JP3508943B2 - Aluminum forging die steel - Google Patents

Aluminum forging die steel

Info

Publication number
JP3508943B2
JP3508943B2 JP01791094A JP1791094A JP3508943B2 JP 3508943 B2 JP3508943 B2 JP 3508943B2 JP 01791094 A JP01791094 A JP 01791094A JP 1791094 A JP1791094 A JP 1791094A JP 3508943 B2 JP3508943 B2 JP 3508943B2
Authority
JP
Japan
Prior art keywords
steel
less
toughness
aluminum
forging die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP01791094A
Other languages
Japanese (ja)
Other versions
JPH07207414A (en
Inventor
邦親 久保田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP01791094A priority Critical patent/JP3508943B2/en
Publication of JPH07207414A publication Critical patent/JPH07207414A/en
Application granted granted Critical
Publication of JP3508943B2 publication Critical patent/JP3508943B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Forging (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウムまたはア
ルミニウム合金(以下代表してアルミと記す)の鍛造に
用いられる金型鋼に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold steel used for forging aluminum or an aluminum alloy (hereinafter referred to as "aluminum").

【0002】[0002]

【従来の技術】近年車輛軽量化のニーズの高まりによ
り、高比強度の部品が求められるようになり、アルミの
鍛造部材の適用が広がってきた。アルミの冷間・熱間鍛
造用の金型材としては、比較的小寸法の金型や特殊形状
金型を除いては、従来SKT4・SKD61などが使用
されている。
2. Description of the Related Art In recent years, with the increasing need for vehicle weight reduction, parts with high specific strength have been demanded, and the application of aluminum forged members has spread. As a die material for cold / hot forging of aluminum, SKT4 / SKD61 and the like have been conventionally used except for a die having a relatively small size and a die having a special shape.

【0003】[0003]

【発明が解決しようとする課題】アルミ鍛造は、鉄系熱
間鍛造やアルミダイカスト型に比べ被加工の素材温度が
常温から高くても550℃と低いため、ヒートトラック、
塑性流動、摩耗のような型材の昇熱に起因する損耗はお
こらず、金型凹部底のR部で応力集中が発生するコーナ
・クラックにより廃却にいたる。そのため、型材の昇熱
に起因する損耗の抑制を主眼にした従来の熱間工具鋼で
は、耐コーナークラック性という面で十分効果を発揮で
きるものとはいえなかった。
Since aluminum forging has a low material temperature of 550 ° C. even if the material temperature of the workpiece is higher than room temperature, it is lower than that of iron-based hot forging or aluminum die casting mold.
There is no wear such as plastic flow or abrasion caused by the heat rise of the mold material, and it is scrapped due to a corner crack where stress concentration occurs at the R portion of the bottom of the mold recess. Therefore, it cannot be said that the conventional hot work tool steel, which mainly aims to suppress the wear due to the temperature rise of the die material, can sufficiently exhibit the effect of corner crack resistance.

【0004】フェライト・パーライト鋼、マルテンサイ
ト系鋼など一般の熱間工具鋼には100℃〜200℃付近に延
性脆性遷移温度(以下、単に遷移温度という)があること
は周知のとおりである。アルミ鍛造においては、特に被
加工素材の温度が低く、鍛造作業中に型材の自然昇温が
おこり難い大寸法金型では遷移温度以下で衝撃を受ける
ため、特に型材の硬さが46HRC以上の場合は靭性低下に
伴う疲労寿命の低下が顕著になる。本発明は、比較的低
温側で使用され、高硬度でありながら高靭性を有し、疲
労寿命の高いアルミ鍛造用鋼を提供することを目的とす
る。
It is well known that general hot work tool steels such as ferritic / pearlite steels and martensitic steels have a ductile brittle transition temperature (hereinafter simply referred to as transition temperature) in the vicinity of 100 ° C to 200 ° C. In aluminum forging, especially when the hardness of the mold material is 46 HRC or more, since the temperature of the material to be processed is low and the large-sized mold that does not easily raise the temperature of the mold material during the forging operation is impacted below the transition temperature. Causes a remarkable decrease in fatigue life due to a decrease in toughness. An object of the present invention is to provide an aluminum forging steel that is used at a relatively low temperature side, has high hardness, high toughness, and has a long fatigue life.

【0005】[0005]

