JPH1060540A - Production of high carbon cold rolled steel strip - Google Patents

Production of high carbon cold rolled steel strip

Info

Publication number
JPH1060540A
JPH1060540A JP23855996A JP23855996A JPH1060540A JP H1060540 A JPH1060540 A JP H1060540A JP 23855996 A JP23855996 A JP 23855996A JP 23855996 A JP23855996 A JP 23855996A JP H1060540 A JPH1060540 A JP H1060540A
Authority
JP
Japan
Prior art keywords
point
soaking
less
cooling
steel strip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23855996A
Other languages
Japanese (ja)
Inventor
Hideaki Miyazaki
英明 宮崎
Kiyoshi Fukui
清 福井
Atsushi Kirihata
敦詞 切畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP23855996A priority Critical patent/JPH1060540A/en
Publication of JPH1060540A publication Critical patent/JPH1060540A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent the generation of seizing flaws in a steel strip by prescriging the conditions of annealing. SOLUTION: A hot rolled steel strip subjected to pickling and descaling is repeatedly subjected to soaking and slow cooling of executing soaking and holding for <=8Hr under heating to the Ac1 point to the Ac1 point +50 deg.C at a heating rate of 20 to 100 deg.C/Hr by using a bell-type batch annealing furnace in a gas atmosphere composed of >=75vol.% hydrogen, and the balance nitrogen and executing cooling to the Ar1 point or below at a cooling rate of <=50 deg.C/Hr for two times. In this way, the spheroidizing rate of cementite improves, and the production of a soft hot rolled steel strip is made possible. Then, it is subjected to cold rolling at 20 to 85% draft and is next subjected to finish annealing at 630 deg.C to directly below the Ac1 point by a bell-type batch annealing furnace. In this way, cold rolling strains are released to grow the crystal grains, by which a soft recrystallized texture can be obtd. As a result, the possibility of occuring seizing flaws can be solved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、刃物、ワッシャ
ー、シートベルト金具等の高硬度部品に使用され、均一
な形状、特性を有し、かつ比較的軟質で良好な加工特性
を有する高炭素冷延鋼帯の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is used for high-hardness parts such as blades, washers, seat belt fittings, etc., and has a uniform shape and characteristics, and is relatively soft and has a high softness and good processing characteristics. The present invention relates to a method for manufacturing a rolled steel strip.

【0002】[0002]

【従来の技術】一般に刃物、ゼンマイ、ワッシャー、バ
ネ、シートベルト金具、その他の機械部品は、JIS
G 3311に規定のみがき特殊鋼帯である高炭素冷延
鋼帯を素材とし、打抜き、曲げ、プレス加工、切削等の
加工工程と、焼入れ、焼戻し、その他の熱処理工程とを
経て製造される。その製品品質の向上、安定化、製造コ
ストの低減を図るには、素材の高炭素冷延鋼帯が軟質で
加工性がよく、かつ組織の均一性に優れていることが必
要である。
2. Description of the Related Art Generally, blades, springs, washers, springs, seat belt fittings, and other mechanical parts are JIS-compliant.
The high carbon cold rolled steel strip, which is a special steel strip specified in G 3311, is used as a material, and is manufactured through processing steps such as punching, bending, pressing, and cutting, and quenching, tempering, and other heat treatment steps. In order to improve the product quality, stabilize, and reduce the manufacturing cost, it is necessary that the high-carbon cold-rolled steel strip as the material is soft, has good workability, and has excellent structure uniformity.

【0003】上記高炭素冷延鋼帯は、熱延鋼帯を酸洗し
たのち、冷間圧延と焼鈍が施され、所望の硬度に調整さ
れて製造されるが、加工前には軟質で加工し易く、加工
後に施される熱処理において所定の硬度が得られ、か
つ、製品としての使用に十分な硬度と耐摩耗性が要求さ
れる。そのため、冷間圧延後の焼鈍は、高温で処理する
必要があり、このために鋼帯同志の密着による焼付疵が
発生し易いが、鋼帯表面はその用途上、光沢性を要求さ
れるために厳しい表面検査により焼鈍焼付疵による品質
不良が発生し易いという問題がある。
[0003] The high-carbon cold-rolled steel strip is manufactured by pickling a hot-rolled steel strip, then cold rolling and annealing to adjust the hardness to a desired hardness. It is required to have a predetermined hardness by heat treatment performed after processing, and to have sufficient hardness and abrasion resistance for use as a product. Therefore, annealing after cold rolling must be performed at a high temperature, and as a result, seizure flaws are likely to occur due to close contact between steel strips. There is a problem that poor quality is liable to occur due to annealing seizure due to severe surface inspection.

【0004】従来、高炭素冷延鋼帯を軟質で加工し易い
組織にするための方法としては、熱間圧延においてラン
ナウトテーブル上で急冷して相変態を完了させ、その相
変態を完了した鋼帯を500〜620℃で巻取った高炭
素熱延鋼帯を母材として、該母材を圧下率20%以上で
冷間圧延し、その後ベル型炉にてAc1点以上770℃
以下の温度で焼鈍する方法(特開昭58−55532号
公報)、C:0.27〜0.90%、Si:0.15〜
0.30%、Mn:0.60〜0.90%、P:0.0
30%以下、S:0.035%以下、残部Feおよび不
可避的不純物からなる鋼に通常の熱間圧延を施し、次い
で酸洗して得られる熱延鋼帯を出発材として、高炭素冷
延鋼帯を製造する方法において、前記出発材としての熱
延鋼帯を680〜720℃の温度に15時間以上保持す
る一次焼鈍を行い、次いで20〜45%の圧下率で冷間
圧延を行い、その後630〜720℃の温度で10時間
以上保持する仕上焼鈍を行う方法(特開昭61−766
19号公報)、C:0.3%以上の高炭素熱延鋼板に、
中間冷間圧延を圧下率45%以上で行った後、中間焼鈍
を箱焼鈍によりC:0.8%未満の場合は680℃〜A
c1点、C:0.8%以上の場合は680〜750℃
で、20〜40時間均熱して施し、最終圧延を圧下率が
13%以上とし、しかも中間冷間圧延前後の板厚および
最終冷間圧延後の板厚をそれぞれt0、t1およびt2
するとき、中間冷間圧延の圧下比の対数ln(t0
1)に対して、最終冷間圧延の圧下比の対数ln(t1
/t2)が0.5倍以下となるようにして行い、最終焼
鈍を箱焼鈍により550〜700℃で1〜6時間均熱し
て施す方法(特開平3−211235号公報)、C:
0.6〜1.3%、Si:0.5%以下、Mn:1%以
下、Cr:1.6%以下、残部実質的にFeからなる化
学組成を有する高炭素熱延鋼帯を、水素50容量%以上
で、残部が窒素である雰囲気炉中、Ac1点〜780℃
の温度域に1時間以上均熱保持後、60℃/Hr以下の
冷却速度でAr1点直下まで冷却する第1段の均熱・徐
冷と、Ac1点直下に3〜20時間均熱保持後、60℃
/Hr以下の冷却速度でAr1点以下まで冷却する第2
段の均熱・徐冷とからなる一次焼鈍処理に付した後、冷
間圧延を行い、ついで600℃〜Ac1点直下の温度域
での二次焼鈍処理を施す方法(特開平4−202629
号公報)等が提案されている。
Conventionally, as a method for converting a high-carbon cold-rolled steel strip into a soft and easy-to-work structure, in hot rolling, rapid transformation on a run-out table is performed to complete the phase transformation, and the steel having undergone the phase transformation is completed. Using a high-carbon hot-rolled steel strip obtained by winding the strip at 500 to 620 ° C as a base material, the base material is cold-rolled at a rolling reduction of 20% or more, and then, at a point of Ac 1 point or more and 770 ° C in a bell furnace.
A method of annealing at the following temperature (Japanese Patent Laid-Open No. 58-55532), C: 0.27 to 0.90%, Si: 0.15 to
0.30%, Mn: 0.60 to 0.90%, P: 0.0
30% or less, S: 0.035% or less, steel containing normal balance of Fe and unavoidable impurities is subjected to ordinary hot rolling, and then hot-rolled steel strip obtained by pickling is used as a starting material to start high-carbon cold rolling. In the method for producing a steel strip, primary annealing is performed by holding the hot-rolled steel strip as the starting material at a temperature of 680 to 720 ° C for 15 hours or more, and then cold rolling is performed at a rolling reduction of 20 to 45%, Thereafter, a method of performing finish annealing in which the temperature is maintained at a temperature of 630 to 720 ° C. for 10 hours or more (Japanese Patent Application Laid-Open No. 61-766)
No. 19), C: 0.3% or more high carbon hot rolled steel sheet,
Intermediate cold rolling is performed at a rolling reduction of 45% or more, and then intermediate annealing is performed by box annealing.
c1 point, C: 680 to 750 ° C. when 0.8% or more
The final rolling is performed at a rolling reduction of 13% or more, and the thickness before and after the intermediate cold rolling and the thickness after the final cold rolling are respectively t 0 , t 1, and t 2. , The logarithm ln (t 0 /
against t 1), the logarithm ln (t 1 of the final cold reduction ratio of rolling
/ T 2 ) is 0.5 times or less, and final annealing is performed by box annealing at 550 to 700 ° C. for 1 to 6 hours (JP-A-3-21235).
A high-carbon hot-rolled steel strip having a chemical composition of 0.6 to 1.3%, Si: 0.5% or less, Mn: 1% or less, Cr: 1.6% or less, and the balance substantially consisting of Fe Ac 1 point to 780 ° C. in an atmosphere furnace containing 50% by volume or more of hydrogen and the balance being nitrogen
After the soaking in the temperature range of 1 hour or more, the first stage soaking / slow cooling to cool down to just below the Ar 1 point at a cooling rate of 60 ° C./Hr or less, and after soaking for 3 to 20 hours just below the Ac 1 point , 60 ° C
/ Hr at a cooling rate of not more than Ar1 point
After subjecting to a primary annealing treatment consisting of soaking and slow cooling of the step, cold rolling is performed, and then a secondary annealing treatment is performed in a temperature range from 600 ° C. to just below the Ac1 point (Japanese Patent Laid-Open No. Hei 4-202629).
And the like have been proposed.

【0005】[0005]

【発明が解決しようとする課題】上記特開昭58−55
532号公報に開示の方法は、冷間圧延前の焼鈍工程を
省略し、酸洗した後冷間圧延し、その後の焼鈍をAc1
点以上で実施するものであるが、前記したとおり高炭素
冷延鋼帯表面はブライト肌であるため、バッチコイル焼
鈍炉で処理する限りはAc1点以上の高温焼鈍のため、
焼鈍焼付き疵が発生し、実生産設備では安定して高炭素
冷延鋼帯を製造することは困難である。しかも、この方
法は、熱間圧延のランナウトテーブル上で急冷して相変
態を完了した鋼帯を500〜620℃で巻取った高炭素
熱延鋼帯を母材として使用するのが前提であるが、55
0℃以下では母材の延性が低下し、次工程での酸洗ライ
ン内破断や、冷間圧延時の破断が発生するため、操業を
著しく阻害するという欠点を有している。
SUMMARY OF THE INVENTION The above-mentioned JP-A-58-55 is disclosed.
No. 532 discloses a method in which an annealing step before cold rolling is omitted, pickling is performed, then cold rolling is performed, and the subsequent annealing is performed using Ac1.
As described above, since the surface of the high-carbon cold-rolled steel strip has a bright skin as described above, as long as it is processed in a batch coil annealing furnace, it is for high-temperature annealing of more than Ac1 point.
Anneal seizure flaws occur, and it is difficult to stably produce high-carbon cold-rolled steel strip with actual production equipment. Moreover, this method is based on the premise that a high-carbon hot-rolled steel strip obtained by winding a steel strip which has been phase-transformed by rapid cooling on a hot-rolled run-out table at 500 to 620 ° C is used as a base material. But 55
If the temperature is 0 ° C. or lower, the ductility of the base material is reduced, and breakage in the pickling line in the next step or breakage during cold rolling occurs, which has a disadvantage that the operation is significantly impaired.

