25%(無添加を含む),Cr:0〜0.2%(無添加を含む)を含有し、Pを0.03%以下,Sを0.01%以下,T.Alを0.1%以下の含有量に制限し、残部がFeおよび不可避的不純物からなる鋼に規定したものである。
ここで、Cu,Ni,Crの下限の0%はその元素が無添加である場合を意味する。
【0011】
【発明の実施の形態】
本発明者らの研究によれば、中・高炭素鋼の熱延鋼板に対して特定圧下率範囲での「軽圧下冷間圧延」を施し、次いで鋼のA1点を挟んだ特定条件下での「3段階焼鈍」を施したところ、中・高炭素鋼が本来有している焼入れ性を損なわずに従来実現し難かった極軟質化を図ることができた。以下、本発明を特定するための事項について説明する。
【0012】
本発明では、C:0.1〜0.8質量%を含有する亜共析鋼を対象とする。Cは炭素鋼においては最も基本となる合金元素であり、その含有量によって焼入れ硬さおよび炭化物量が大きく変動する。C含有量が0.1質量%以下の亜共析鋼では、各種機械構造用部品に適用するうえで十分な焼入れ硬さが得られない。一方、C含有量が0.8質量%を超えると、熱間圧延後の靭性が低下して鋼帯の製造性・取扱い性が悪くなるとともに、焼鈍後においても十分な延性が得られないため、加工度の高い部品への適用が困難になる。したがって、本発明では適度な焼入れ硬さと加工性を兼ね備えた素材鋼板を提供する観点から、C含有量が0.1〜0.8質量%の範囲の鋼を対象とする。
【0013】
Sは、MnS系介在物を形成する元素である。この介在物の量が多くなると局部延性が劣化するので、特に伸びフランジ加工等に供する用途では鋼中のS含有量は0.01質量%以下に低減するのがよい。局部延性はSの他、C含有量にも左右され、C含有量が多いほど局部延性は悪くなる。C含有量が0.8質量%近くまで高くなった場合でも良好な局部延性を維持するためには、S含有量はさらに0.005質量%以下にまで低減することが望ましい。
【0014】
Pは、延性や靭性を劣化させるので、その含有量は0.03質量%以下とすることが望ましい。
Alは、溶鋼の脱酸剤として添加されるが、鋼中のT.Al量が0.1質量%を超えると鋼の清浄度が損なわれて表面疵が発生し易くなり、鋼板の表面品質を低下させる。したがって、T.Alは0.1質量%以下とすることが望ましい。
【0015】
Siは、溶鋼の脱酸のためには0.15質量%以上の含有が望ましい。しかし、Siは固溶強化作用によってフェライトを硬化させ、また多量の含有により鋼板表面にスケール疵の発生を招く。さらに靭性低下の原因にもなる。そこで、Siは0.15〜0.40質量%の範囲で含有させることが望ましい。
Mnは、鋼板の焼入れ性を高め、強靭化にも有効な添加元素である。十分な焼入れ性を得るためには0.3質量%以上の含有が望ましい。しかし、1.0質量%を超えて多量に含有させるとフェライトが硬化し、加工性が劣化するようになる。そこで、Mnは0.3〜1.0質量%の範囲で含有させることが望ましい。
【0016】
また本発明では必要に応じてCu,Ni等の元素を添加して各特性の改善を図った鋼に適用できる。Cuは、熱延中に生成する酸化スケールの剥離性を向上させるので、鋼板の表面性状の改善に有効である。しかし、0.3質量%以上含有させると溶融金属脆化により鋼板表面に微細なクラックが生じやすくなるので、Cuは0.3質量%以下の範囲で添加できる。Cu含有量の好ましい範囲は0.10〜0.15質量%である。
Niは、焼入れ性を改善するとともに低温脆性を防止する合金成分である。またNiは、Cu添加によって問題となる溶融金属脆化の悪影響を打ち消す作用を示すので、特にCuを約0.2%以上添加する場合にはCu添加量と同程度のNiを添加することが極めて効果的である。しかし、多量のNiが含まれると3段階焼鈍を施して軟質化を図っても焼入れ前のプレス成形性や加工性が劣化するようになる。したがってNiを添加する場合は0.25質量%以下の範囲とする。
【0018】
本発明では、A1点を挟んだ3段階焼鈍に先だって熱延鋼板に軽圧下冷間圧延を施す点に特徴がある。一般的に、焼鈍前に冷間加工を施した鋼では、導入された加工歪みによって焼鈍時に再結晶化が促進され、その結果冷間加工を施さなかった場合に比較して軟質なものが得られる。しかし、本発明で対象とするような中・高炭素鋼は強度が高いだけに、一般的な冷間加工と焼鈍を組み合わせて得られる軟質化の程度では、普通鋼に対してなされているような加工度の大きい一体成形加工に供するには不十分であった。ところが、本発明で規定する3段階焼鈍を施す場合に限っては、予め特定範囲の圧下率で軽圧下冷間圧延を施すことによって、焼鈍後の硬さをさらに顕著に低減することができたのである。
【0019】
具体的には、3段階焼鈍前に行う冷間圧延の圧下率が15%を超えると、焼鈍後の硬さは急激に低下するとともに従来の焼鈍方法(先述の丸付き数字1〜丸付き数字3の方法)を用いた場合との硬度差も顕著になる。つまり、圧下率が15%を超えるようになると3段階焼鈍の効果が顕著に現れるようになるのである。そして冷間圧延率が大きくなるにつれて炭化物の分断化が進み、20〜30%の冷間圧延率において3段階焼鈍後の硬さは最も低くなる。しかし冷間圧延率が30%を超えるようになると3段階焼鈍後の金属組織はフェライト結晶粒のサイズが不揃いの、いわゆる混粒組織を呈するようになり、硬度も少しずつ上昇するようになる
【0020】
このうち特に圧下率が20〜30%の範囲においては、中・高炭素鋼でありながらHv130以下という非常に軟質なものを得ることができる。Hv値が130以下になれば、普通鋼の熱延鋼板に対して行われている一般的な一体成形加工のうち多くのものが適用できるようになる。つまり、従来普通鋼にしか適用できなかった比較的高度の加工が中・高炭素鋼板に対しても適用できるようになり、中・高炭素鋼の熱延鋼板における部品加工の設計自由度が大きく改善されることになるのである。
【0021】
次に、3段階焼鈍について述べる。本発明で対象とするような中・高炭素鋼においては単に再結晶化を促進させるだけでは十分に軟化を図ることはできず、焼鈍後における炭化物の分散形態をコントロールすることが重要となる。
一般的に、鋼をAc1点以上の温度に加熱すると炭化物のうち微細なものはオーステナイト中に固溶し、その後Ar1点以下の温度に冷却すると再び炭化物として析出する。その際、Ac1点以上の温度域で未溶解炭化物をある程度多く残存させることができた場合には、冷却速度を遅くすると、オーステナイト中に固溶したCはパーライトを生成せずに未溶解炭化物を核として析出するので、焼鈍後の炭化物の球状化率は高くなる。またこの場合、Ac1点以上の加熱によって炭化物の数は焼鈍前より減少し、しかも冷却速度が遅いときは冷却時に新たに核生成しないので、結果的に焼鈍後の炭化物数は焼鈍前より減少する。炭化物数が減少することは、トータル炭素量は一定だから、粒径の大きい炭化物を含む金属組織が得られることを意味する。そして特に、核となる未溶解炭化物が場所的に均一に残存していたときには炭化物間距離も長くなる。このような金属組織が得られると鋼の延性は向上する。
【0022】
しかしAc1点以上の温度域は、平衡的には亜共析鋼の炭化物がすべて固溶する領域である。このため通常は、Ac1点以上の温度域に加熱すると未溶解炭化物の個数は少なくなり、その後Ar1点以下の温度への冷却過程でオーステナイト中に固溶したCはラメラ間隔の広い再生パーライトとして析出する。その結果、炭化物の球状化率は極めて低くなり、延性の高い鋼板は得られない。
【0023】
そこで、本発明者らは検討を重ねた結果、鋼板をAc1点以上へ加熱する前に、予めAc1点未満の特定温度域で一定時間以上加熱する処理を行えば、亜共析鋼であっても、Ac1点以上の温度域において未溶解炭化物を適切量残存させることが可能であることを知見した。加えて、Ar1点以下への冷却後に特定温度域で特定時間保持することによって、軟質化に最適な炭化物分散形態を得ることが可能になることもわかった。
以下、本発明の3段階焼鈍の条件について説明する。
【0024】
〔1段目の加熱〕
1段目の加熱の目的は、Ac1点未満の温度に鋼板を保持し、熱間圧延で生成したパーライトを分断して、炭化物(セメンタイト)の球状化を図ることである。分断された炭化物は比較的細かいものの、球状化の進行より炭化物単位体積当たりの表面積が減少するので、結果的に2段目のAc1点以上の加熱時に、炭化物/オーステナイト界面面積の減少効果で炭化物の固溶を遅らせることができる。熱延パーライトの分断・球状化反応促進のためにはAc1点未満の範囲でなるべく高温が望ましい。Ac1−50℃より低温では球状化が十分に進まない。一方、Ac1点以上になると界面面積の大きい熱延パーライトは容易にオーステナイトに固溶してしまうので目的が達成できない。したがって1段目の加熱温度はAc1−50℃〜Ac1未満の温度範囲とした。また、その温度範囲での保持時間が0.5時間未満では球状化が十分に図れないので、1段目の加熱保持時間は0.5時間以上(ただし均熱6時間以上を除く)とした
なお、この1段目の加熱を行った後は、そのまま昇温して2段目の加熱を実施してもよいし、一旦常温まで冷却したのち改めて昇温して2段目の加熱に供してもよい。設備の都合等により1回の加熱で0.5時間以上の保持時間を確保できないときは、この1段目の加熱を複数回に分けて行ってもよい。その場合は上記温度範囲内での保持時間がトータル0.5時間以上となるようにする。
【0025】
〔2段目の加熱〕
2段目の加熱の目的は、1段目の加熱を経た鋼板をAc1点以上の温度に保持し、オーステナイト化した部分において微細な炭化物を固溶・消失させるとともに比較的大きな球状炭化物を未溶解のまま残すこと、および、フェライトが存在する場合にはその部分の炭化物をオストワルド成長させることである。つまり、3段目の加熱で炭化物析出の核となるべき未溶解炭化物の数および分散状態を決定付ける工程である。加熱温度がAc1点未満ではオーステナイトが生成しない。一方、Ac1+100℃の温度を超えると、1段目の加熱で炭化物が球状化されていても、その多くはオーステナイト中に固溶・消失し、未溶解炭化物の数が少なくなりすぎるか、または存在しなくなる。そうなると3段目への冷却過程で再生パーライトが生成し、十分に軟質化を図ることができない。加熱保持時間が0.5時間未満ではオーステナイト中への微細炭化物の固溶が不十分であり、20時間を超える長時間加熱ではより平衡状態に近づくため未溶解炭化物の数が減少しすぎる。したがって、2段目の加熱はAc1〜Ac1+100℃の温度範囲で0.5〜20時間保持することとした。
【0026】
〔3段目の加熱〕
3段目の加熱の目的は、1段目〜2段目の加熱を経た鋼板をAr1点以下の温度に保持し、2段目の温度からの冷却でオーステナイト→フェライト変態に伴ってオーステナイトから吐き出されるCを未溶解炭化物を核として析出させるとともに、これらの炭化物をオストワルド成長させることである。つまり、炭化物の数は2段目の加熱で残存させた未溶解炭化物の数をほぼそのまま維持し、かつ炭化物の球状化率を高める工程である。保持温度がAr1点以下でないとオーステナイト→フェライト変態が起こらない。また、保持温度がAr1−50℃より低温の場合や、保持時間が2時間未満では、オストワルド成長が十分進まない。ただし、保持時間が20時間を超えてもその効果が飽和し、工業的なメリットはない。したがって、3段目の加熱はAr1−50℃〜Ar1の温度範囲で2〜20時間保持することとした。