【課題を解決するための手段】先に述べたように、アル
ミ鍛造用型材は比較的低温で鍛造が行なわれるため、金
型の彫込み深さが深く、型底のコーナーR形状の曲率半
径が小さい部分にクラックが発生する。本発明者が多数
の廃却金型を調査した結果、アルミ鍛造用型材の主な廃
却原因はコーナークラックの発生が低サイクル疲労とし
て分類される疲労破壊であることを見いだした。疲労破
壊を防止する第1の手段は、高硬度化することである
が、例えば圧縮応力を受けるパンチ型などは60HRC以上
の高硬度域まで硬さを上げれば上げるほど疲労寿命は向
上する。しかし、一般にコーナーR部を有する金型の場
合、引張の応力集中が作用するため、46HRC以上になる
と、靭性不足によって逆に疲労寿命は低下する。第2の
手段は、高硬度を維持しつつ靭性の向上を図ることであ
るが、一般に熱間工具鋼をアルミ鍛造用として使用する
場合には、特に遷移温度以下の靭性不足が問題になる。
As described above, since the aluminum forging die material is forged at a relatively low temperature, the die engraving depth is deep and the radius of curvature of the corner R shape of the die bottom is large. A crack occurs in a small area. As a result of investigating a large number of waste metal molds by the present inventor, it was found that the main cause of waste of aluminum forging die materials is fatigue fracture in which the occurrence of corner cracks is classified as low cycle fatigue. The first means for preventing fatigue fracture is to increase the hardness. For example, in a punch die that receives a compressive stress, the fatigue life increases as the hardness is increased to a high hardness region of 60 HRC or more. However, in general, in the case of a mold having a corner R portion, tensile stress concentration acts, so at 46HRC or more, the fatigue life is shortened due to insufficient toughness. The second means is to improve toughness while maintaining high hardness, but in general, when hot work tool steel is used for aluminum forging, insufficient toughness particularly below the transition temperature becomes a problem.

【0006】例えば、SKT4に代表される焼入強化型
鋼では、46HRC以上を得ようとすると、残留オーステナ
イトの分解により新たに生成したマルテンサイトの焼戻
しが完全でないため、靭性が低くなる。また、SKD6
1に代表される析出強化型鋼は、積極的な2次硬化をね
らうため、焼戻し温度が550℃以上でも46HRC以上の硬さ
が得られるので、残留オーステナイトの分解が進んで内
部歪の少ない安定した組織となり靭性が向上する。しか
し、これらの析出強化型鋼は、焼戻し温度が550〜600℃
間に存在するピーク硬さ(55HRC前後)付近でMC,M2
C型の微細炭化物が高密度に析出し、その影響はMC,
2C型炭化物が分解して完全にM73,M236型炭化
物になる46HRC程度の硬度域まで及ぶ。そのため、さら
に靭性を高めることができない問題があった。本発明者
が、特に遷移温度以下の硬さと靭性を共に高める方法に
ついて検討したところ、炭化物分布密度の制御にSi,
Crの含有量の関与が極めて大きく、かつSi量はCr量
によって制御する必要があることがわかった。
[0006] For example, in the case of a quench-hardening type steel represented by SKT4, if it is attempted to obtain 46HRC or more, the martensite newly formed by decomposition of retained austenite is not completely tempered, so that the toughness becomes low. Also, SKD6
Precipitation-strengthened steels represented by No. 1 aim for positive secondary hardening, so that a hardness of 46HRC or higher can be obtained even at a tempering temperature of 550 ° C or higher, so the decomposition of retained austenite proceeds and the internal strain is stable with little It becomes a structure and toughness is improved. However, these precipitation-strengthened steels have tempering temperatures of 550-600 ° C.
MC, M 2 near the peak hardness (around 55HRC) existing between
C-type fine carbide precipitates at high density, and its influence is MC,
It extends to a hardness region of about 46 HRC in which M 2 C type carbide is decomposed to become M 7 C 3 , M 23 C 6 type carbide completely. Therefore, there is a problem that the toughness cannot be further increased. The present inventor has studied a method of increasing both hardness and toughness below the transition temperature.
It was found that the involvement of the Cr content is extremely large and that the Si content needs to be controlled by the Cr content.

【0007】ところで、Si含有量を低く限定して合金
鋼の靭性を高める効果については、特開昭60-56055号、
同60-59053号、同61-213348号でも開示されている。し
かし、これらには、本発明で特定した組成範囲でHRC46
以上としたときの疲労特性についての記述はなく、また
Cr量との関係でSi量を限定する記述もない。また、特
開平4-308059号、特願平5-140695号にはSi<(18.7/
Cr)-3.3の関係式が規定されているが、前者はアルミ
鍛造用型材のような低温加工による型材に要求される特
性とSiとCrの関係が明らかでなく、ダイカストや熱間
プレス鍛造のように型材の表面温度が300℃以上を対象
とした熱間工具鋼である。後者も、アルミ押出ダイスへ
の適用に限定した鋼であり、アルミ押出ダイスは通常40
0℃以上に保持して使用することを前提としたものであ
り、いずれも金型使用温度域は、遷移温度以上を対象と
する。
By the way, the effect of enhancing the toughness of alloy steel by limiting the Si content to a low level is described in JP-A-60-56055.
No. 60-59053 and No. 61-213348 are also disclosed. However, these contain HRC46 within the composition range specified in the present invention.
There is no description of the fatigue characteristics in the above case, and no description of limiting the Si content in relation to the Cr content. Further, in Japanese Patent Application Laid-Open No. 4-308059 and Japanese Patent Application No. 5-140695, Si <(18.7 /
Although the relational expression of Cr) -3.3 is specified, the former is not clear about the relationship between Si and Cr, which is the characteristic required for a mold material for low temperature processing such as a mold material for aluminum forging, and it is difficult to understand the relationship between It is a hot work tool steel for which the surface temperature of the mold material is 300 ° C or higher. The latter is also a steel limited to applications in aluminum extrusion dies.
It is premised that the mold is used while being kept at 0 ° C. or higher, and in both cases, the mold use temperature range is intended to be the transition temperature or higher.