【0006】また、特開昭61−76619号公報に開
示の方法は、熱延鋼帯の一次焼鈍温度が680〜720
℃とAc1点以下であるため、十分に軟質な高炭素鋼帯
が得られない。
In the method disclosed in Japanese Patent Application Laid-Open No. 61-76619, the primary annealing temperature of a hot-rolled steel strip is 680 to 720.
° C and the Ac1 point or less, a sufficiently soft high carbon steel strip cannot be obtained.

【0007】さらに、特開平3−211235号公報に
開示の方法は、中間焼鈍を680℃〜Ac1点以下で2
0〜40時間行うため、能率面で不利であり、実生産設
備では無駄が多い。また、特開平3−211235号公
報中には、「中間焼鈍温度がAc1点より高いとC:
0.6%以下の鋼ではフェライト相が生成するため球状
化率が低下し、C:0.6%超でも一部が完全にオース
テナイト化するため、焼鈍後の冷却において粗いパーラ
イトが生成し、やはり球状化率が低下する。」との記載
があり、C:0.3〜0.8%の高炭素熱延鋼帯では、
球状化率が低下することは避けられないという問題点を
有している。しかも、仕上焼鈍温度を箱焼鈍により55
0〜700℃で1〜6時間均熱して施すが、軟化のため
には焼鈍温度を高くする必要があり、高炭素熱延鋼帯で
は、焼付き疵が発生するため低温で焼鈍せざるを得ず、
薄物材の軟化焼鈍は困難である。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. Hei 3-21235, the intermediate annealing is performed at 680 ° C. to an Ac1 point or less.
Since it is performed for 0 to 40 hours, it is disadvantageous in terms of efficiency, and wasteful in actual production equipment. Also, Japanese Patent Application Laid-Open No. Hei 3-21235 states that "If the intermediate annealing temperature is higher than the Ac1 point, C:
In a steel of 0.6% or less, a spheroidization rate is reduced due to generation of a ferrite phase, and even when C exceeds 0.6%, part of the steel is completely austenitized, so that coarse pearlite is generated upon cooling after annealing, Again, the spheroidization rate decreases. And C: 0.3-0.8% of high carbon hot rolled steel strip,
There is a problem that the spheroidization rate cannot be reduced. Moreover, the finish annealing temperature is set to 55 by box annealing.
It is soaked at 0 to 700 ° C for 1 to 6 hours, but it is necessary to raise the annealing temperature for softening. In the high carbon hot rolled steel strip, seizure flaws are generated, so it has to be annealed at low temperature. Not get
Soft annealing of thin materials is difficult.

【0008】さらにまた、特開平4−202629号公
報に開示の方法は、Ac1点以上780℃以下の温度ま
で焼鈍温度を上げた際の均熱時間を1時間以上としてい
るが、上限が明記されていない。Ac1点以上での長時
間焼鈍は、後述するとおり焼鈍後に球状セメンタイトを
得ることが困難であり、加工後はかえって劣化し、その
後冷間圧延、焼鈍を繰り返しても、高炭素鋼帯の加工性
の向上は望めない。さらに、コイル焼鈍においてAc1
点以上で短時間焼鈍を実現するための具体的な方法が開
示されていないため、実機では良好な球状化組織を安定
して得ることが不可能である。
Further, in the method disclosed in Japanese Patent Application Laid-Open No. 4-202629, the soaking time when the annealing temperature is raised to a temperature of from Ac 1 point to 780 ° C. is set to 1 hour or more, but the upper limit is specified. Not. As described later, it is difficult to obtain spherical cementite after annealing for a long time at an Ac point or more, and it is rather deteriorated after working. Even after repeated cold rolling and annealing, the workability of a high carbon steel strip is improved. Improvement cannot be expected. Further, in coil annealing, Ac1
Above this point, a specific method for realizing short-time annealing is not disclosed, and it is impossible to stably obtain a good spheroidized structure with an actual machine.

【0009】本発明の目的は、上記従来技術の問題点を
解消し、従来の高炭素冷延鋼帯と同等以上の加工性を有
し、かつ結晶組織の均質性に優れた高炭素冷延鋼帯を、
焼付き疵の発生を防止して安価に製造できる高炭素冷延
鋼帯の製造方法を提供することにある。
An object of the present invention is to solve the above-mentioned problems of the prior art, to provide a high carbon cold rolled steel sheet having workability equal to or higher than that of a conventional high carbon cold rolled steel strip and having excellent crystal structure homogeneity. Steel strip,
An object of the present invention is to provide a method for manufacturing a high-carbon cold-rolled steel strip that can be manufactured at low cost while preventing the occurrence of seizure flaws.

【0010】[0010]

【課題を解決するための手段】本出願の請求項1の発明
は、C:0.3〜1.3%、Si:0.03〜0.35
%、Mn:0.20〜1.50%を含有し、残部が実質
的にFeおよび不可避的不純物からなる高炭素鋼片を、
熱間圧延、酸洗、脱スケール処理したのち、75容量%
以上の水素と残部が実質的に窒素および不可避的不純物
からなるガス雰囲気のベル型バッチ焼鈍炉を用い、20
〜100℃/Hrの加熱速度でAc1点〜Ac1点+5
0℃に加熱して8Hr以下均熱保持後、50℃/Hr以
下の冷却速度でAr1点以下まで冷却する第1段の均
熱、徐冷と、20〜100℃/Hrの加熱速度でAc1
点〜Ac1点+50℃に加熱して8Hr以下均熱保持
後、50℃/Hr以下の冷却速度でAr1点以下まで冷
却する第2段の均熱、徐冷を行い、以降は20〜100
℃/Hrで室温まで冷却する一次焼鈍処理した後、圧下
率20%以上85%以下で冷間圧延を行い、次いでベル
型バッチ焼鈍炉で630℃〜Ac1点直下で仕上焼鈍を
行うこととしている。このように、高炭素熱延鋼帯を7
5容量%以上の水素と残部が実質的に窒素および不可避
的不純物からなるガス雰囲気のベル型バッチ焼鈍炉を用
い、20〜100℃/Hrの加熱速度でAc1点〜Ac
1点+50℃に加熱して8Hr以下均熱保持後、50℃
/Hr以下の冷却速度でAr1点以下まで冷却する均
熱、徐冷を2回繰り返すことによって、セメンタイトの
球状化率が向上し、軟質な熱延鋼帯が製造可能となる。
また、圧下率20%以上85%以下で冷間圧延を行い、
次いでベル型バッチ焼鈍炉で630℃〜Ac1点直下で
仕上焼鈍を行うことによって、球状化の完了した軟質な
熱延鋼帯を所定板厚となし、冷間圧延歪を開放して結晶
粒が成長し、軟質な高炭素冷延鋼帯を得ることができ
る。
According to the first aspect of the present invention, C: 0.3-1.3%, Si: 0.03-0.35.
%, Mn: 0.20 to 1.50%, the balance being substantially high Fe and unavoidable impurities.
75% by volume after hot rolling, pickling and descaling
Using a bell-type batch annealing furnace in a gas atmosphere in which the hydrogen and the balance substantially consist of nitrogen and unavoidable impurities,
Ac1 point to Ac1 point + 5 at a heating rate of 100100 ° C./Hr
After heating to 0 ° C. and maintaining the soaking temperature for 8 hours or less, the first stage of soaking and slow cooling to cool to Ar 1 point or less at a cooling rate of 50 ° C./Hr or less, and Ac1 at a heating rate of 20 to 100 ° C./Hr.
After heating to a point + Ac1 point + 50 ° C and maintaining a soaking temperature of 8Hr or less, a second stage of soaking and gradual cooling to cool to an Ar1 point or less at a cooling rate of 50 ° C / Hr or less, and thereafter from 20 to 100
After the primary annealing treatment of cooling to room temperature at a temperature of ° C./Hr, cold rolling is performed at a rolling reduction of 20% or more and 85% or less, and then finish annealing is performed in a bell-type batch annealing furnace at 630 ° C. to just below Ac1 point. . Thus, the high carbon hot rolled steel strip is
Ac 1 point to Ac at a heating rate of 20 to 100 ° C./Hr using a bell-type batch annealing furnace in a gas atmosphere consisting of 5% by volume or more of hydrogen and the balance substantially consisting of nitrogen and inevitable impurities.
Heat to 1 point + 50 ° C, keep 8Hr or less soak, then 50 ° C
By repeating soaking and slow cooling twice at a cooling rate of not more than / Hr to Ar1 point or less, the spheroidization rate of cementite is improved, and a soft hot-rolled steel strip can be manufactured.
In addition, cold rolling is performed at a rolling reduction of 20% or more and 85% or less,
Next, by performing finish annealing in a bell-type batch annealing furnace at 630 ° C. to just below the Ac1 point, a soft hot-rolled steel strip having completed spheroidization is formed to a predetermined plate thickness, and the cold rolling strain is released to reduce the crystal grains. It is possible to obtain a soft, high-carbon cold-rolled steel strip that has grown.