【0027】
〔2段目の保持温度から3段目の保持温度への冷却速度〕
この冷却速度が速いとオーステナイトの過冷度が大きくなり、再生パーライトが生成しやすくなる。再生パーライトの生成を十分抑制するためには冷却速度を30℃/h以下とする必要がある。一方、冷却速度を5℃/hより遅くしても再生パーライト抑制効果は飽和し、工業的メリットがない。したがって、当該冷却速度は5〜30℃/hに規定した。
【0028】
【実施例】
質量%で、C:0.35%,Si:0.22%,Mn:0.72%,P:0.012%,S:0.011%,Cu:0.1%,Ni:0.02%,T.Al:0.007%を含有し、残部がFeおよび不可避的不純物からなる鋼を溶製し、板厚4mmの熱延鋼板を得た。この熱延ままの鋼板に対して種々の圧下率で冷間圧延を行い、それぞれ従来の焼鈍、および本発明に係る3段階焼鈍に供した。焼鈍条件は次のとおりである。
〔従来の焼鈍〕710℃×5hr保持→冷却速度10℃/hrで620℃まで冷却→空冷
〔3段階焼鈍〕690℃×4hr保持→730℃×4hr保持→冷却速度10℃/hrで690℃まで冷却→690℃×4hr保持→冷却速度10℃/hrで620℃まで冷却→空冷
なお、この鋼のAc1点は727℃、Ar1点は738℃である。
【0029】
焼鈍後の各鋼板について断面の硬さを測定した。その結果を図1に示す。本発明の3段階焼鈍を施したものは焼鈍前の冷間圧延率が15%を超えると急激に軟化が促進し、従来の焼鈍を施したものと比較すると軟化の程度が著しいことがわかる。また、本発明の3段階焼鈍によると、焼鈍前の冷間圧延率が20〜30%の範囲で硬さがHv130以下となり、従来の焼鈍によるものよりHv値で10以上もの顕著な軟化が見られた。これらHv値が130以下となった本発明による鋼板の金属組織は、フェライト結晶がFGS.No:8〜8.5の整粒組織であり、炭化物は十分に球状化しており、パーライトの残留は認められなかった。
また、本発明によって得られた鋼板はいずれも良好な焼入れ性を維持していた。
【0030】
【発明の効果】
本発明によれば、中・高炭素鋼の熱延鋼板の硬さを従来と比べ著しく低下させることが可能になり、中・高炭素鋼でありながらHv130以下のものも製造できるようになった。その結果、従来普通鋼にしか適用できなかった高度の加工が中・高炭素鋼の熱延鋼板にも適用できるようになり、例えば一体成形加工で複雑形状の部品を低コストで生産することが可能になった。しかも、部品加工後の焼入れ性は従来どおり維持される。さらに、本発明では軽圧下冷間圧延を付与するので、本発明に係る鋼板は良好な表面肌や板形状が要求される用途にも好適に使用できる。したがって、本発明は中・高炭素鋼の用途拡大および製造コストの低減に寄与するものである。
【図面の簡単な説明】
【図1】焼鈍前に行う冷間圧延の圧下率と焼鈍後の硬さの関係を表すグラフ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a hot rolled steel sheet of medium / high carbon hypoeutectoid steel.
[0002]
[Prior art]
So-called medium and high carbon steels with a C content of approximately 0.2 to 0.8% by mass in steel can be hardened and have a certain degree of workability in the annealed state before quenching. . For this reason, the hot-rolled steel sheet is widely used as a raw material for various machine parts and bearing parts including automobile parts. In manufacturing parts, generally, punching and bending are performed, and relatively mild drawing and stretch flange molding may be performed. Further, when the part shape is complicated, it is often produced by welding two or three parts. However, in recent years, integrated molding of parts and simplification of processing steps have been promoted in order to reduce the manufacturing cost of parts. This means that it must withstand processing with a higher processing rate (= a large amount of plastic deformation) when viewed from the material side. In other words, with the advancement of processing technology, higher ductility has been required for the medium and high carbon steel plates themselves.
[0003]
In order to impart high ductility to a steel material, it is fundamental to achieve further “softening”. Conventionally, it has been known that spheroidization of carbide is effective for softening medium- and high-carbon steel materials. For this purpose, for example, the following heat treatment method is adopted.
▲ 1 ▼ way to long held just below the A 1 transformation point. This method is suitable for spheronization after cold working.
▲ 2 ▼ After a certain time maintained at a temperature between the A 1 transformation point and the A 3 transformation point, a method of gradually cooling to just below the A 1 transformation point. This method is suitable for spheroidizing a pearlite structure and has an advantage that spheroidization is completed in a short time.
▲ 3 ▼ across the A 1 transformation point, and heating at a temperature just below the A 1 transformation point, a method of repeatedly performing the heating at temperatures between the A 1 transformation point and the A 3 transformation point. This method is suitable for uniformizing the carbide particle size and has the advantage that spheroidization can be completed in a short time, but requires strict temperature control and is not necessarily suitable for industrialization in terms of cost.
In general, it is known that if a heat treatment is performed on a steel material that has been cold worked, the steel material becomes even softer than if the heat treatment is performed without the cold work.
[0004]
[Problems to be solved by the invention]
However, sufficient softening cannot be achieved by the heat treatments (1) to (3) above in order to use hot rolled steel sheets of medium and high carbon steel for processing with a high degree of processing such as highly integrated forming. . Even when the cold working and the heat treatments (1) to (3) are combined, the softening level still cannot be satisfied.
Therefore, the present invention is to soften a hot rolled steel sheet of medium and high carbon steel that has been widely used so that it can be sufficiently used for integral forming with a high degree of workability while maintaining its hardenability. Objective.
[0005]
[Means for Solving the Problems]