【0008】これに対して本発明の金型用鋼は遷移温度
以下の200℃以下という温度で使用する金型を対象と
し、上記のダイカストや熱間プレス鍛造あるいはアルミ
押出とは損耗形態が異なり、型材に要求される特性も相
違する金型を対象とするものである。すなわち本発明
は、靭性の不足が顕著となる延性脆性遷移温度以下の使
用温度域での靭性を向上させるため、Si,Cr量を御
制しアルミ鍛造用金型に必要な200℃以下耐疲労特性の
向上を目的としたものである。
On the other hand, the mold steel of the present invention is intended for a mold used at a temperature of 200 ° C. or lower, which is lower than the transition temperature, and has a different wear pattern from the above die casting, hot press forging or aluminum extrusion. The target is a mold having different characteristics required for the mold material. That is, in order to improve the toughness in the operating temperature range below the ductile brittle transition temperature where the lack of toughness becomes noticeable, the present invention controls the Si and Cr contents and reduces the fatigue resistance to 200 ° C or less required for an aluminum forging die. The purpose is to improve the characteristics.

【0009】本発明は具体的には、金型表面温度が200
℃以下で使用するアルミ鍛造金型用鋼であって、重量%
で、C 0.35%を越え0.60%以下、Si 0.11〜1.50%、
n 1.5%以下、Cr 3.50〜5.65%、WとMoの1種または
2種を1/2W+Moで0.2〜4.0%、V 0.05〜2.0%を含有
し、かつSi,Cr量がSi<(18.7/Cr)-3.3の関係式を満
足し、残部Feおよび不可避的不純物からなり、焼入れ
焼戻し硬さが46HRC以上、かつ常温の衝撃値が4.8kgfm/c
m以上であることを特徴とするアルミ鍛造金型用鋼で
ある。好ましくは、金型表面温度が200℃以下で使用す
るアルミ鍛造金型用鋼であって、重量%で、C 0.35%
を越え0.50%以下、Si 0.11〜1.00%、Mn1.5%以下、C
r 4.35〜5.65%、WとMoの1種または2種を1/2W+M
oで0.5〜3.5%、V 0.2〜1.5%を含有し、かつSi,Cr量
がSi<(18.7/Cr)-3.3の関係式を満足し、残部Feおよ
び不可避的不純物からなり、焼入れ焼戻し硬さが46HRC
以上、かつ常温の衝撃値が4.8kgfm/cm以上であること
を特徴とするアルミ鍛造金型用鋼である。さらに必要に
応じて、Feの一部をNi 1.5%以下、Co 5.0%以下の
範囲で単独または複合して置換することができる。
Specifically, the present invention has a mold surface temperature of 200
Aluminum forging die steel used at temperatures below ℃, weight%
, C more than 0.35% and 0.60% or less , Si 0.11 to 1.50 %, M
n 1.5% or less, Cr 3.50 to 5.65%, W or Mo one or two kinds at 1/2 W + Mo of 0.2 to 4.0%, V 0.05 to 2.0%, and Si and Cr contents Si <(18.7 / Cr) -3.3, the balance consists of Fe and unavoidable impurities, quenching and tempering hardness is 46HRC or more, and impact value at room temperature is 4.8kgfm / c
It is a steel for die forging aluminum characterized by having a size of at least m 2 . Preferably, it is an aluminum forging die steel used at a die surface temperature of 200 ° C. or lower, and has a weight percentage of C 0.35%.
Over 0.50%, Si 0.11-1.00 %, Mn 1.5% or less, C
r 4.35 to 5.65%, 1 or 2 types of W and Mo are 1 / 2W + M
0.5 to 3.5% in V, 0.2 to 1.5% in V, and Si and Cr contents satisfy the relational expression of Si <(18.7 / Cr) -3.3, and the balance Fe and unavoidable impurities make it hardened and tempered. Saga 46 HRC
Above, and the impact value at room temperature is 4.8 kgfm / cm 2 or more, the aluminum forging die steel. Further, if necessary, a part of Fe can be substituted alone or in combination within the range of Ni 1.5% or less and Co 5.0% or less.

【0010】[0010]

【作用】次に本発明の成分範囲の限定理由について述べ
る。Cは、本発明鋼の優れた焼入性、焼戻し硬さ、およ
び高温硬さを維持し、またW、Mo、V、Crなどの炭化
物形成素材と結合して炭化物を形成し、結晶粒の微細化
効果と硬さを与える効果を有する。また、アルミ鍛造金
型用鋼としてCの重要な作用は、耐力を高めてコーナー
R部底の局部的塑性変形を起こりにくくすることであ
る。低すぎると上記の効果が得られず、また多すぎると
過度の炭化物の析出をまねき靭性を低下させるのでCの
範囲を0.35%を越え0.60%以下とする。望ましくは、0.35
%を越え0.50%以下であり、より望ましくは0.35%を越え
0.45%未満である。Siは、本発明鋼の特徴である46HRC
以上の高い硬さで高い靭性値を得るために1.50%以下添
加する。Siの望ましい範囲は1.0%以下である。詳細に
はCr量の説明の欄でまとめて述べる。なお、Siは切削
性を高める効果があり、複雑な金型の場合には0.1%以上
が望ましい。本発明では、0.11%以上とする。
Next, the reasons for limiting the component range of the present invention will be described. C maintains the excellent hardenability, tempering hardness, and high-temperature hardness of the steel of the present invention, and forms a carbide by combining with a carbide forming material such as W, Mo, V, and Cr to form a crystal grain. It has the effect of refining and giving hardness. An important function of C as the aluminum forging die steel is to increase the yield strength and prevent local plastic deformation of the bottom of the corner R portion from occurring. If it is too low, the above effects cannot be obtained, and if it is too high, excessive precipitation of carbides is caused and the toughness is lowered. Therefore, the C range is set to more than 0.35% and 0.60% or less . Desirably 0.35
% And 0.50% or less, more preferably 0.35%
It is less than 0.45%. Si is 46 HRC, which is a characteristic of the steel of the present invention.
In order to obtain a high toughness value with the above high hardness, it is added at 1.50% or less. The desirable range of Si is 1.0% or less. The details will be collectively described in the section for explaining the Cr amount. Si has the effect of improving the machinability, and in the case of a complicated die, 0.1% or more is desirable. In the present invention, it is 0.11% or more.