【0011】また、本出願の請求項2の発明は、C:
0.3〜1.3%、Si:0.03〜0.35%、M
n:0.20〜1.50%を含有し、残部が実質的にF
eおよび不可避的不純物からなる高炭素鋼片を、熱間圧
延、酸洗、脱スケール処理したのち、75容量%以上の
水素と残部が実質的に窒素および不可避的不純物からな
るガス雰囲気のベル型バッチ焼鈍炉を用い、20〜10
0℃/Hrの加熱速度でAc1点〜Ac1点+50℃に
加熱して8Hr以下均熱保持後、50℃/Hr以下の冷
却速度でAr1点以下まで冷却する第1段の均熱、徐冷
と、20〜100℃/Hrの加熱速度でAc1点〜Ac
1点+50℃に加熱して8Hr以下均熱保持後、50℃
/Hr以下の冷却速度でAr1点以下まで冷却する第2
段の均熱、徐冷と、20〜100℃/Hrの加熱速度で
Ac1点〜Ac1点+50℃に加熱して8Hr以下均熱
保持後、50℃/Hr以下の冷却速度でAr1点以下ま
で冷却する第3段の均熱、徐冷とを行い、以降は20〜
100℃/Hrで室温まで冷却する条件で一次焼鈍処理
した後、圧下率20%以上85%以下で冷間圧延を行
い、ベル型バッチ焼鈍炉で630℃〜Ac1点直下で仕
上焼鈍を行うこととしている。このように、高炭素熱延
鋼帯を75容量%以上の水素と残部が実質的に窒素およ
び不可避的不純物からなるガス雰囲気のベル型バッチ焼
鈍炉を用い、20〜100℃/Hrの加熱速度でAc1
点〜Ac1点+50℃に加熱して8Hr以下均熱保持
後、50℃/Hr以下の冷却速度でAr1点以下まで冷
却する均熱、徐冷を3回繰り返すことによって、セメン
タイトの球状化率が更に向上してほぼ100%に近づ
き、より軟質な熱延鋼帯を製造可能となる。また、圧下
率20%以上85%以下で冷間圧延を行い、次いでベル
型バッチ焼鈍炉で630℃〜Ac1点直下で仕上焼鈍を
行うことによって、球状化の完了した軟質な熱延鋼帯を
所定板厚となし、冷間圧延歪を開放して結晶粒が成長
し、軟質な高炭素冷延鋼帯を得ることができる。
[0011] The invention of claim 2 of the present application is characterized in that:
0.3-1.3%, Si: 0.03-0.35%, M
n: 0.20 to 1.50%, the balance being substantially F
e and hot rolling, pickling and descaling of a high carbon steel slab consisting of unavoidable impurities, followed by a bell-shaped gas atmosphere comprising 75% by volume or more of hydrogen and the balance substantially consisting of nitrogen and unavoidable impurities. Using a batch annealing furnace, 20 to 10
Heating from Ac1 point to Ac1 point + 50 ° C at a heating rate of 0 ° C / Hr and holding soaking at 8Hr or less, then cooling to Ar1 point or less at a cooling rate of 50 ° C / Hr or less, first stage soaking, slow cooling And an Ac 1 point to an Ac at a heating rate of 20 to 100 ° C./Hr.
Heat to 1 point + 50 ° C, keep 8Hr or less soak, then 50 ° C
/ Hr at a cooling rate of not more than Ar1 point
Step soaking, slow cooling, heating from Ac1 point to Ac1 point + 50 ° C at a heating rate of 20 to 100 ° C / Hr, holding at a soaking temperature of 8Hr or less, and then down to Ar1 point at a cooling rate of 50 ° C / Hr or less. The third stage of cooling, soaking and gradual cooling, is performed.
After primary annealing under the condition of cooling to room temperature at 100 ° C / Hr, cold rolling is performed at a rolling reduction of 20% or more and 85% or less, and finish annealing is performed in a bell-type batch annealing furnace at 630 ° C to just below Ac1 point. And As described above, the high-carbon hot-rolled steel strip is heated at a rate of 20 to 100 ° C./Hr using a bell-type batch annealing furnace in a gas atmosphere consisting of 75% by volume or more of hydrogen and the balance substantially consisting of nitrogen and unavoidable impurities. And Ac1
After heating to a point + Ac1 point + 50 ° C and maintaining a soaking temperature of 8Hr or less, cooling at a cooling rate of 50 ° C / Hr or less to Ar1 point or less is repeated three times to reduce the spheroidization rate of cementite. It further improves and approaches nearly 100%, and a softer hot-rolled steel strip can be manufactured. Further, by performing cold rolling at a reduction ratio of 20% or more and 85% or less, and then performing finish annealing in a bell-type batch annealing furnace at 630 ° C. to just below Ac1 point, a soft hot-rolled steel strip having completed spheroidization can be obtained. It is possible to obtain a soft high-carbon cold-rolled steel strip having a predetermined thickness, releasing the cold rolling strain and growing crystal grains.

【0012】さらに、本出願の請求項3の発明は、一次
焼鈍した後、圧下率20%以上85%以下の冷間圧延
と、ベル型バッチ焼鈍炉での630℃〜Ac1点直下の
仕上焼鈍とを2回以上繰り返すこととしている。このよ
うに、高炭素熱延鋼帯を一次焼鈍処理した後、圧下率2
0%以上85%以下の冷間圧延と、ベル型バッチ焼鈍炉
での630℃〜Ac1点直下の仕上焼鈍とを2回以上繰
り返すことによって、最終板厚が薄物、例えば、板厚
0.3mmのように1回の冷間圧延では所望の板厚が得
られない場合は、一旦冷間圧延を中止して仕上焼鈍を同
様の条件で行って軟質化した後、再度冷間圧延を行うこ
とによって所望の板厚となし、再度仕上焼鈍を同様の条
件で行って軟質化することにより、板厚0.3mmの軟
質な高炭素冷延鋼帯を得ることができる。
Further, the invention according to claim 3 of the present application is characterized in that, after the primary annealing, cold rolling at a reduction ratio of 20% or more and 85% or less, and finish annealing at 630 ° C. to just below Ac1 point in a bell-type batch annealing furnace. Is repeated twice or more. As described above, after the high-carbon hot-rolled steel strip is subjected to the primary annealing treatment, the rolling reduction is 2%.
By repeating the cold rolling of 0% or more and 85% or less and the finish annealing at 630 ° C. to just below the Ac1 point in a bell-type batch annealing furnace twice or more, the final sheet thickness is small, for example, 0.3 mm in thickness. If the desired thickness cannot be obtained by one cold rolling as in the above, cold rolling should be stopped once, finish annealing should be performed under the same conditions, and then soft rolling should be performed again. The thickness of the steel sheet is set to a desired value, and the finish annealing is performed again under the same conditions to soften the steel sheet. Thus, a soft high-carbon cold-rolled steel strip having a sheet thickness of 0.3 mm can be obtained.

【0013】[0013]

【発明の実施の形態】上記化学組成を有する高炭素鋼片
の熱間圧延は、通常の方法で行われ、熱延条件に特別の
制限はないが、熱延鋼帯の巻取りは、相変態終了後に行
うのが好ましい。相変態を終了する前の高温で巻取りを
行った熱延鋼帯の結晶組織は、粗大なパーライトが発達
した組織を呈するのに対し、相変態を終了後に巻取った
熱延鋼帯の結晶組織は、フェライト+パーライトまたは
微細パーライトあるいは微細パーライト+初析セメンタ
イトからなる均質な組織を有するので、一次焼鈍処理に
おけるオーステナイト相の偏析が少なく、球状化炭化物
の分布の偏りや粒径のバラツキを抑制するのに有効であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hot rolling of a high carbon steel slab having the above-mentioned chemical composition is performed by a usual method, and there are no particular restrictions on hot rolling conditions. It is preferably performed after the transformation. The crystal structure of the hot-rolled steel strip wound at a high temperature before the completion of the phase transformation has a structure in which coarse pearlite has developed, whereas the crystal structure of the hot-rolled steel strip wound after the completion of the phase transformation has The structure has a homogeneous structure consisting of ferrite + pearlite or fine pearlite or fine pearlite + pro-eutectoid cementite, so that segregation of the austenite phase in the primary annealing treatment is small and uneven distribution of spheroidized carbide and variation in particle size are suppressed. It is effective to do.

【0014】本発明における熱延鋼帯のベル型バッチ焼
鈍炉での一次焼鈍処理は、ベル型バッチコイル焼鈍では
最外周の温度と最冷点の温度差が大きいため、表1、図
1に示すとおり、温度0℃、圧力0.1MPaにおい
て、熱伝導率が窒素の約7倍、密度が窒素の約14倍の
水素を、雰囲気ガス中75容量%以上とすることによっ
て、コイル幅960mm、コイル外径1847mm、コ
イル内径610mm、重量18Tonのコイルを均熱温
度770℃で焼鈍した場合の均熱時間とコイル内温度差
との関係を示す図2に示すとおり、コイル内部の熱伝達
性が向上し、従来の窒素を主体とする場合に比較し、コ
イル内外周の温度差を小さくすることが可能となり、ベ
ル型バッチ焼鈍炉を適用することができる。
In the primary annealing treatment of the hot-rolled steel strip in the bell-type batch annealing furnace in the present invention, the temperature difference between the outermost periphery and the coldest point is large in the bell-type batch coil annealing. As shown, at a temperature of 0 ° C. and a pressure of 0.1 MPa, hydrogen having a thermal conductivity of about 7 times that of nitrogen and a density of about 14 times that of nitrogen is set to be 75% by volume or more in the atmosphere gas, thereby obtaining a coil width of 960 mm. As shown in FIG. 2 showing the relationship between the soaking time and the temperature difference in the coil when the coil having an outer diameter of 1847 mm, a inner diameter of 610 mm, and a weight of 18 Ton was annealed at a soaking temperature of 770 ° C., the heat transfer inside the coil was As a result, the temperature difference between the inner and outer circumferences of the coil can be reduced as compared with the conventional case mainly using nitrogen, and a bell-type batch annealing furnace can be applied.

【0015】[0015]

【表1】 [Table 1]

【0016】75容量%以上の水素と残部実質窒素から
なる雰囲気ガス中での一次焼鈍処理は、加熱速度20〜
100℃/HrでAc1点〜Ac1点+50℃に8時間
以下均熱したのち、50℃/Hr以下でAr1点以下ま
で徐冷する第1段の均熱、徐冷工程と、加熱速度20〜
100℃でAc1点〜Ac1点+50℃に8時間以下均
熱したのち、50℃/Hr以下でAr1点以下まで徐冷
する第2段の均熱、徐冷工程と、さらに、望ましくは加
熱速度20〜100℃/HrでAc1点〜Ac1点+5
0℃に8時間以下均熱したのち、50℃/Hr以下でA
r1点以下まで徐冷する第3段の均熱、徐冷工程と、以
降室温まで50〜100℃/Hrの速度で冷却する放冷
工程とからなる。
The primary annealing treatment in an atmosphere gas comprising 75% by volume or more of hydrogen and the balance substantially nitrogen is carried out at a heating rate of 20 to
After soaking at 100 ° C./Hr from Ac1 point to Ac1 point + 50 ° C. for 8 hours or less, the first stage soaking and slow cooling step of gradually cooling to 50 ° C./Hr or less to 1 Ar or less, and heating rate of 20 to
After soaking at 100 ° C. from Ac1 point to Ac1 point + 50 ° C. for 8 hours or less, and then gradually cooling at 50 ° C./Hr or less to Ar 1 point or less, a second stage soaking and slow cooling step, and more preferably a heating rate Ac1 point to Ac1 point +5 at 20 to 100 ° C / Hr
After soaking at 0 ° C for 8 hours or less, A at 50 ° C / Hr or less
It comprises a third-stage soaking and gradual cooling step of gradual cooling to the r1 point or lower, and a cooling step of cooling to room temperature at a rate of 50 to 100 ° C./Hr.

【0017】上記第1段の均熱、徐冷工程における均熱
は、熱延組織のパーライトをオーステナイト中に固溶さ
せる工程であり、均熱後の徐冷は、未溶解の残留炭化物
を核とする固溶Cの析出により球状化炭化物を生成させ
る工程である。加熱速度を20〜100℃/Hrとした
のは、20℃/Hr未満では操業効率が悪く、また、1
00℃/Hrを超えると加熱効率が悪くなってコイル内
の温度不均一を生じ易い。均熱温度をAc1点〜Ac1
点+50℃としたのは、Ac1点+50℃を超えると球
状化炭化物粒形成の核となる未溶解の炭化物を残留させ
ることができなくなり、冷却条件を制御してもパーライ
トが形成され、また、Ac1点未満ではセメンタイトの
球状化に長時間を要するからである。均熱時間を8時間
以下としたのは、8時間以上の条件ではパーライトが形
成される可能性が高いからである。
The soaking in the first stage soaking and slow cooling step is a step in which pearlite having a hot-rolled structure is solid-dissolved in austenite, and the slow cooling after soaking is a process in which undissolved residual carbide is nucleated. This is a step of generating spheroidized carbide by precipitation of solid solution C. The reason why the heating rate is set to 20 to 100 ° C./Hr is that if the heating rate is lower than 20 ° C./Hr, the operating efficiency is poor.
When the temperature exceeds 00 ° C./Hr, the heating efficiency is deteriorated, and the temperature in the coil is likely to be uneven. Soaking temperature is from Ac1 point to Ac1
The reason for setting the temperature at the point + 50 ° C. is that if the temperature exceeds the Ac1 point + 50 ° C., undissolved carbides serving as nuclei for forming spheroidized carbide grains cannot be left, and pearlite is formed even when the cooling conditions are controlled. This is because if it is below the Ac point, it takes a long time to form cementite into a spheroid. The reason for setting the soaking time to 8 hours or less is that pearlite is likely to be formed under conditions of 8 hours or more.