The object is the invention of claim 1, that is, by mass%, C: 0.1 to 0.8%, Si: 0.15 to 0.40%, Mn: 0.3 to 1.0% , Cu: 0.30% or less, Ni: 0.25% or less , P is 0.03% or less, S is 0.01% or less, T.I. The hot-rolled steel sheet of hypoeutectoid steel, the content of which is limited to 0.1% or less with the balance being Fe and unavoidable impurities, is subjected to cold rolling under a light pressure of 20% to 30%, and then Ac. 1 -50 ° C. to Ac 0.5 hours or more at 1 below temperature range after the heat of the first stage to (but excluding or soaking 6 hours) held in a temperature range of Ac 1 to Ac 1 + 100 ° C. the heating of the third stage for holding 2-20 hours at a temperature range of the heating and Ar 1 -50 ℃ ~Ar 1 of the second stage to hold 0.5 to 20 hours is performed in succession, and, holding the second stage This can be achieved by a method for producing a softened medium- and high-carbon steel sheet that is subjected to three-stage annealing with a cooling rate from the temperature to the third stage holding temperature of 5 to 30 ° C./h.
Here, Ac 1 means the A 1 transformation point (° C.) of the steel in the temperature raising process, and Ar 1 means the A 1 transformation point (° C.) in the temperature lowering process.
[0008]
The invention of claim 2 is the hypoeutectoid steel according to the invention of claim 1 in particular in terms of mass%: C: 0.1-0.8%, Si: 0.15-0.40%, Mn: 0.3 -1.0%, Cu: 0 to 0.30% (including no addition), Ni: 0 to 0.25% (including no addition), Cr: 0 to 0.2% (including no addition) , P is 0.03% or less, S is 0.01% or less, T.I. The content of aluminum is limited to 0.1% or less, and the balance is defined as steel consisting of Fe and inevitable impurities.
Here, 0% of the lower limit of Cu, Ni and Cr means a case where the element is not added.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
According to the researches of the present inventors, a medium-high carbon steel hot-rolled steel sheet is subjected to “light rolling cold rolling” in a specific rolling reduction range, and then a specific condition sandwiching A 1 point of the steel. As a result of the "three-stage annealing", it was possible to achieve ultra-softening that was difficult to achieve in the past without impairing the hardenability inherent to medium and high carbon steels. Hereinafter, matters for specifying the present invention will be described.
[0012]
In the present invention, hypoeutectoid steel containing C: 0.1 to 0.8% by mass is targeted. C is an alloy element which is the most basic in carbon steel, and the quenching hardness and the amount of carbide vary greatly depending on its content. In the hypoeutectoid steel having a C content of 0.1% by mass or less, sufficient quenching hardness cannot be obtained for application to various machine structural parts. On the other hand, if the C content exceeds 0.8% by mass, the toughness after hot rolling deteriorates and the manufacturability and handleability of the steel strip deteriorate, and sufficient ductility cannot be obtained even after annealing. This makes it difficult to apply to parts with a high degree of processing. Therefore, in the present invention, steel with a C content in the range of 0.1 to 0.8% by mass is targeted from the viewpoint of providing a raw steel plate having both appropriate quenching hardness and workability.
[0013]
S is an element that forms MnS inclusions. Since the local ductility deteriorates when the amount of inclusions increases, the S content in the steel is preferably reduced to 0.01% by mass or less particularly in applications used for stretch flange processing or the like. The local ductility depends on the C content in addition to S, and the local ductility becomes worse as the C content increases. In order to maintain good local ductility even when the C content increases to near 0.8% by mass, the S content is preferably further reduced to 0.005% by mass or less.
[0014]
Since P deteriorates ductility and toughness, the content is preferably 0.03% by mass or less.
Al is added as a deoxidizer for molten steel. If the amount of Al exceeds 0.1% by mass, the cleanliness of the steel is impaired and surface flaws are likely to occur, and the surface quality of the steel sheet is deteriorated. Therefore, T.W. Al is preferably 0.1% by mass or less.
[0015]
Si is desirably contained in an amount of 0.15% by mass or more for deoxidation of molten steel. However, Si hardens ferrite by a solid solution strengthening action, and causes a large amount of scale flaws on the surface of the steel sheet when contained in a large amount. Furthermore, it also causes a decrease in toughness. Therefore, Si is desirably contained in the range of 0.15 to 0.40 mass%.
Mn is an additive element that enhances the hardenability of the steel sheet and is effective for toughening. In order to obtain sufficient hardenability, the content is preferably 0.3% by mass or more. However, if it is contained in a large amount exceeding 1.0% by mass, the ferrite is cured and the workability is deteriorated. Therefore, it is desirable to contain Mn in the range of 0.3 to 1.0% by mass.