【0011】Mnは、焼入性を向上させるが、多すぎる
とA1変態点を低下させ、焼なまし硬さを過度に高く
し、被切削性を低下させるので1.50%以下とする。望ま
しいMnの範囲は0.1〜1.50%である。Crは、適正な添加
量の設定により、MCやM2C(特殊)炭化物の生成を
抑制して靭性の低下を防止させるとともに、M73,M
236炭化物の形成を促進させて46HRC以上のピーク硬さ
を得、さらに焼入性の向上にも効果を有するため、3.50
%以上添加する。ただし、Crは本発明鋼のように46HRC
以上の高い硬さに焼入れ焼戻しして使用する用途の場
合、同時に高い靭性値を確保するためにはその含有量を
制限する必要がある。これは以下に述べる作用に基づく
ものである。
Mn improves the hardenability, but if it is too much, it lowers the A 1 transformation point, excessively increases the annealing hardness, and reduces the machinability, so it is set to 1.50% or less. The desirable Mn range is 0.1 to 1.50%. By controlling the proper addition amount of Cr, Cr suppresses the formation of MC and M 2 C (special) carbides and prevents the deterioration of toughness, and at the same time, M 7 C 3 , M
It promotes the formation of 23 C 6 carbides to obtain a peak hardness of 46 HRC or more and also has an effect of improving hardenability.
Add more than%. However, Cr is 46HRC like the steel of the present invention.
In the case of applications where quenching and tempering to a high hardness as described above is used, it is necessary to limit the content in order to secure a high toughness value at the same time. This is based on the operation described below.

【0012】本発明鋼のように46HRC以上の高い硬さに
焼入焼戻しを施して使用される用途である場合には、焼
戻し温度は630℃より低くなるが、この温度域では焼戻
しによって基地中に極く微細に析出する特殊炭化物の分
布密度が極めて大きいので基地の靭性が著しく低下す
る。一方、Cr,Siは特殊炭化物が析出する温度よりも
低い450℃前後の温度で特殊炭化物の析出に先立って析
出するセメンタイト炭化物の析出を抑える作用があるの
で、逆にCr,Siの含有量を抑えることによってセメン
タイト炭化物を適量析出させることができて、基地の靭
性を低下させる特殊炭化物の分布密度を抑えることが可
能となる。このため、Si量は1.00%以下、Cr量は5.65%
以下とするが、CrとSiは上記の作用に複合的に作用す
るため、アルミ鍛造金型用鋼として必要な靭性値を得る
べく、Si<(18.7/Cr)-3.3%の関係式を満たすように添
加する
In the case where the steel of the present invention is used by quenching and tempering to a high hardness of 46 HRC or more, the tempering temperature is lower than 630 ° C. Since the distribution density of special carbides that precipitate extremely finely is extremely large, the toughness of the matrix is significantly reduced. On the other hand, Cr and Si have the effect of suppressing the precipitation of cementite carbide that precipitates prior to the precipitation of special carbides at temperatures around 450 ° C, which is lower than the temperature at which special carbides precipitate. By suppressing the amount, an appropriate amount of cementite carbide can be precipitated, and it becomes possible to suppress the distribution density of the special carbide that reduces the toughness of the matrix. Therefore, the Si content is 1.00% or less and the Cr content is 5.65%.
As described below, since Cr and Si act in combination with the above action, the relational expression of Si <(18.7 / Cr) -3.3% is satisfied in order to obtain the toughness value required for aluminum forging die steel. So add .