【0018】第1段の均熱に続く冷却速度を50℃/H
r以下としたのは、50℃/Hrを超える冷却速度では
固溶Cの析出が抑制されるため、未溶解炭化物を核とす
る球状化炭化物の生成が不十分となり、オーステナイト
に多量のCが固溶したままAr1変態が生起し、層状パ
ーライト組織となってしまうからである。また、冷却到
達温度をAr1点以下としたのは、冷却到達温度がAr
1点を超えると球状化炭化物の生成率が劣化するから
で、Ar1点より低い温度であればよいが、必要以上に
降温させると、それに続く後段の均熱を行う際の処理効
率ならびに熱経済性の悪化を招くため、Ar1点〜Ar
1点−20℃で十分である。
The cooling rate following the first stage soaking is 50 ° C./H
When the cooling rate exceeds 50 ° C./Hr, the precipitation of solid solution C is suppressed, so that the formation of spheroidized carbide having undissolved carbide as a nucleus becomes insufficient, and a large amount of C is contained in austenite. This is because the Ar1 transformation occurs while forming a solid solution, resulting in a layered pearlite structure. The reason why the cooling ultimate temperature is set to the Ar1 point or less is that the cooling ultimate temperature is Ar
If it exceeds one point, the formation rate of spheroidized carbide is deteriorated, so that the temperature may be lower than Ar 1 point. However, if the temperature is lowered more than necessary, the processing efficiency and thermal economy when performing subsequent soaking in the subsequent stage Ar1 point to Ar
One point at -20 ° C is sufficient.

【0019】上記第2段の均熱、徐冷工程における均熱
は、前記第1段の均熱、徐冷工程の後更に球状化炭化物
の生成率向上のための処理、第3段の均熱、徐冷工程に
おける均熱は、前記第2段の均熱、徐冷工程の後、更に
球状化炭化物の生成率向上のための処理で、軟質な鋼帯
が製造可能となる。第2〜3段の均熱、徐冷工程におけ
る加熱速度、均熱温度、均熱時間、冷却速度ならびに冷
却到達温度を限定した理由は、前記第1段の均熱、徐冷
工程で記載した通りである。
The soaking in the second-stage soaking / slow-cooling process is performed after the first-stage soaking / slow-cooling process to further improve the generation rate of spheroidized carbides, and in the third-stage soaking. The soaking in the heat and slow cooling step is a process for further improving the generation rate of spheroidized carbide after the second-stage soaking and slow cooling step, so that a soft steel strip can be manufactured. The reasons for limiting the heating rate, soaking temperature, soaking time, cooling rate, and cooling temperature in the second and third stages of soaking and slow cooling processes were described in the first stage soaking and slow cooling process. It is on the street.

【0020】上記第1〜2段あるいは第1〜3段の均
熱、徐冷工程後、Ar1点以下から室温までの冷却速度
を50〜100℃/Hrとしたのは、50℃/Hr未満
では操業効率が悪く、また、100℃/Hrを超えると
コイル内外周の温度差が大きくなり、球状化炭化物の生
成率の不均一が生じるからである。
The cooling rate from the Ar 1 point or lower to room temperature after the first or second stage or the first to third stages of soaking and slow cooling is set to 50 to 100 ° C./Hr because the cooling rate is less than 50 ° C./Hr. In this case, the operation efficiency is poor, and when the temperature exceeds 100 ° C./Hr, the temperature difference between the inner and outer circumferences of the coil becomes large, and the generation rate of the spheroidized carbide becomes uneven.

【0021】上記第1〜2段あるいは第1〜3段の均
熱、徐冷工程からなる一次焼鈍処理後、圧下率20〜8
5%で冷間圧延を行う。一次焼鈍処理が施された高炭素
熱延鋼帯は、フェライト組織中に球状炭化物粒が均一に
分散した均質な組織を有しており、熱延のままの硬くて
脆い組織と異なり、軟質で良好な加工性を示している。
したがって、一次焼鈍処理が施された高炭素熱延鋼帯
は、冷間圧延での作業性に優れ、耳切れ等のトラブルを
生じることなく、所定の板厚まで冷間圧延することがで
きる。冷間圧延における圧下率を20〜85%としたの
は、20%未満ではその後の仕上焼鈍処理において結晶
粒の異常粒成長を生じ、伸びを著しく低下させる可能性
があり、85%を超えると冷間圧延中に破断が生じ操業
を著しく阻害する恐れがあるからである。
After the primary annealing treatment consisting of the first or second stage or first to third stage soaking and slow cooling steps, the rolling reduction is 20 to 8%.
Perform cold rolling at 5%. The high-carbon hot-rolled steel strip subjected to the primary annealing treatment has a homogeneous structure in which spherical carbide grains are uniformly dispersed in the ferrite structure, and unlike the hard and brittle structure as it is hot-rolled, it is soft and soft. It shows good workability.
Therefore, the high-carbon hot-rolled steel strip subjected to the primary annealing treatment has excellent workability in cold rolling, and can be cold-rolled to a predetermined thickness without causing troubles such as cut edges. The reason why the rolling reduction in the cold rolling is set to 20 to 85% is that if it is less than 20%, abnormal grain growth of crystal grains may occur in the subsequent finish annealing treatment, and the elongation may be significantly reduced. This is because a break may occur during cold rolling and the operation may be significantly impaired.

【0022】冷間圧延後の仕上焼鈍処理は、冷間圧延に
より形成された集合組織に回復・再結晶を生じさせ、加
工硬化が解消された軟質な再結晶集合組織に変えるため
の熱処理である。仕上焼鈍処理は、630℃〜Ac1点
直下に所定時間均熱保持することにより達成される。仕
上焼鈍温度を630℃〜Ac1点直下としたのは、63
0℃未満ではフェライトの再結晶、粒成長が不十分とな
り、軟質化効果に不足をきたすからである。また、Ac
1点を超えるとオーステナイト相が生成し、冷却過程で
層状パーライトが現れて硬質化すると共に、焼付き疵の
発生する恐れがあるからである。
The finish annealing treatment after the cold rolling is a heat treatment for causing the texture formed by the cold rolling to recover and recrystallize to change the texture to a soft recrystallization texture in which work hardening is eliminated. . The finish annealing treatment is achieved by maintaining the temperature soaked at 630 ° C. to just below the Ac1 point for a predetermined time. The reason why the finish annealing temperature was set to 630 ° C. to just below the Ac1 point was 63
If the temperature is lower than 0 ° C., recrystallization and grain growth of ferrite become insufficient, resulting in insufficient softening effect. Also, Ac
If the number exceeds one point, an austenite phase is formed, and layered pearlite appears during the cooling process to become hard and may cause seizure flaws.

【0023】上記仕上焼鈍処理は、前記一次焼鈍処理と
異なり、必ずしも高水素雰囲気とする必要はなく、窒素
主体の雰囲気であってもよい。この仕上焼鈍処理におい
ては、均熱保持時間はそれほど重要ではなく、約1〜1
5時間程度の均熱保持時間で十分である。また、冷却速
度の制御は、特に必要はなく、例えば、自然放冷とする
こともできる。
Unlike the primary annealing, the finish annealing is not necessarily required to be performed in a high hydrogen atmosphere, but may be performed in a nitrogen-based atmosphere. In this finish annealing treatment, the soaking time is not so important,
A soaking time of about 5 hours is sufficient. Further, the control of the cooling rate is not particularly required, and for example, natural cooling can be performed.

【0024】上記第1〜2段あるいは第1〜3段の均
熱、徐冷工程からなる一次焼鈍処理後、圧下率20〜8
5%で冷間圧延を行っても、最終板厚が薄物、例えば、
0.3mm以下の場合は、1回の冷間圧延では所望の板
厚が得られない場合は、一旦冷間圧延を中止して仕上焼
鈍処理を同様の条件で行って軟質化したのち、再度冷間
圧延を行って所望の板厚となし、仕上焼鈍処理を行う。
この仕上焼鈍処理は、仕上板厚に応じて複数回実施する
ことができる。
After the primary annealing treatment including the first and second or first to third stage soaking and slow cooling steps, the rolling reduction is 20 to 8%.
Even if cold rolling is performed at 5%, the final sheet thickness is thin, for example,
In the case of 0.3 mm or less, if the desired sheet thickness cannot be obtained by one cold rolling, the cold rolling is temporarily stopped, the finish annealing treatment is performed under the same conditions, and the softening is performed again. Cold rolling is performed to obtain a desired thickness, and finish annealing is performed.
This finish annealing treatment can be performed a plurality of times according to the thickness of the finished plate.

【0025】本発明に使用される高炭素鋼の成分限定理
由は、以下の通りである。Cは鋼に強度、焼入れ性、耐
摩耗性等を付与する作用を有する元素で、低いほど軟質
化して加工性は良くなるが、0.3%未満では焼入れ性
が不足し、熱処理後に所定の硬度が得られない。一方、
1.3%を超えると熱間圧延鋼帯の段階での硬度が高
く、一次焼鈍処理によっていかにセメンタイトを良好に
球状化しても、伸びの劣化を招き、冷間圧延が困難とな
るので、0.3〜1.3%とした。
The reasons for limiting the components of the high carbon steel used in the present invention are as follows. C is an element having an effect of imparting strength, hardenability, wear resistance, and the like to steel. The lower the softness, the better the workability. However, if less than 0.3%, the hardenability is insufficient, and a predetermined amount after heat treatment. Hardness cannot be obtained. on the other hand,
If it exceeds 1.3%, the hardness at the stage of the hot-rolled steel strip is high, and no matter how well the cementite is spheroidized by the primary annealing treatment, elongation is deteriorated and cold rolling becomes difficult. 0.3 to 1.3%.

【0026】Siは脱酸材として添加する元素である
が、0.03%未満では脱酸効果が十分ではなく、ま
た、0.35%を超えると脱酸能力が飽和し、かつ固溶
硬化により素材の成形性を阻害するため、0.03〜
0.35%とした。
Si is an element to be added as a deoxidizing agent, but if it is less than 0.03%, the deoxidizing effect is not sufficient, and if it exceeds 0.35%, the deoxidizing ability is saturated, and solid solution hardening occurs. From 0.03 to
0.35%.

【0027】Mnは強度、焼入れ性を向上させると共
に、セメンタイトの安定化作用を有する元素であるが、
0.2%未満では安定した焼入れ性を確保することがで
きず、また、1.5%を超えると焼入れ性の改善効果が
飽和すると共に、素材の硬度上昇をもたらすので、0.
2〜1.5%とした。
Mn is an element which improves the strength and hardenability and has the effect of stabilizing cementite.
If it is less than 0.2%, stable hardenability cannot be secured, and if it exceeds 1.5%, the effect of improving the hardenability is saturated and the hardness of the material is increased.
2 to 1.5%.