[0016]
Moreover, in this invention, it can apply to the steel which aimed at the improvement of each characteristic by adding elements, such as Cu and Ni, as needed. Cu improves the surface properties of the steel sheet because it improves the peelability of the oxide scale produced during hot rolling. However, if 0.3% by mass or more is contained, fine cracks are likely to be generated on the surface of the steel sheet due to the embrittlement of the molten metal, so Cu can be added in a range of 0.3% by mass or less. A preferable range of the Cu content is 0.10 to 0.15% by mass.
Ni is an alloy component that improves hardenability and prevents low temperature brittleness. In addition, since Ni has an action to counteract the adverse effect of molten metal embrittlement caused by Cu addition, particularly when adding about 0.2% or more of Cu, it is possible to add Ni equivalent to the Cu addition amount. It is extremely effective. However, the press formability and workability before quenching also aim to soften subjected to 3-stage annealing is contained is plenty of Ni comes to deteriorate. Therefore, when adding Ni, it is set as the range of 0.25 mass% or less.
[0018]
The present invention is characterized in that light rolling cold rolling is performed on the hot-rolled steel sheet prior to the three-stage annealing with the A 1 point interposed therebetween. In general, steel that has been cold worked before annealing promotes recrystallization during annealing due to the introduced work strain, resulting in a softer steel than when not cold worked. It is done. However, medium- and high-carbon steels that are the subject of the present invention have high strength, so that the degree of softening obtained by combining general cold working and annealing seems to be compared to ordinary steels. Therefore, it was insufficient to be used for integral molding with a large degree of processing. However, only when the three-stage annealing specified in the present invention is performed, the hardness after annealing can be further remarkably reduced by performing light rolling cold rolling at a rolling reduction in a specific range in advance. It is.
[0019]
Specifically, when the rolling reduction of the cold rolling performed before the three-stage annealing exceeds 15%, the hardness after the annealing rapidly decreases and the conventional annealing method (the above-described circled numbers 1 to 1). The difference in hardness from the case of using method 3) is also remarkable. In other words, when the rolling reduction exceeds 15%, the effect of the three-stage annealing becomes prominent. Then, as the cold rolling rate increases, the fragmentation of the carbide progresses, and the hardness after the three-stage annealing becomes the lowest at a cold rolling rate of 20 to 30%. However, when the cold rolling rate exceeds 30%, the metal structure after the three-stage annealing becomes a so-called mixed grain structure in which the sizes of ferrite crystal grains are not uniform, and the hardness gradually increases .
[0020]
Among these, in particular, when the rolling reduction is in the range of 20 to 30%, it is possible to obtain a very soft steel having a Hv of 130 or less despite being a medium / high carbon steel. If the Hv value is 130 or less, many of the general integral forming processes performed on hot-rolled steel sheets of ordinary steel can be applied. In other words, relatively high-level machining that could only be applied to conventional steel can now be applied to medium- and high-carbon steel sheets, and there is a large degree of freedom in designing parts processing for medium- and high-carbon steel hot-rolled steel sheets. It will be improved.
[0021]
Next, three-stage annealing will be described. In medium- and high-carbon steels that are the subject of the present invention, it is not possible to sufficiently soften by merely promoting recrystallization, and it is important to control the dispersion form of carbides after annealing.
Generally, when steel is heated to a temperature of Ac 1 point or higher, fine ones of carbides are dissolved in austenite, and then cooled to a temperature of Ar 1 point or lower to precipitate again as carbides. At that time, if a large amount of undissolved carbide can remain in a temperature range of Ac 1 point or higher, if the cooling rate is slowed, C dissolved in austenite does not generate pearlite, and undissolved carbide. Since it precipitates as a nucleus, the spheroidization rate of the carbide after annealing becomes high. Also, in this case, the number of carbides decreases by 1 or more points of heating than before annealing, and when the cooling rate is slow, new nucleation does not occur during cooling, and as a result, the number of carbides after annealing decreases from before annealing. To do. A reduction in the number of carbides means that a metal structure containing carbides with a large particle size can be obtained because the total carbon content is constant. In particular, when the undissolved carbides serving as nuclei remain uniformly in places, the distance between carbides also increases. When such a metal structure is obtained, the ductility of steel is improved.