【0013】アルミ鍛造金型用鋼の場合には特に以下に
述べる2つの理由でCr量の設定が必要である。 (1) Cr量を多くしすぎると、焼戻しで析出した炭化
物の加熱時の凝集抵抗が小さくなりすぎ、特に旧オース
テナイト粒界で炭化物の粗大化がすすみやすくなる。こ
の理由からCr量は、他の合金元素量とのバランスで、
5.65%以下とする。 (2) Cr量を少なくすると、ベイナイト変態が短時間
側に移動するため焼入れ冷却時の冷却速度が遅い場合に
は200〜400℃の温度域を通過する際にベイナイトノーズ
にかかりやすくなるため、大寸法金型に適用しにくい。
ベイナイト組織が存在するようになると、遷移温度以下
の靭性低下を著しくする。この理由からCr量は、他の
合金量とのバランスで最低3.50%とする。Crの望ましい
範囲は、4.35〜5.65%であり、より望ましくは4.50〜5.6
5%である。
In the case of aluminum forging die steel, it is necessary to set the amount of Cr for the following two reasons. (1) If the amount of Cr is too large, the cohesive resistance of the carbide precipitated by tempering during heating becomes too small, and coarsening of the carbide tends to proceed particularly at the former austenite grain boundaries. For this reason, the Cr content is a balance with other alloy element contents,
5.65% or less. (2) When the amount of Cr is reduced, the bainite transformation moves to the short time side, and therefore the bainite nose is likely to be applied when passing through the temperature range of 200 to 400 ° C. when the cooling rate during quenching and cooling is slow, Difficult to apply to large size molds.
When the bainite structure is present, the toughness below the transition temperature is markedly reduced. For this reason, the Cr content is at least 3.50% in balance with other alloy contents. The desirable range of Cr is 4.35 to 5.65%, and more desirably 4.50 to 5.6.
5%.

【0014】W,Mo量の設定は本発明鋼の場合、焼戻
し炭化物の凝集抵抗を遅くすることで、焼戻し時の旧オ
ーステナイト粒界での炭化物粗大化を抑制し、靭性劣化
を防ぐ。ただし、過度の添加は特殊炭化物の析出、焼入
冷却時に起こるオーステナイト粒界析出を招きやすくな
るため、かえって靭性が低下するので、焼入れ焼戻し条
件に応じて、1種または2種を1/2W+Moで0.2〜4.0%
添加する。望ましい範囲は0.5〜3.5%であり、より望ま
しくは1.0〜3.5%である。Vは焼入加熱時に未固溶の炭
化物を残留させ、オーステナイト粒界のピン止め効果を
有し、結晶粒の粗大化を防止して焼戻し時にPの粒界偏
析によっておこる高温焼戻し脆性を防止する。Vを過度
に添加すると凝固偏析が顕著となり、熱間加工方向に沿
う紐状炭化物の分布傾向を増大化させ、その方向のクラ
ック進展を助長するため2.0%以下とする。低すぎると上
記添加の効果が得られないので、0.05%以上とする。望
ましくは0.2〜1.5%であり、より望ましくは0.5〜1.0%で
ある。
In the case of the steel of the present invention, the W and Mo contents are set to slow the cohesive resistance of the tempered carbides, thereby suppressing the coarsening of the carbides at the prior austenite grain boundaries during tempering and preventing the deterioration of toughness. However, excessive addition tends to cause precipitation of special carbides and precipitation of austenite grain boundaries that occurs during quenching and cooling, which rather reduces toughness. 0.2-4.0%
Added. A desirable range is 0.5 to 3.5%, more desirably 1.0 to 3.5%. V retains undissolved carbides during quenching and heating, has an austenite grain boundary pinning effect, prevents coarsening of crystal grains, and prevents high temperature tempering brittleness caused by grain boundary segregation of P during tempering. . When V is added excessively, solidification segregation becomes remarkable, the distribution tendency of string-like carbides along the hot working direction is increased, and crack growth in that direction is promoted, so V is 2.0% or less. If it is too low, the effect of the above addition cannot be obtained, so the content is made 0.05% or more. It is preferably 0.2 to 1.5%, more preferably 0.5 to 1.0%.

【0015】NiはC, Cr, Mn, Mo, Wなどとともに
本発明鋼に優れた焼入性を付与し、緩やかな焼入冷却速
度の場合にも、マルテンサイト主体の組織を形成させ、
靭性の低下を防ぐ効果があり、また基地中に固溶したN
iは本質的な靭性向上に寄与するため、必要に応じて添
加する。Niは上記効果を有する反面、多すぎるとA1
態点を過度に低下させ、へたり寿命の低下をまねき、焼
なまし硬さを過度に高くして機械加工性を低下させるの
でNiを添加する場合には1.5%以下とする。Coは、使用
中の昇温時に、きわめて緻密で密着性の良い保護酸化皮
膜を形成しこれにより相手材との間の金属接触を防ぎ、
金型表面の温度上昇を防ぐとともに優れた耐摩耗性をも
たらすため必要に応じて添加する。ただし、この酸化皮
膜は厚くなりすぎると金型表面の肌あれをまねき逆効果
となるが、Coは酸化皮膜の形成速度や厚みを抑える効
果を持つ。本発明鋼のようにSi量の少ない鋼の場合酸
化皮膜が厚くなり過ぎるため、Coを添加することは、
保護酸化皮膜の特性の向上に特に有効である。Coは上
記効果を付与するために添加するが、多すぎると靭性を
低下させるので5.0%以下とする。
Ni, together with C, Cr, Mn, Mo, W, etc., imparts excellent hardenability to the steel of the present invention and forms a martensite-based structure even at a slow quenching cooling rate.
It has the effect of preventing the deterioration of toughness, and it is a solid solution N in the matrix.
Since i contributes to the essential improvement of toughness, i is added if necessary. On the other hand, Ni has the above-mentioned effect. However, if it is too much, the A 1 transformation point is excessively lowered, the fatigue life is shortened, the annealing hardness is excessively increased, and the machinability is lowered, so Ni is added. If it does, it should be 1.5% or less. Co forms a protective oxide film that is extremely dense and has good adhesion when the temperature rises during use, which prevents metal contact with the mating material,
It is added as necessary in order to prevent the temperature rise on the mold surface and to bring about excellent wear resistance. However, if this oxide film becomes too thick, it causes the roughening of the surface of the mold and has the opposite effect, but Co has the effect of suppressing the formation rate and thickness of the oxide film. In the case of a steel having a small amount of Si, such as the steel of the present invention, the oxide film becomes too thick.
It is particularly effective for improving the characteristics of the protective oxide film. Co is added to impart the above effect, but if it is too much, it lowers the toughness, so it is made 5.0% or less.