【0028】[0028]

【実施例】 実施例1 表2に示す化学組成の鋼No.1〜5の高炭素鋼片を、
仕上板厚:2mm、仕上温度:840℃、巻取温度:5
90℃の熱延条件で熱間圧延して高炭素熱延鋼帯とな
し、酸洗、脱スケールしたのち、ベル型バッチ焼鈍炉を
用い、水素99容量%、残部窒素からなる雰囲気ガス中
で、表3に示すテストNo.1〜26の第1〜第2段均
熱、徐冷工程からなる一次焼鈍処理を行った。ついで、
圧下率40%で冷間圧延したのち、ベル型バッチ焼鈍炉
を用い、水素99容量%、残部窒素からなる雰囲気ガス
中で、均熱温度:710℃、均熱時間:6時間の仕上焼
鈍を施し、高炭素冷延鋼帯を得た。各高炭素冷延鋼帯か
ら試験片を切り出し、JISZ 2244に規定のビッ
カース硬さ試験方法に準じてビッカース硬さ(HV)を
測定し、各高炭素冷延鋼帯の鋼種毎に、JIS G 3
311に規定のみがき特殊帯鋼に規定される焼なまし後
のビッカース硬さと比較した軟質度(表4参照)で評価
した。その結果を表3に示す。なお、仕上焼鈍完了後の
高炭素冷延鋼帯には、焼付き疵の発生は見られなかっ
た。
EXAMPLES Example 1 Steel No. 1 having the chemical composition shown in Table 2 was used. 1-5 high carbon steel slabs
Finish plate thickness: 2mm, Finish temperature: 840 ° C, Winding temperature: 5
After hot rolling under hot rolling conditions of 90 ° C. to form a high carbon hot rolled steel strip, pickling and descaling, using a bell-type batch annealing furnace, in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen Test No. shown in Table 3. The primary annealing treatment including the first and second stage soaking and slow cooling steps of Nos. 1 to 26 was performed. Then
After cold rolling at a rolling reduction of 40%, a finish annealing at a soaking temperature of 710 ° C. and a soaking time of 6 hours was carried out in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen using a bell-type batch annealing furnace. To obtain a high-carbon cold-rolled steel strip. A test piece was cut out from each high-carbon cold-rolled steel strip, and the Vickers hardness (HV) was measured according to the Vickers hardness test method specified in JISZ 2244. For each steel type of each high-carbon cold-rolled steel strip, JIS G 3
Evaluation was made based on the softness (see Table 4) in comparison with the Vickers hardness after annealing specified for the special steel strip specified in 311. Table 3 shows the results. No seizure flaw was observed in the high-carbon cold-rolled steel strip after completion of the finish annealing.

【0029】[0029]

【表2】 [Table 2]

【0030】[0030]

【表3】 [Table 3]

【0031】[0031]

【表4】 [Table 4]

【0032】表3に示すとおり、一次焼鈍処理における
均熱温度がAc1点未満のテストNo.2の高炭素冷延
鋼帯は、ビッカース硬度HV:174となり、軟質化が
十分でない。一次焼鈍処理における各段の均熱温度がA
c1点+50℃を超えるテストNo.5、17の高炭素
冷延鋼帯は、ビッカース硬度HV:215、160と硬
質である。一次焼鈍処理における各段の均熱時間が8時
間を超えるテストNo.9、21の高炭素冷延鋼帯は、
ビッカース硬度HV:194、216と硬質である。一
次焼鈍処理における冷却速度が50℃/Hrを超えるテ
ストNo.11、23の高炭素冷延鋼帯も硬質である。
一次焼鈍処理における冷却到達温度がAr1点以上のテ
ストNo.12、24の高炭素冷延鋼帯も、ビッカース
硬度HV:171、180と硬質である。
As shown in Table 3, Test No. 1 in which the soaking temperature in the primary annealing treatment was less than Ac1 point. The high-carbon cold-rolled steel strip No. 2 has a Vickers hardness HV of 174, and is not sufficiently softened. The soaking temperature of each stage in the primary annealing process is A
Test No. c exceeding point + 50 ° C. The high-carbon cold-rolled steel strips Nos. 5 and 17 are hard with Vickers hardness HV: 215 and 160. Test No. 1 in which the soaking time of each stage in the primary annealing treatment exceeded 8 hours. 9 and 21 high carbon cold rolled steel strips
Vickers hardness HV: Hard, 194,216. Test No. 1 in which the cooling rate in the primary annealing treatment exceeded 50 ° C./Hr. The high-carbon cold-rolled steel strips 11 and 23 are also hard.
Test No. 1 in which the ultimate cooling temperature in the primary annealing treatment was Ar 1 point or more. The 12 and 24 high carbon cold rolled steel strips are also hard with Vickers hardness HV: 171 and 180.

【0033】これに対し、一次焼鈍処理における各段の
均熱温度がAc1点〜Ac1点+50℃、各段の均熱時
間が8時間以内、冷却速度が50℃/Hr以下、冷却到
達温度がAr1点直下と本発明条件を満足させるテスト
No.1、3、4、6〜8、10、14〜16、18〜
20、22および25の高炭素冷延鋼帯は、表3に示す
とおり、いずれもビッカース硬度(HV)が標準よりも
軟質である。また、表3に示すとおり、テストNo.2
6のように一次焼鈍処理における各段の加熱速度、冷却
速度が5℃/Hr、3℃/Hrでも高炭素冷延鋼帯の硬
度には悪影響を及ぼさないが、焼鈍処理の生産効率の面
ならびに省エネルギーの面でのメリットはない。
On the other hand, in the primary annealing treatment, the soaking temperature of each stage is from Ac1 point to Ac1 point + 50 ° C., the soaking time of each stage is within 8 hours, the cooling rate is 50 ° C./Hr or less, and the cooling ultimate temperature is Test No. 1 that satisfies the conditions of the present invention just below the Ar1 point. 1, 3, 4, 6 to 8, 10, 14 to 16, 18 to
As shown in Table 3, the high carbon cold rolled steel strips of 20, 22, and 25 all have a Vickers hardness (HV) that is softer than the standard. In addition, as shown in Table 3, test No. 2
Although the heating rate and the cooling rate of each stage in the primary annealing treatment as shown in FIG. 6 do not adversely affect the hardness of the high-carbon cold-rolled steel strip at 5 ° C./Hr and 3 ° C./Hr, the production efficiency of the annealing treatment is reduced. There is no merit in energy saving.

【0034】実施例2 実施例1の表2の鋼No.2の高炭素鋼片を、仕上板
厚:2mm、仕上温度:840℃、巻取温度:590℃
の熱延条件で熱間圧延して高炭素熱延鋼帯となし、酸
洗、脱スケールしたのち、ベル型バッチ焼鈍炉を用い、
水素99容量%、残部窒素からなる雰囲気ガス中で、表
5に示すとおり、加熱速度:50℃/Hr、均熱温度:
Ac1点+20℃、均熱時間:2時間、冷却速度:30
℃/Hr、冷却到達温度:Ar1点−20℃の第1段の
均熱、徐冷後、加熱速度:10℃/Hr、均熱温度:A
c1点+20℃、均熱時間:2時間、冷却速度:10℃
/Hr、冷却到達温度:Ar1点−10℃の第2段均
熱、徐冷を行って一次焼鈍処理を行った。ついで、圧下
率40%で冷間圧延したのち、ベル型バッチ焼鈍炉を用
い、水素99容量%、残部窒素からなる雰囲気ガス中
で、均熱温度:710℃、均熱時間:27時間の仕上焼
鈍処理を施しテストNo.31の高炭素冷延鋼帯を得
た。
Example 2 Steel No. 1 in Table 2 of Example 1 was used. No. 2 high carbon steel slab, finishing plate thickness: 2 mm, finishing temperature: 840 ° C, winding temperature: 590 ° C
After hot rolling under hot rolling conditions to form a high carbon hot rolled steel strip, pickling, descaling, using a bell type batch annealing furnace,
As shown in Table 5, heating rate: 50 ° C./Hr, soaking temperature:
Ac 1 point + 20 ° C, soaking time: 2 hours, cooling rate: 30
° C / Hr, cooling attainment temperature: Ar 1 point -20 ° C, first stage soaking, after slow cooling, heating rate: 10 ° C / Hr, soaking temperature: A
c1 point + 20 ° C, soaking time: 2 hours, cooling rate: 10 ° C
/ Hr, ultimate cooling temperature: Ar 1 point-10 ° C. second stage soaking and slow cooling to perform primary annealing treatment. Then, after cold rolling at a reduction of 40%, using a bell-type batch annealing furnace, in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, finishing at a soaking temperature of 710 ° C and soaking time of 27 hours Test No. 31 high carbon cold rolled steel strips were obtained.

【0035】一次焼鈍処理における第3段均熱、徐冷工
程以降の均熱、徐冷効果を確認するため、前記と同条件
で第1、第2段均熱、徐冷を行ったのち、表6に示すと
おり、加熱速度:10℃/Hr、均熱温度:Ac1点+
20℃、均熱時間:4時間、冷却速度:10℃/Hr、
冷却到達温度:Ar1点−10℃の第3段均熱、徐冷を
行って一次焼鈍処理施し、ついで、圧下率40%で冷間
圧延したのち、ベル型バッチ焼鈍炉を用い、水素99容
量%、残部窒素からなる雰囲気ガス中で、均熱温度:7
10℃、均熱時間:27時間の仕上焼鈍処理を施しテス
トNo.32の高炭素冷延鋼帯を得た。また、前記と同
条件で第1、第2段均熱、徐冷を行ったのち、加熱速
度:10℃/Hr、均熱温度:Ac1点+20℃、均熱
時間:4時間、冷却速度:10℃/Hr、冷却到達温
度:Ar1点−10℃の第3、第4段均熱、徐冷を行っ
て一次焼鈍処理施し、ついで、圧下率40%で冷間圧延
したのち、ベル型バッチ焼鈍炉を用い、水素99容量
%、残部窒素からなる雰囲気ガス中で、均熱温度:71
0℃、均熱時間:27時間の仕上焼鈍処理を施しテスト
No.33の高炭素冷延鋼帯を得た。各高炭素冷延鋼帯
から試験片を切り出し、JIS Z 2244に規定の
ビッカース硬さ試験方法に準じてビッカース硬さ(H
V)を測定した。その結果を表6に示す。なお、仕上焼
鈍完了後の高炭素冷延鋼帯には、焼付き疵の発生は見ら
れなかった。
In order to confirm the soaking and gradual cooling effects after the third-stage soaking and gradual cooling steps in the primary annealing treatment, the first and second-stage soaking and gradual cooling were performed under the same conditions as described above. As shown in Table 6, heating rate: 10 ° C./Hr, soaking temperature: Ac 1 point +
20 ° C., soaking time: 4 hours, cooling rate: 10 ° C./Hr,
Achieved cooling temperature: Ar 1 point-10 ° C., third-stage soaking, gradual cooling, primary annealing treatment, then cold rolling at a reduction of 40%, and using a bell-type batch annealing furnace, hydrogen 99 volume %, In an atmosphere gas consisting of the balance nitrogen, soaking temperature: 7
A finish annealing treatment was performed at 10 ° C. and a soaking time of 27 hours. 32 high carbon cold rolled steel strips were obtained. After the first and second stages of soaking and gradual cooling under the same conditions as above, heating rate: 10 ° C./Hr, soaking temperature: Ac 1 point + 20 ° C., soaking time: 4 hours, cooling rate: 10 ° C./Hr, ultimate cooling temperature: Ar 1 point −10 ° C., third and fourth stage soaking, slow cooling, primary annealing, cold rolling at 40% reduction, bell-shaped batch Using an annealing furnace, in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, soaking temperature: 71
Test annealing was performed after finishing annealing treatment at 0 ° C. and soaking time: 27 hours. 33 high carbon cold rolled steel strips were obtained. A test piece was cut out from each high-carbon cold-rolled steel strip, and Vickers hardness (H) was determined according to the Vickers hardness test method specified in JIS Z 2244.
V) was measured. Table 6 shows the results. No seizure flaw was observed in the high-carbon cold-rolled steel strip after completion of the finish annealing.