[0022]
However, the temperature range of Ac 1 point or higher is a region where all the carbides of hypoeutectoid steel are in solid solution. For this reason, the number of undissolved carbides usually decreases when heated to a temperature range of Ac 1 point or higher, and then C dissolved in austenite during the cooling process to a temperature of Ar 1 temperature or lower is regenerated pearlite with a wide lamellar spacing. To be deposited. As a result, the spheroidization rate of the carbide is extremely low, and a steel sheet with high ductility cannot be obtained.
[0023]
Therefore, as a result of repeated studies, the present inventors have conducted hypoeutectoid steel if the steel sheet is heated to a specific temperature range lower than Ac 1 point for a certain period of time in advance before heating the steel plate to Ac 1 point or higher. Even in such a case, it has been found that an appropriate amount of undissolved carbide can remain in a temperature range of Ac 1 point or higher. In addition, it has also been found that a carbide dispersion form optimum for softening can be obtained by holding for a specific time in a specific temperature range after cooling to 1 point or less of Ar.
Hereinafter, the conditions for the three-stage annealing of the present invention will be described.
[0024]
[First stage heating]
The purpose of the first stage heating is to hold the steel plate at a temperature less than Ac 1 point and to break up the pearlite produced by hot rolling to make the carbide (cementite) spherical. Although the divided carbide is relatively fine, the surface area per unit volume of carbide decreases as the spheroidization progresses. As a result, when heating at the second stage Ac 1 point or more, the carbide / austenite interface area is reduced. The solid solution of carbide can be delayed. In order to promote the division and spheroidization reaction of hot-rolled pearlite, it is desirable that the temperature be as high as possible within a range of less than Ac 1 point. Spheroidization does not proceed sufficiently at temperatures lower than Ac 1 -50 ° C. On the other hand, when Ac is 1 or more, hot-rolled pearlite having a large interfacial area easily dissolves in austenite, and the object cannot be achieved. Therefore the heating temperature in the first stage was a temperature range of less than Ac 1 -50 ° C. to Ac 1. In addition, since the spheroidization cannot be sufficiently achieved when the holding time in the temperature range is less than 0.5 hours, the heating and holding time of the first stage is set to 0.5 hours or more (however, excluding soaking 6 hours or more) . .
After the first stage heating, the temperature may be raised as it is, and the second stage heating may be performed. Alternatively, after cooling to room temperature, the temperature is raised again and used for the second stage heating. May be. When the holding time of 0.5 hour or more cannot be ensured by one heating due to the convenience of the equipment, etc., the first stage heating may be divided into a plurality of times. In that case, the holding time within the above temperature range is set to be 0.5 hours or more in total.
[0025]
[Second stage heating]
The purpose of the second stage heating is to keep the steel sheet that has undergone the first stage heating at a temperature of Ac 1 point or higher, so that fine carbides dissolve and disappear in the austenitized portion, and a relatively large spherical carbide is not removed. It is to leave it dissolved and, if ferrite is present, to make Ostwald growth of the carbide in that part. That is, it is a step of determining the number of undissolved carbides and the dispersion state to be the core of carbide precipitation by the third stage heating. If the heating temperature is less than Ac 1 point, austenite is not generated. On the other hand, if the temperature of Ac 1 + 100 ° C. is exceeded, even if the carbides are spheroidized by heating in the first stage, many of them dissolve / disappear in the austenite, and the number of undissolved carbides becomes too small. Or disappear. In this case, regenerated pearlite is generated in the cooling process to the third stage, and it cannot be sufficiently softened. If the heating and holding time is less than 0.5 hours, the solid carbide is not sufficiently dissolved in the austenite, and if the heating is continued for more than 20 hours, the number of undissolved carbides is reduced too much because it approaches an equilibrium state. Therefore, the second stage heating was to hold 0.5 to 20 hours at a temperature range of Ac 1 ~Ac 1 + 100 ℃.