【0016】[0016]

【実施例】以下、本発明の実施例に基づき詳細に説明す
る。表1に示す組成の金型用素材を準備し、これから図
3に示す金型を製作し、被加工材をJIS 6061のアルミ
ニウム合金とし、常温で実用テストを行った。直径が90
mm丸、高さ30mmの金型に概略15mm幅、65mm長さ、15mm深
さの直方体形を作るように形彫がなされており、型中央
部にはノックアウト用の8mm丸のピン穴があいている。
パンチはSKH51で硬さ60HRCのものを使用し、金型
形状にはまり込むように加工している。寿命評価は、下
型のコーナーR部(曲率半径2mm)に発生するクラック
が、被加工材に転写して高さ1mmなるまでのショット
数で行った。なお、金型は意図的に加熱は行わず、2秒
間に1ショットで内圧が70Kgf/mになる条件で鍛造を行
った。表1において、No.1ないし20は本発明鋼あるい
は参考鋼であり、No.31ないし38のうち、No.31はJI
S SKD61であり、No.32〜38は、Si含有量を各
レベルとするが、Si<(17.8/Cr)-3.3を満足しないも
のである。
Embodiments will be described in detail below based on embodiments of the present invention. A material for a mold having the composition shown in Table 1 was prepared, a mold shown in FIG. 3 was manufactured from this, and a workpiece was a JIS 6061 aluminum alloy, and a practical test was performed at room temperature. Diameter 90
It is engraved to make a rectangular parallelepiped with a width of 15 mm, a length of 65 mm, and a depth of 15 mm in a mold with a circle of 30 mm and a height of 30 mm, and an 8 mm round pin hole for knockout is formed in the center of the mold. ing.
The punch used is SKH51 and has a hardness of 60HRC, and is processed so as to fit into the mold shape. Life assessment, cracks generated in the lower mold of the corner R portion (radius of curvature 2 mm) was performed on the number of shots until the height of 1mm is transferred to the workpiece. The die was not intentionally heated, and forging was performed under the condition that the internal pressure was 70 kgf / m in one shot every 2 seconds. In Table 1, No.1 to 20 are invention steels have
Is a reference steel , and out of No.31 to 38, No.31 is JI
S SKD61 and Nos. 32 to 38 have Si contents at respective levels, but do not satisfy Si <(17.8 / Cr) -3.3.

【0017】[0017]

【表1】 [Table 1]

【0018】熱処理は金型に荒加工した後、1020℃加熱
後、200℃以下まで放冷する空冷焼入後、焼戻し温度を
変えて、表2に示すように48HRCから53HRCの各硬さとな
るごとく焼戻しを行った。同時に金型と同寸法の試料で
熱処理を行った試料から割りだした試験片でシャルピー
衝撃試験を行った。試験片は2mm深さのUノッチ試験片
(JIS3号試験片)である。これは、実際の金型と通
常の試験片での熱処理では、焼入れの冷却時に金型の冷
却速度の方が試験片の冷却速度よりも大幅に小さくな
り、またこの種の鋼の靭性値は焼入時の冷却速度の影響
を受けやすいので、金型と同寸法の試料に熱処理を施し
て、衝撃試験片を行なう必要があるためである。金型は
放電加工後表面の加工影響層をショットブラストによっ
て除去した。なお、窒化、浸炭等の表面硬化処理は行わ
なかった。
The heat treatment includes roughing the die, heating it at 1020 ° C., air-quenching to cool it to 200 ° C. or less, and then changing the tempering temperature to obtain a hardness of 48 HRC to 53 HRC as shown in Table 2. It was tempered as usual. At the same time, a Charpy impact test was carried out on a test piece that was split from a sample that had been heat treated with a sample of the same size as the mold. The test piece is a U-notch test piece (JIS No. 3 test piece) having a depth of 2 mm. This is because, in the heat treatment with an actual die and a normal test piece, the cooling rate of the die during quenching cooling is significantly lower than the cooling rate of the test piece, and the toughness value of this type of steel is This is because the impact test piece is apt to be affected by the cooling rate during quenching, and a sample having the same size as the mold must be heat-treated to carry out an impact test piece. After the electric discharge machining of the mold, the machining affected layer on the surface was removed by shot blasting. No surface hardening treatment such as nitriding or carburizing was performed.