【0036】[0036]

【表5】 [Table 5]

【0037】[0037]

【表6】 [Table 6]

【0038】表6に示すとおり、一次焼鈍処理におい
て、第1、第2段均熱、徐冷したのち、さらに、第3段
均熱、徐冷を施したテストNo.32の高炭素冷延鋼帯
は、第1、第2段均熱、徐冷を施したテストNo.31
の高炭素冷延鋼帯に比較し、さらに球状化が促進され、
ビッカース硬度が4ポイント低下してより軟質となって
いる。しかしながら、第1〜第3段均熱、徐冷したの
ち、第4段均熱、徐冷を施したテストNo.33の高炭
素冷延鋼帯は、第3段均熱、徐冷によって球状化がほぼ
100%に近づくため、第4段均熱、徐冷以降の効果は
小さくなり、長時間化のデメリットが大きくなることが
確認できた。
As shown in Table 6, in the primary annealing treatment, test No. 1 was subjected to first and second stage soaking and gradual cooling, followed by third stage soaking and gradual cooling. The high carbon cold rolled steel strip of Test No. 32 was subjected to the first and second stage soaking and slow cooling. 31
Spheroidization is further promoted compared to the high carbon cold rolled steel strip of
The Vickers hardness is reduced by 4 points to make it softer. However, after the first to third stage soaking and gradual cooling, test No. 4 was subjected to the fourth stage soaking and gradual cooling. In the high-carbon cold-rolled steel strip of No. 33, the spheroidization approaches nearly 100% by the third-stage soaking and slow cooling, so the effect after the fourth-stage soaking and slow cooling is reduced, and the disadvantage of prolonged time is reduced. It was confirmed that it became larger.

【0039】実施例3 鋼中の化学成分の影響を調査すべく、表7に示す鋼N
o.6〜20の各高炭素鋼片を、仕上板厚:2mm、仕
上温度:840℃、巻取温度590℃の熱延条件で熱間
圧延して高炭素熱延鋼帯となし、各高炭素熱延鋼帯を酸
洗、脱スケール処理したのち、ベル型バッチ焼鈍炉を用
い、水素99容量%、残部窒素からなる雰囲気ガス中
で、加熱速度:50℃/Hr、均熱温度:Ac1点+2
0℃、均熱時間:2時間、冷却速度:30℃/Hr、冷
却到達温度:Ar1点−20℃の第1段の均熱、徐冷
後、加熱速度:10℃/Hr、均熱温度:Ac1点+2
0℃、均熱時間:2時間、冷却速度:10℃/Hr、冷
却到達温度:Ar1点−10℃の第2段均熱、徐冷を行
って一次焼鈍処理を行った。ついで、圧下率40%で冷
間圧延したのち、ベル型バッチ焼鈍炉を用い、水素99
容量%、残部窒素からなる雰囲気ガス中で、均熱温度:
690℃、均熱時間:2時間の仕上焼鈍処理を施して各
高炭素冷延鋼帯を得た。得られた各高炭素冷延鋼帯から
試験片を採取し、実施例1と同様にJIS Z 224
4に規定のビッカース硬さ試験方法に準じてビッカース
硬さを測定した。その結果を表7に示す。なお、仕上焼
鈍完了後の高炭素冷延鋼帯には、焼付き疵の発生は見ら
れなかった。
Example 3 In order to investigate the influence of chemical components in steel, steel N shown in Table 7 was used.
o. Each high carbon steel slab of 6 to 20 was hot rolled under hot rolling conditions of a finishing plate thickness: 2 mm, a finishing temperature: 840 ° C., and a winding temperature of 590 ° C. to form a high carbon hot rolled steel strip. After pickling and descaling the hot-rolled steel strip, using a bell-type batch annealing furnace, in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, heating rate: 50 ° C./Hr, soaking temperature: Ac 1 point +2
0 ° C., soaking time: 2 hours, cooling rate: 30 ° C./Hr, cooling ultimate temperature: Ar 1 point, first stage soaking at −20 ° C., after slow cooling, heating rate: 10 ° C./Hr, soaking temperature : Ac 1 point + 2
Primary annealing treatment was performed by performing a second-stage soaking at 0 ° C., soaking time: 2 hours, a cooling rate: 10 ° C./Hr, an ultimate cooling temperature: Ar 1 point−10 ° C., and slow cooling. Then, after cold rolling at a reduction of 40%, a bell-type batch annealing furnace was
In an atmosphere gas consisting of volume% and the balance nitrogen, soaking temperature:
Each high carbon cold rolled steel strip was obtained by performing a finish annealing treatment at 690 ° C. and soaking time: 2 hours. A test piece was collected from each of the obtained high-carbon cold-rolled steel strips and subjected to JIS Z 224 in the same manner as in Example 1.
Vickers hardness was measured according to the Vickers hardness test method specified in 4. Table 7 shows the results. No seizure flaw was observed in the high-carbon cold-rolled steel strip after completion of the finish annealing.

【0040】[0040]

【表7】 [Table 7]

【0041】表7に示すとおり、本発明の範囲外である
鋼No.11、15の高炭素冷延鋼帯は、それぞれS
i、Mnの添加量が本発明範囲の上限を超えるため、他
の本発明に該当する鋼帯に比べ硬質である。また、鋼N
o.8、12の高炭素冷延鋼帯は、Si、Mn本発明範
囲の下限を下回るため、軟質となっている。しかし、鋼
No.8の高炭素冷延鋼帯では、Si含有率が低いた
め、焼入れ、焼戻し後の疲労強度において酸化物の増大
による特性劣化の危険性を伴う。また、鋼No.12の
高炭素冷延鋼帯では、Mn含有率が低いため、焼入れ性
が低下し、、焼入れ、焼戻し後、十分な硬度が得られな
い危険性がある。
As shown in Table 7, the steel Nos. 11 and 15 high carbon cold rolled steel strips
Since the addition amounts of i and Mn exceed the upper limit of the range of the present invention, the steel strip is harder than other steel strips corresponding to the present invention. In addition, steel N
o. The high-carbon cold-rolled steel strips Nos. 8 and 12 are soft because they are below the lower limits of the present invention. However, steel No. In the high-carbon cold-rolled steel strip No. 8, since the Si content is low, the fatigue strength after quenching and tempering involves the risk of property deterioration due to an increase in oxides. In addition, steel No. In the high carbon cold rolled steel strip No. 12, since the Mn content is low, the quenchability is reduced, and there is a risk that sufficient hardness cannot be obtained after quenching and tempering.

【0042】実施例4 一次焼鈍処理後の冷間圧延における圧下率と、冷間圧延
後の仕上圧延における均熱温度の影響を調査するため、
前記表7に示す鋼No.13の高炭素鋼片を、仕上板
厚:2mm、仕上温度:840℃、巻取温度590℃の
熱延条件で熱間圧延して高炭素熱延鋼帯となし、酸洗、
脱スケール処理したのち、ベル型バッチ焼鈍炉を用い、
水素99容量%、残部窒素からなる雰囲気ガス中で、加
熱速度:50℃/Hr、均熱温度:Ac1点+30℃、
均熱時間:4時間、冷却速度:40℃/Hr、冷却到達
温度:Ar1点の第1段の均熱、徐冷後、加熱速度:1
0℃/Hr、均熱温度:Ac1点+20℃、均熱時間:
4時間、冷却速度:10℃/Hr、冷却到達温度:Ar
1点の第2段均熱、徐冷を行って一次焼鈍処理を施し
た。次いで圧下率を表8に示すとおり20〜87%の範
囲で変化させて冷間圧延したのち、ベル型バッチ焼鈍炉
を用い、水素99容量%、残部窒素からなる雰囲気ガス
中で、仕上焼鈍温度620〜720℃、仕上焼鈍時間2
1時間の仕上焼鈍を施し、高炭素冷延鋼帯を得た。各高
炭素冷延鋼帯から試験片を採取し、JISZ 2241
に規定の金属材料引張試験方法に準じて引張試験を行
い、降伏点(YP)、引張強さ(TS)、伸び(EL)
を測定すると共に、実施例1と同様にJIS Z 22
44に規定のビッカース硬さ試験方法に準じてビッカー
ス硬さ(HV)を測定した。その結果を表8に示す。な
お、仕上焼鈍完了後の高炭素冷延鋼帯には、焼付き疵の
発生は見られなかった。
Example 4 In order to investigate the effects of the rolling reduction in the cold rolling after the primary annealing and the soaking temperature in the finish rolling after the cold rolling,
The steel No. shown in Table 7 above. No. 13 high-carbon steel slab was hot-rolled under hot-rolling conditions of a finishing plate thickness: 2 mm, a finishing temperature: 840 ° C., and a winding temperature of 590 ° C. to form a high-carbon hot-rolled steel strip, and pickling.
After descaling, using a bell-type batch annealing furnace,
In an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, heating rate: 50 ° C./Hr, soaking temperature: Ac 1 point + 30 ° C.
Soaking time: 4 hours, Cooling rate: 40 ° C./Hr, Cooling attainment temperature: Heating of the first stage at Ar 1 point, after slow cooling, Heating rate: 1
0 ° C / Hr, soaking temperature: Ac 1 point + 20 ° C, soaking time:
4 hours, cooling rate: 10 ° C./Hr, ultimate cooling temperature: Ar
One-point second-stage soaking and slow cooling were performed to perform a primary annealing treatment. Next, after the cold rolling was performed with the reduction ratio changed in the range of 20 to 87% as shown in Table 8, the finish annealing temperature was determined in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen using a bell-type batch annealing furnace. 620-720 ° C, finish annealing time 2
A one-hour finish annealing was performed to obtain a high carbon cold-rolled steel strip. A test piece was collected from each high-carbon cold-rolled steel strip and subjected to JISZ2241.
A tensile test is performed in accordance with the specified metal material tensile test method, and the yield point (YP), tensile strength (TS), and elongation (EL)
Along with JIS Z 22 as in Example 1.
Vickers hardness (HV) was measured according to the Vickers hardness test method specified in 44. Table 8 shows the results. No seizure flaw was observed in the high-carbon cold-rolled steel strip after completion of the finish annealing.

【0043】[0043]

【表8】 [Table 8]

【0044】表8に示すとおり、冷間圧延における圧下
率が20%のテストNo.35からも明らかなとおり、
圧下率が20%未満では結晶粒が異常粒成長を生じるた
め、伸びが低下することを示している。また、冷間圧延
における圧下率が85%を超えるテストNo.40で
は、冷間圧延中に破断を生じた。このことから、冷間圧
延における圧下率は、20〜85%に限定される。さら
に、仕上焼鈍温度が620℃のテストNo.41では、
硬度が高く、伸びも大幅に低くなっている。このことか
ら、仕上焼鈍温度は、630℃以上が必要である。これ
に対し、この発明の条件を満足させるテストNo.36
〜39、42〜44では、硬度HV、伸び共に満足すべ
きものが得られている。
As shown in Table 8, in test No. 2 in which the rolling reduction in cold rolling was 20%. As is clear from 35,
When the rolling reduction is less than 20%, the crystal grains cause abnormal grain growth, which indicates that the elongation is reduced. Further, in test No. 1 in which the rolling reduction in cold rolling exceeded 85%. In No. 40, fracture occurred during cold rolling. For this reason, the rolling reduction in cold rolling is limited to 20 to 85%. Further, in the test No. having a finish annealing temperature of 620 ° C. In 41,
Hardness is high and elongation is significantly lower. For this reason, the finish annealing temperature needs to be 630 ° C. or higher. On the other hand, in the test No. satisfying the conditions of the present invention. 36
~ 39, 42-44, satisfactory hardness HV and elongation were obtained.