[0026]
[3rd stage heating]
The purpose of the third stage heating is to maintain the steel sheet that has undergone the first to second stage heating at a temperature of Ar 1 point or lower, and from the austenite to the ferrite transformation by cooling from the second stage temperature. It is to cause the carbon to be discharged to precipitate with undissolved carbides as nuclei and to perform Ostwald growth of these carbides. That is, the number of carbides is a step of maintaining the number of undissolved carbides left by the second stage heating almost as it is and increasing the spheroidization rate of the carbides. If the holding temperature is not lower than Ar 1 point, austenite → ferrite transformation does not occur. Further, when the holding temperature is lower than Ar 1 -50 ° C. or when the holding time is less than 2 hours, the Ostwald growth does not proceed sufficiently. However, even if the holding time exceeds 20 hours, the effect is saturated and there is no industrial merit. Thus, the third stage heating was keeping 2-20 hours at a temperature range of Ar 1 -50 ℃ ~Ar 1.
[0027]
[Cooling rate from second stage holding temperature to third stage holding temperature]
When this cooling rate is high, the degree of supercooling of austenite increases and regenerated pearlite is easily generated. In order to sufficiently suppress the generation of regenerated pearlite, the cooling rate needs to be 30 ° C./h or less. On the other hand, even if the cooling rate is slower than 5 ° C./h, the reproduction pearlite suppressing effect is saturated and there is no industrial merit. Therefore, the said cooling rate was prescribed | regulated to 5-30 degrees C / h.
[0028]
【Example】
In mass%, C: 0.35%, Si: 0.22%, Mn: 0.72%, P: 0.012%, S: 0.011%, Cu: 0.1%, Ni: 0. 02%, T.W. A steel containing Al: 0.007% and the balance being Fe and inevitable impurities was melted to obtain a hot rolled steel sheet having a thickness of 4 mm. This hot-rolled steel sheet was cold-rolled at various rolling reductions and subjected to conventional annealing and three-stage annealing according to the present invention, respectively. The annealing conditions are as follows.
[Conventional annealing] 710 ° C. × 5 hr holding → cooling to 620 ° C. at a cooling rate of 10 ° C./hr→air cooling [3-step annealing] 690 ° C. × 4 hr holding → 730 ° C. × 4 hr holding → cooling rate of 10 ° C./hr at 690 ° C. Cooling to 690 ° C. × 4 hr holding → cooling to 620 ° C. at a cooling rate of 10 ° C./hr→air cooling Note that the Ac 1 point of this steel is 727 ° C. and the Ar 1 point is 738 ° C.
[0029]
The cross section hardness of each steel plate after annealing was measured. The result is shown in FIG. It can be seen that the one subjected to the three-stage annealing according to the present invention rapidly promotes softening when the cold rolling ratio before annealing exceeds 15%, and the degree of softening is remarkable as compared with the one subjected to conventional annealing. In addition, according to the three-stage annealing of the present invention, the hardness becomes Hv 130 or less when the cold rolling rate before annealing is in the range of 20 to 30%, and a remarkable softening of 10 or more in terms of Hv value is seen compared with the conventional annealing. It was. The metal structure of the steel sheet according to the present invention having an Hv value of 130 or less is a sized structure with ferrite crystals of FGS.No: 8 to 8.5, the carbide is sufficiently spheroidized, and the residual pearlite is I was not able to admit.
Moreover, all the steel plates obtained by the present invention maintained good hardenability.
[0030]
【The invention's effect】
According to the present invention, it is possible to remarkably reduce the hardness of a hot rolled steel sheet of medium / high carbon steel as compared with the conventional steel, and it is possible to manufacture a medium / high carbon steel having Hv of 130 or less. . As a result, advanced processing that could only be applied to ordinary steel can be applied to hot-rolled steel sheets of medium and high carbon steel. For example, parts with complex shapes can be produced at a low cost by integral forming. It became possible. Moreover, the hardenability after parts processing is maintained as usual. Furthermore, since light rolling under cold rolling is provided in the present invention, the steel sheet according to the present invention can be suitably used for applications requiring good surface skin and plate shape. Therefore, the present invention contributes to expanding the use of medium and high carbon steel and reducing the manufacturing cost.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the reduction ratio of cold rolling performed before annealing and the hardness after annealing.