【0019】[0019]

【表2】 [Table 2]

【0020】表2に、これらの金型の耐久寿命となるク
ラックの発生回数と、設定寿命(クラック開口部が徐々
にかけ落ちて被加工材に転写されたバリの高さが1mmに
なるショット数)、並びにシャルピー衝撃値を示す。こ
のクラックの発生部位は図1中の3に示されるコーナー
R部で、パンチ負荷方向に対し45℃をなし、金型側面側
へ伸びる。
Table 2 shows the number of occurrences of cracks, which is the durable life of these molds, and the set life (the number of shots at which the height of the burr transferred to the work material due to the crack opening gradually falling off is 1 mm). ), As well as the Charpy impact value. The cracked portion is a corner R portion shown by 3 in FIG. 1, which forms 45 ° C. in the punch loading direction and extends to the side surface of the die.

【0021】本発明で作成した金型は、比較鋼No.31
ないし38に比べ、クラック発生ショット数、設定寿命と
もに2〜9倍の長寿命化を示している。またこの寿命の
大小関係は、通常疲労寿命の大小を決めると言われてい
る硬さよりも、シャルピー衝撃値に依存していることが
わかる。これは、黒島ら日本機会学会論文集A56巻529
号論文No.89-1390B (1990)にも述べられているよう
に、40〜50HRC以下の硬さでは、引張疲労寿命は硬さ
(強度)による依存性が大きいが、それ以上になると切
欠感受性(靭性)による依存性が大きくなるため、この
ような結果となったことが推察される。これらの論文
は、この高硬度域での靭性依存要因を介在物に求めてい
るが、本発明では鋼中の母相の炭化物種類・分布を改質
しているためであることも確認した。
The mold made of the steel of the present invention is a comparative steel No. 31.
In comparison with Nos. 38 to 38, both the number of shots with cracks and the set life are 2 to 9 times longer. Further, it can be seen that the magnitude relationship of the life depends on the Charpy impact value rather than the hardness which is said to normally determine the magnitude of the fatigue life. This is Kuroshima et al. Japan Society for Opportunity Society Volume A56 529
As described in No. 89-1390B (1990), the tensile fatigue life is highly dependent on hardness (strength) at hardnesses of 40 to 50 HRC or less, but notch susceptibility at higher hardnesses. It is speculated that such a result was obtained because the dependency due to (toughness) increased. In these papers, the toughness-dependent factor in this high hardness region is sought for inclusions, but it was also confirmed that this is because the type and distribution of the carbide of the matrix phase in the steel are modified in the present invention.

【0022】図2に示す組織写真は、本発明鋼No.9と
比較鋼No.31であり、抽出レプリカ法による電子顕微鏡
組織である。黒色部は炭化物析出の密度の高いところで
ある。比較鋼No.31は基地中に微細なMCやM2C炭化
物が過剰に存在しているが、本発明鋼No.9の基地には
MCやM2C析出物が少ないために炭化物の分布に不均
一性が生じ、靭性向上を受け持つ、炭化物の少ない場所
と強度維持を受け持つ炭化物密度の多い微細複合組織と
なっている。そのため、写真上のコントラストも強く、
優れた強度と靭性の向上が発現したものと推察される。
これらの組織発現と最も相関の深いと考えられるCr,
Si量の設定のために行った実験結果を図1に示す。高
Si、高Cr側では靭性が低く、低Si、低Cr側では
靭性が高い。またシャルピー値4.0を越えるものと、4.0
以下を回帰計算で分別すると、Si=(18.7/Cr)-3.3
の境界線を引くことができる。
The microstructure photographs shown in FIG. 2 are the invention steel No. 9 and the comparative steel No. 31, which are electron microscope structures obtained by the extraction replica method. The black area is where the density of carbide precipitation is high. Comparative steel No. 31 has an excessive amount of fine MC and M 2 C carbides in the matrix, but the distribution of carbides is small because MC and M 2 C precipitates are small in the matrix of the invention steel No. 9. Inhomogeneity occurs in the steel, and it has a fine composite structure with high carbide density, which is responsible for the improvement of toughness, where there is little carbide, and for maintaining strength. Therefore, the contrast on the photograph is strong,
It is presumed that excellent strength and toughness were improved.
Cr, which is considered to be most closely related to the expression of these tissues,
The result of an experiment conducted for setting the amount of Si is shown in FIG. The toughness is low on the high Si and high Cr sides, and the toughness is high on the low Si and low Cr sides. If the Charpy value exceeds 4.0, 4.0
When the following is sorted by regression calculation, Si = (18.7 / Cr) -3.3
You can draw a border.