【0045】実施例5 前記実施例3の表7中の鋼No.18、20の高炭素鋼
片を、仕上板厚:2mm、仕上温度:840℃、巻取温
度590℃の熱延条件で熱間圧延して高炭素熱延鋼帯と
なし、酸洗、脱スケール処理したのち、ベル型バッチ焼
鈍炉を用い、水素99容量%、残部窒素からなる雰囲気
ガス中で、加熱速度:50℃/Hr、均熱温度:Ac1
点+30℃、均熱時間:4時間、冷却速度:40℃/H
r、冷却到達温度:Ar1点の第1段の均熱、徐冷後、
加熱速度:10℃/Hr、均熱温度:Ac1点+20
℃、均熱時間:4時間、冷却速度:10℃/Hr、冷却
到達温度:Ar1点の第2段均熱、徐冷を行って一次焼
鈍処理を施した。次いで表9に示すとおり、鋼No.1
8の高炭素熱延鋼帯は、圧下率75%で1回目の冷間圧
延を施して板厚0.5mmとしたのち、ベル型バッチ焼
鈍炉を用い、水素99容量%、残部窒素からなる雰囲気
ガス中で、表10に示すとおり、焼鈍温度:690℃、
焼鈍時間:20時間で1回目の仕上焼鈍を行い、表9に
示すとおり、圧下率40%で2回目の冷間圧延を施して
板厚0.3mmとなし、ベル型バッチ焼鈍炉を用い、水
素99容量%、残部窒素からなる雰囲気ガス中で、表1
0に示すとおり、焼鈍温度:690℃、焼鈍時間:20
時間で2回目の仕上焼鈍を行って高炭素冷延鋼帯を得
た。また、鋼No.20の高炭素熱延鋼帯は、表9に示
すとおり、圧下率60%で1回目の冷間圧延を施して板
厚0.8mmとしたのち、ベル型バッチ焼鈍炉を用い、
水素99容量%、残部窒素からなる雰囲気ガス中で、表
10に示すとおり、焼鈍温度:690℃、焼鈍時間:2
0時間で1回目の仕上焼鈍を行い、表9に示すとおり、
圧下率38%で2回目の冷間圧延を施して板厚0.5m
mとなし、ベル型バッチ焼鈍炉を用い、水素99容量
%、残部窒素からなる雰囲気ガス中で、表10に示すと
おり、焼鈍温度:670℃、焼鈍時間:20時間で2回
目の仕上焼鈍を行い、表9に示すとおり、圧下率40%
で3回目の冷間圧延を施して板厚0.3mmとなし、ベ
ル型バッチ焼鈍炉を用い、水素99容量%、残部窒素か
らなる雰囲気ガス中で、表10に示すとおり、焼鈍温
度:660℃、焼鈍時間:20時間で3回目の仕上焼鈍
を行って高炭素冷延鋼帯を得た。得られた各高炭素冷延
鋼帯から試験片を採取し、実施例1と同様にJIS Z
2244に規定のビッカース硬さ試験方法に準じてビッ
カース硬さ(HV)を測定した。その結果を表9に示
す。なお、仕上焼鈍完了後の高炭素冷延鋼帯には、焼付
き疵の発生は見られなかった。
Example 5 Steel No. 3 in Table 7 of Example 3 was used. The high carbon steel slabs of Nos. 18 and 20 are hot-rolled under hot rolling conditions of a finishing plate thickness: 2 mm, a finishing temperature: 840 ° C., and a winding temperature of 590 ° C. to form a high-carbon hot-rolled steel strip, pickling and removing. After the scale treatment, using a bell-type batch annealing furnace, in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, heating rate: 50 ° C./Hr, soaking temperature: Ac1
Point + 30 ° C, soaking time: 4 hours, cooling rate: 40 ° C / H
r, ultimate cooling temperature: soaking at the first stage of Ar1 point, after slow cooling,
Heating rate: 10 ° C / Hr, soaking temperature: Ac 1 point +20
C., soaking time: 4 hours, cooling rate: 10 ° C./Hr, cooling ultimate temperature: second-stage soaking at one Ar point, and slow cooling to perform a primary annealing treatment. Next, as shown in Table 9, the steel No. 1
The high-carbon hot-rolled steel strip of No. 8 was subjected to the first cold rolling at a reduction of 75% to a sheet thickness of 0.5 mm, and thereafter was composed of 99% by volume of hydrogen and the balance of nitrogen using a bell-type batch annealing furnace. In an atmosphere gas, as shown in Table 10, annealing temperature: 690 ° C.
Annealing time: The first finish annealing was performed for 20 hours, and as shown in Table 9, the second cold rolling was performed at a rolling reduction of 40% to a sheet thickness of 0.3 mm, and a bell-type batch annealing furnace was used. In an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, Table 1
0, annealing temperature: 690 ° C., annealing time: 20
The second finish annealing was performed for a long time to obtain a high-carbon cold-rolled steel strip. In addition, steel No. As shown in Table 9, the high-carbon hot-rolled steel strip of No. 20 was subjected to the first cold rolling at a rolling reduction of 60% to a sheet thickness of 0.8 mm, and then a bell-type batch annealing furnace was used.
In an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, as shown in Table 10, annealing temperature: 690 ° C., annealing time: 2
Perform the first finish annealing in 0 hours, as shown in Table 9,
The second cold rolling was performed at a rolling reduction of 38%, and the sheet thickness was 0.5 m.
m, and in a bell-type batch annealing furnace, in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, as shown in Table 10, annealing temperature: 670 ° C., annealing time: 20 hours, the second finish annealing was performed. Then, as shown in Table 9, the rolling reduction was 40%.
The third cold rolling was performed to obtain a sheet thickness of 0.3 mm, and using a bell-type batch annealing furnace, in an atmosphere gas consisting of 99% by volume of hydrogen and the balance of nitrogen, as shown in Table 10, annealing temperature: 660 C., annealing time: 20 hours, a third finish annealing was performed to obtain a high carbon cold rolled steel strip. A test piece was collected from each of the obtained high-carbon cold-rolled steel strips and was subjected to JIS Z in the same manner as in Example 1.
Vickers hardness (HV) was measured according to the Vickers hardness test method specified in 2244. Table 9 shows the results. No seizure flaw was observed in the high-carbon cold-rolled steel strip after completion of the finish annealing.

【0046】[0046]

【表9】 [Table 9]

【0047】[0047]

【表10】 [Table 10]

【0048】表9、10に示すとおり、冷間圧延ならび
に仕上焼鈍を繰り返すことによって、板厚の薄い高炭素
冷延鋼帯の製造が可能である。
As shown in Tables 9 and 10, by repeating cold rolling and finish annealing, it is possible to produce a high carbon cold rolled steel strip having a small thickness.

【0049】[0049]

【発明の効果】本発明の請求項1の高炭素冷延鋼帯の製
造方法は、高炭素熱延鋼帯を75容量%以上の水素と残
部が実質的に窒素および不可避的不純物からなるガス雰
囲気のベル型バッチ焼鈍炉を用い、20〜100℃/H
rの加熱速度でAc1点〜Ac1点+50℃に加熱して
8Hr以下均熱保持後、50℃/Hr以下の冷却速度で
Ar1点以下まで冷却する均熱、徐冷を2回繰り返すこ
とによって、セメンタイトの球状化率が向上し、軟質な
熱延鋼帯が製造可能となる。また、圧下率20%以上8
5%以下で冷間圧延を行い、次いでベル型バッチ焼鈍炉
で630℃〜Ac1点直下で仕上焼鈍を行うことによっ
て、球状化の完了した軟質な熱延鋼帯を所定板厚とな
し、冷間圧延歪を開放して結晶粒が成長し、軟質な高炭
素冷延鋼帯を得ることができる。
According to the method for producing a high-carbon cold-rolled steel strip according to the first aspect of the present invention, a high-carbon hot-rolled steel strip is produced by using a gas comprising 75% by volume or more of hydrogen and the balance substantially consisting of nitrogen and inevitable impurities. Using a bell-type batch annealing furnace in an atmosphere, 20 to 100 ° C / H
By heating to the Ac1 point to the Ac1 point + 50 ° C. at a heating rate of r and maintaining a soaking temperature of 8 Hr or less, cooling at a cooling rate of 50 ° C./Hr or less to Ar 1 point or less is repeated twice. The spheroidization rate of cementite is improved, and a soft hot-rolled steel strip can be manufactured. In addition, reduction rate 20% or more 8
By performing cold rolling at 5% or less, and then performing finish annealing in a bell-type batch annealing furnace at 630 ° C. to just below the Ac1 point, the spheroidized soft hot-rolled steel strip is reduced to a predetermined thickness. The crystal grains grow by releasing the strain during rolling, and a soft high-carbon cold-rolled steel strip can be obtained.

【0050】本発明の請求項2の高炭素冷延鋼帯の製造
方法は、高炭素熱延鋼帯を75容量%以上の水素と残部
が実質的に窒素および不可避的不純物からなるガス雰囲
気のベル型バッチ焼鈍炉を用い、20〜100℃/Hr
の加熱速度でAc1点〜Ac1点+50℃に加熱して8
Hr以下均熱保持後、50℃/Hr以下の冷却速度でA
r1点以下まで冷却する均熱、徐冷を3回繰り返すこと
によって、セメンタイトの球状化率が更に向上してほぼ
100%に近づき、より軟質な熱延鋼帯を製造可能とな
る。また、圧下率20%以上85%以下で冷間圧延を行
い、次いでベル型バッチ焼鈍炉で630℃〜Ac1点直
下で仕上焼鈍を行うことによって、球状化の完了した軟
質な熱延鋼帯を所定板厚となし、冷間圧延歪を開放して
結晶粒が成長し、軟質な高炭素冷延鋼帯を得ることがで
きる。
The method for producing a high-carbon cold-rolled steel strip according to a second aspect of the present invention is characterized in that the high-carbon hot-rolled steel strip is formed in a gas atmosphere comprising 75% by volume or more of hydrogen and the balance substantially consisting of nitrogen and unavoidable impurities. Using a bell-type batch annealing furnace, 20 to 100 ° C / Hr
Heating from Ac1 point to Ac1 point + 50 ° C at a heating rate of 8
After holding at a soaking temperature of less than Hr, A
By repeating the soaking and slow cooling three times at or below the r1 point, the spheroidization rate of cementite is further improved to approach almost 100%, and a softer hot-rolled steel strip can be manufactured. Further, by performing cold rolling at a reduction ratio of 20% or more and 85% or less, and then performing finish annealing in a bell-type batch annealing furnace at 630 ° C. to just below Ac1 point, a soft hot-rolled steel strip having completed spheroidization can be obtained. It is possible to obtain a soft high-carbon cold-rolled steel strip having a predetermined thickness, releasing the cold rolling strain and growing crystal grains.