Claims (1)

量%でC:0.1〜0.8%,Si:0.15〜0.40%,Mn:0.3〜1.0%,Cu:0.30%以下,Ni:0.25%以下を含有し、Pを0.03%以下,Sを0.01%以下,T.Alを0.1%以下の含有量に制限し、残部がFeおよび不可避的不純物からなる亜共析鋼の熱延鋼板に20%以上30%以下の軽圧下冷間圧延を施し、次いで、A c 1 −50℃〜A c 1 未満の温度範囲で0.5時間以上(ただし均熱6時間以上を除く)保持する1段目の加熱を行った後、A c 1 〜A c 1 +100℃の温度範囲で0.5〜20時間保持する2段目の加熱およびA r 1 −50℃〜A r 1 の温度範囲で2〜20時間保持する3段目の加熱を連続して行い、かつ、2段目の保持温度から3段目の保持温度への冷却速度を5〜30℃/hとする3段階焼鈍を施す軟質化された中・高炭素鋼板の製造方法。0.1~0.8%, Si:: C in mass% 0.15~0.40%, Mn: 0.3~1.0% , Cu: 0. 30% or less , Ni : 0 . 25% or less , P is 0.03% or less, S is 0.01% or less, T.I. The hot-rolled steel sheet of hypoeutectoid steel with Al being limited to a content of 0.1% or less and the balance being Fe and inevitable impurities is subjected to cold rolling under a light pressure of 20% to 30%, and then A c 1 -50 ° C. in a temperature range of less than to a c 1 0.5 hour (excluding higher soaking 6 hours) after the heat of the first stage to hold, a c 1 ~A c 1 + 100 ℃ subjected to heat in the second stage to hold 0.5 to 20 hours at a temperature range and a r 1 -50 ° C. to a in the third stage heat holding in a temperature range from 2 to 20 hours of r 1 in succession, and A method for producing a softened medium- and high-carbon steel sheet, which is subjected to three-stage annealing with a cooling rate from the second-stage holding temperature to the third-stage holding temperature of 5 to 30 ° C./h .
JP20266397A 1997-07-14 1997-07-14 Manufacturing method of medium and high carbon steel sheet Expired - Lifetime JP3747982B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20266397A JP3747982B2 (en) 1997-07-14 1997-07-14 Manufacturing method of medium and high carbon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20266397A JP3747982B2 (en) 1997-07-14 1997-07-14 Manufacturing method of medium and high carbon steel sheet