【0051】本発明の請求項3の高炭素冷延鋼帯の製造
方法は、高炭素熱延鋼帯を一次焼鈍処理した後、圧下率
20%以上85%以下の冷間圧延と、ベル型バッチ焼鈍
炉での630℃〜Ac1点直下の仕上焼鈍とを2回以上
繰り返すことによって、軟質な板厚0.3mm以下の極
薄高炭素冷延鋼帯を得ることができる。
According to a third aspect of the present invention, there is provided a method for producing a high-carbon cold-rolled steel strip, comprising: performing a primary annealing treatment on the high-carbon hot-rolled steel strip; By repeating the finish annealing in a batch annealing furnace at 630 ° C. to just below the Ac1 point twice or more, a soft ultra-thin high-carbon cold-rolled steel strip having a thickness of 0.3 mm or less can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】温度400℃、600℃、800℃における水
素濃度と熱伝導率との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between hydrogen concentration and thermal conductivity at temperatures of 400 ° C., 600 ° C., and 800 ° C.

【図2】水素:75%、残部窒素からなる雰囲気ガスと
水素5%、残部窒素からなる雰囲気ガスの雰囲気温度で
の均熱時間とコイル内温度差との関係を示すグラフであ
る。
FIG. 2 is a graph showing a relationship between a soaking time at an atmospheric temperature of an atmosphere gas consisting of 75% of hydrogen and the balance of nitrogen and an atmosphere gas consisting of 5% of hydrogen and a balance of nitrogen, and a temperature difference in a coil.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C21D 9/663 C21D 9/663 A C22C 38/00 301 C22C 38/00 301S 38/04 38/04 ──────────────────────────────────────────────────続 き Continuation of the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical display location C21D 9/663 C21D 9/663 A C22C 38/00 301 C22C 38/00 301S 38/04 38/04

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 C:0.3〜1.3%、Si:0.03
〜0.35%、Mn:0.20〜1.50%を含有し、
残部が実質的にFeおよび不可避的不純物からなる高炭
素鋼片を、熱間圧延、酸洗、脱スケール処理したのち、
75容量%以上の水素と残部が実質的に窒素および不可
避的不純物からなるガス雰囲気のベル型バッチ焼鈍炉を
用い、20〜100℃/Hrの加熱速度でAc1点〜A
c1点+50℃に加熱して8Hr以下均熱保持後、50
℃/Hr以下の冷却速度でAr1点以下まで冷却する第
1段の均熱、徐冷と、20〜100℃/Hrの加熱速度
でAc1点〜Ac1点+50℃に加熱して8Hr以下均
熱保持後、50℃/Hr以下の冷却速度でAr1点以下
まで冷却する第2段の均熱、徐冷を行い、以降は20〜
100℃/Hrで室温まで冷却する一次焼鈍処理を施し
た後、圧下率20%以上85%以下で冷間圧延を行い、
次いでベル型バッチ焼鈍炉で630℃〜Ac1点直下で
仕上焼鈍を行うことを特徴とする高炭素冷延鋼帯の製造
方法。
1. C: 0.3-1.3%, Si: 0.03
0.30.35%, Mn: 0.20 to 1.50%,
After the high-carbon steel slab substantially consisting of Fe and unavoidable impurities is subjected to hot rolling, pickling, and descaling,
Ac 1 point to A at a heating rate of 20 to 100 ° C./Hr using a bell-type batch annealing furnace in a gas atmosphere consisting of 75% by volume or more of hydrogen and the balance substantially consisting of nitrogen and inevitable impurities.
c1 point + 50 ° C after heating to 8Hr or less
1st stage soaking, cooling down to Ar 1 point or less at a cooling rate of not more than ° C / Hr, and heating to Ac1 point to Ac1 point + 50 ° C at a heating rate of 20 to 100 ° C / Hr and soaking for 8Hr or less After the holding, a second-stage soaking and gradual cooling is performed at a cooling rate of 50 ° C./Hr or less to a point of Ar or less.
After performing a primary annealing treatment of cooling to room temperature at 100 ° C./Hr, cold rolling is performed at a rolling reduction of 20% or more and 85% or less,
Then, a finish annealing is performed in a bell-type batch annealing furnace at a temperature of 630 [deg.] C. to just below the Ac1 point.
【請求項2】 C:0.3〜1.3%、Si:0.03
〜0.35%、Mn:0.20〜1.50%を含有し、
残部が実質的にFeおよび不可避的不純物からなる高炭
素鋼片を、熱間圧延、酸洗、脱スケール処理したのち、
75容量%以上の水素と残部が実質的に窒素および不可
避的不純物からなるガス雰囲気のベル型バッチ焼鈍炉を
用い、20〜100℃/Hrの加熱速度でAc1点〜A
c1点+50℃に加熱して8Hr以下均熱保持後、50
℃/Hr以下の冷却速度でAr1点以下まで冷却する第
1段の均熱、徐冷と、20〜100℃/Hrの加熱速度
でAc1点〜Ac1点+50℃に加熱して8Hr以下均
熱保持後、50℃/Hr以下の冷却速度でAr1点以下
まで冷却する第2段の均熱、徐冷と、20〜100℃/
Hrの加熱速度でAc1点〜Ac1点+50℃に加熱し
て8Hr以下均熱保持後、50℃/Hr以下の冷却速度
でAr1点以下まで冷却する第3段の均熱、徐冷とを行
い、以降は20〜100℃/Hrで室温まで冷却する一
次焼鈍処理を施した後、圧下率20%以上85%以下で
冷間圧延を行い、ベル型バッチ焼鈍炉で630℃〜Ac
1点直下で仕上焼鈍を行うことを特徴とする高炭素冷延
鋼帯の製造方法。
2. C: 0.3-1.3%, Si: 0.03
0.30.35%, Mn: 0.20 to 1.50%,
After the high-carbon steel slab substantially consisting of Fe and unavoidable impurities is subjected to hot rolling, pickling, and descaling,
Ac 1 point to A at a heating rate of 20 to 100 ° C./Hr using a bell-type batch annealing furnace in a gas atmosphere consisting of 75% by volume or more of hydrogen and the balance substantially consisting of nitrogen and inevitable impurities.
c1 point + 50 ° C after heating to 8Hr or less
1st stage soaking, cooling down to Ar 1 point or less at a cooling rate of not more than ° C / Hr, and heating to Ac1 point to Ac1 point + 50 ° C at a heating rate of 20 to 100 ° C / Hr and soaking for 8Hr or less After the holding, a second stage of soaking and cooling at a cooling rate of 50 ° C./Hr or less to an Ar 1 point or less, and 20 to 100 ° C./hr
After heating from Ac1 point to Ac1 point + 50 ° C. at a heating rate of Hr and maintaining a soaking temperature of 8 Hr or less, a third-stage soaking and gradual cooling in which the cooling rate is 50 ° C./Hr or less to 1 Ar or less is performed. After that, after performing a primary annealing treatment of cooling to room temperature at 20 to 100 ° C./Hr, cold rolling is performed at a rolling reduction of 20% or more and 85% or less, and 630 ° C. to Ac in a bell-type batch annealing furnace.
A method for producing a high-carbon cold-rolled steel strip, wherein finish annealing is performed immediately below one point.
【請求項3】 一次焼鈍処理した後、圧下率20%以上
85%以下の冷間圧延と、ベル型バッチ焼鈍炉での63
0℃〜Ac1点直下の仕上焼鈍とを2回以上繰り返すこ
とを特徴とする請求項1および2記載の高炭素冷延鋼帯
の製造方法。
3. After the primary annealing treatment, cold rolling with a rolling reduction of 20% or more and 85% or less and 63% in a bell-type batch annealing furnace.
3. The method for producing a high-carbon cold-rolled steel strip according to claim 1, wherein the step of finishing annealing at 0 [deg.] C. to just below the Ac1 point is repeated twice or more.
JP23855996A 1996-08-20 1996-08-20 Production of high carbon cold rolled steel strip Pending JPH1060540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23855996A JPH1060540A (en) 1996-08-20 1996-08-20 Production of high carbon cold rolled steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23855996A JPH1060540A (en) 1996-08-20 1996-08-20 Production of high carbon cold rolled steel strip

Publications (1)

Publication Number Publication Date
JPH1060540A true JPH1060540A (en) 1998-03-03

Family

ID=17032045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23855996A Pending JPH1060540A (en) 1996-08-20 1996-08-20 Production of high carbon cold rolled steel strip

Country Status (1)

Country Link
JP (1) JPH1060540A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002339054A (en) * 2001-05-17 2002-11-27 Daido Steel Co Ltd High pressure-resistant member and manufacturing method
US6673171B2 (en) 2000-09-01 2004-01-06 United States Steel Corporation Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
CZ303862B6 (en) * 2011-12-05 2013-05-29 Pilsen Steel S.R.O. Method of primary heat treatment of formed half-finished products
JP2014070235A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Production method of very thin cold rolled steel sheet
JP2014177691A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability and grindability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6673171B2 (en) 2000-09-01 2004-01-06 United States Steel Corporation Medium carbon steel sheet and strip having enhanced uniform elongation and method for production thereof
JP2002339054A (en) * 2001-05-17 2002-11-27 Daido Steel Co Ltd High pressure-resistant member and manufacturing method
CZ303862B6 (en) * 2011-12-05 2013-05-29 Pilsen Steel S.R.O. Method of primary heat treatment of formed half-finished products
JP2014070235A (en) * 2012-09-28 2014-04-21 Jfe Steel Corp Production method of very thin cold rolled steel sheet
JP2014177691A (en) * 2013-03-15 2014-09-25 Kobe Steel Ltd Method of producing steel material excellent in cold workability and grindability

Similar Documents

Publication Publication Date Title
JP5050433B2 (en) Method for producing extremely soft high carbon hot-rolled steel sheet
JP2007291495A (en) Hot-rolled ultrasoft high-carbon steel plate and process for production thereof
JP2008069452A (en) Hot-rolled high-carbon steel sheet and process for production of the same
WO2007000954A1 (en) Process for manufacture of cold-rolled high-carbon steel plate
JP2017179596A (en) High carbon steel sheet and manufacturing method therefor
JP3879459B2 (en) Manufacturing method of high hardenability high carbon hot rolled steel sheet
JP3125978B2 (en) Method for producing high carbon steel strip with excellent workability
JP3506033B2 (en) Method of manufacturing hot-rolled steel bars or wires
JP6569845B1 (en) High carbon hot rolled steel sheet and manufacturing method thereof
JP3598868B2 (en) Manufacturing method of hot rolled wire rod
JP3468048B2 (en) Manufacturing method of high carbon cold rolled steel sheet with excellent formability
JPH10204540A (en) Production of cold rolled high-carbon steel strip
JP3266902B2 (en) Manufacturing method of high carbon cold rolled steel strip
JPH1060540A (en) Production of high carbon cold rolled steel strip
JPS60114517A (en) Production of steel wire rod which permits omission of soft annealing treatment
JP3909939B2 (en) Manufacturing method for medium and high carbon steel sheets with excellent stretch flangeability
JPH09324212A (en) Production of hot rolled high carbon steel strip excellent in hardenability and cold workability
WO2018155254A1 (en) Hot-rolled high carbon steel sheet and method for producing same
JPH1088237A (en) Production of cold rolled high carbon steel strip
JP2852810B2 (en) Manufacturing method of high carbon cold rolled steel strip with excellent workability
JPH05171288A (en) Production of high carbon steel sheet having superior formability
JP2003073740A (en) Method for manufacturing high-carbon cold rolled steel sheet with high hardenability
JP2985730B2 (en) Manufacturing method of high carbon cold rolled steel strip
JPH01132739A (en) Steel sheet for heat treatment
JP2707096B2 (en) Direct softening heat treatment of high carbon steel