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005255187A Division JP4215760B2 (en) 2005-09-02 2005-09-02 Manufacturing method for medium and high carbon steel sheet

Publications (2)

Publication Number Publication Date
JPH1129823A JPH1129823A (en) 1999-02-02
JP3747982B2 true JP3747982B2 (en) 2006-02-22

Family

ID=16461092

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20266397A Expired - Lifetime JP3747982B2 (en) 1997-07-14 1997-07-14 Manufacturing method of medium and high carbon steel sheet

Country Status (1)

Country Link
JP (1) JP3747982B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5280324B2 (en) * 2009-09-08 2013-09-04 日新製鋼株式会社 High carbon steel sheet for precision punching
JP5549640B2 (en) 2011-05-18 2014-07-16 Jfeスチール株式会社 High carbon steel sheet and method for producing the same
JP6059569B2 (en) * 2013-03-15 2017-01-11 株式会社神戸製鋼所 Manufacturing method of steel material excellent in cold workability and machinability

Also Published As

Publication number Publication date
JPH1129823A (en) 1999-02-02

Similar Documents

Publication Publication Date Title
JP4018905B2 (en) Hot rolled wire rod and bar for machine structure and manufacturing method thereof
JP3554505B2 (en) Hot-rolled wire rod / steel bar for machine structure and manufacturing method thereof
JP2012125838A (en) Method for producing hot-forged product for case hardened steel
JP4465057B2 (en) High carbon steel sheet for precision punching
JP2013057114A (en) Medium carbon steel plate having excellent workability and hardenability and method for producing the same
JPH0250910A (en) Production of steel plate for die having good heat fatigue characteristic
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JP4215760B2 (en) Manufacturing method for medium and high carbon steel sheet
JP3747982B2 (en) Manufacturing method of medium and high carbon steel sheet
JP3422865B2 (en) Method for producing high-strength martensitic stainless steel member
JP4061003B2 (en) Cold forging bar wire with excellent induction hardenability and cold forgeability
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
JPH10204540A (en) Production of cold rolled high-carbon steel strip
JP3266902B2 (en) Manufacturing method of high carbon cold rolled steel strip
JP3249700B2 (en) High carbon hot rolled steel sheet excellent in hardenability and punching workability and method for producing the same
JPS61153230A (en) Production of low-alloy steel wire rod which permits quick spheroidization
JPH059588A (en) Production of high carbon steel sheet excellent in formability
JPH0213004B2 (en)
JP4289714B2 (en) Manufacturing method of medium and high carbon cold rolled steel sheet
JP6610067B2 (en) Cold rolled steel sheet manufacturing method and cold rolled steel sheet
JPH0598356A (en) Production of tempering-free-type ti-b type high carbon steel sheet
JPH01132739A (en) Steel sheet for heat treatment
JPH1088237A (en) Production of cold rolled high carbon steel strip
JPH1060540A (en) Production of high carbon cold rolled steel strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121209

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131209

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term