【0023】前述したようにCrは焼入性を向上させる
元素であるので、焼入性が問題となる大寸法の鋼につい
ては、多めに添加する。しかし、この場合、「作用」の欄
で述べたように焼戻し炭化物の析出分布、および挙動に
影響するため、これに応じてSi量を設定する必要が生
じる。図1に示す通り、焼戻し硬さ48.5HRC以上とした
場合、Cr,Si量がともに高い場合の衝撃値は低い。そ
の一例が比較鋼No.32である。またCr量が高い場合、
比較鋼No.34がそうであるようにSi量が低めであって
も衝撃値の低下をまねくのに対し、Cr量が比較的低い
場合は、本発明鋼No.6のように、ある程度のSiを含有
しても衝撃値は高い。さらに過度のSi量低減は、金型
の切削加工の低下をまねくため、上記靭性の影響を配慮
して必要とされるCr量に応じて、重量%でSi<(18.7/
Cr)-3.3を満たす程度に設定するとよい。
As described above, Cr is an element that improves the hardenability, so it is added in a large amount in large-sized steels where the hardenability is a problem. However, in this case, since it affects the precipitation distribution and the behavior of the tempered carbide as described in the section "Action", it is necessary to set the Si amount accordingly. As shown in FIG. 1, when the tempering hardness is 48.5 HRC or more, the impact value is low when both Cr and Si contents are high. One example is comparative steel No.32. If the Cr content is high,
As in the case of the comparative steel No.34, even if the Si content is low, the impact value is lowered, whereas when the Cr content is relatively low, the steel of the present invention No. 6 has a certain extent. The impact value is high even if Si is contained. Furthermore, excessive reduction of the Si amount leads to a reduction in the die cutting process. Therefore, considering the influence of the toughness, depending on the Cr amount required, Si <(18.7 /
It is recommended to set it so that Cr) -3.3 is satisfied.

【0024】[0024]

【発明の効果】以上に記述したように、本発明の金型表
面温度が200℃以下で使用するアルミ鍛造金型用鋼は、
靭性を改善することにより46HRC以上の高硬度域での耐
疲労特性を向上させ、コーナー部の応力集中によるクラ
ック発生を抑制し、金型寿命を向上させることで、アル
ミ鍛造製品の製造コストの低下に寄与することができ、
工業上の効果が非常に大きいものである。
As described above, the aluminum forging die steel used at the die surface temperature of 200 ° C. or less of the present invention is
By improving toughness, fatigue resistance in the high hardness region of 46 HRC or higher is improved, crack generation due to stress concentration at corners is suppressed, and die life is improved, thereby reducing the manufacturing cost of forged aluminum products. Can contribute to
It has a great industrial effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明鋼および参考鋼No.1〜20と比較鋼No.3
1〜38をそれぞれ空冷焼入れ後、焼戻し硬さ48.5〜53に
したときのシャルピー衝撃値を各鋼のSi,Cr量で整
理した図である。
1] Inventive steel, reference steel Nos. 1 to 20 and comparative steel No. 3
It is the figure which arranged the Charpy impact value at the time of tempering hardness 48.5-53 after carrying out the air-cooling quenching of 1-38 respectively by the Si and Cr amount of each steel.

【図2】本発明鋼No.9と比較鋼No.31のそれぞれ空冷焼
入後焼戻し硬さ50〜52HRCにした時の金属組織写真であ
る。
FIG. 2 is photographs of metal structures of the invention steel No. 9 and the comparative steel No. 31, respectively, when the tempering hardness after air-cooling quenching is 50 to 52 HRC.

【図3】実用テスト用に供した金型形状の一例を示す図
である。
FIG. 3 is a diagram showing an example of a die shape used for a practical test.

【符号の説明】[Explanation of symbols]

1 金型、2 パンチ、3 クラック発生部、4 ノッ
クアウトピン穴
1 die, 2 punch, 3 cracked part, 4 knockout pin hole

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 金型表面温度が200℃以下で使用するア
ルミ鍛造金型用鋼であって、重量%で、C 0.35%を越
0.60%以下、Si 0.11〜1.50%、Mn 1.5%以下、Cr
3.50〜5.65%、WとMoの1種または2種を1/2W+Mo
で0.2〜4.0%、V 0.05〜2.0%を含有し、かつSi,Cr量
がSi<(18.7/Cr)-3.3の関係式を満足し、残部Feおよ
び不可避的不純物からなり、焼入れ焼戻し硬さが46HRC
以上、かつ常温の衝撃値が4.8kgfm/cm以上であること
を特徴とするアルミ鍛造金型用鋼。
1. An aluminum forging die steel to be used at a die surface temperature of 200 ° C. or less, wherein the weight percentage exceeds C 0.35%.
For example 0.60% or less, Si 0.11~ 1.50%, Mn 1.5 % or less, Cr
3.50-5.65%, 1 type or 2 types of W and Mo is 1 / 2W + Mo
Of 0.2 to 4.0% and V of 0.05 to 2.0%, the Si and Cr contents satisfy the relational expression of Si <(18.7 / Cr) -3.3, and the balance is Fe and inevitable impurities, and the quenching and tempering hardness is Is 46 HRC
Above, and the impact value at room temperature is 4.8kgfm / cm 2 or more, aluminum forging die steel.
【請求項2】 金型表面温度が200℃以下で使用するア
ルミ鍛造金型用鋼であって、重量%で、C 0.35%を越
え0.50%以下、Si 0.11〜1.00%、Mn 1.5%以下、Cr
4.35〜5.65%、WとMoの1種または2種を1/2W+Mo
で0.5〜3.5%、V 0.2〜1.5%を含有し、かつSi,Cr量
がSi<(18.7/Cr)-3.3の関係式を満足し、残部Feおよ
び不可避的不純物からなり、焼入れ焼戻し硬さが46HRC
以上、かつ常温の衝撃値が4.8kgfm/cm以上であること
を特徴とするアルミ鍛造金型用鋼。
2. An aluminum forging die steel to be used at a die surface temperature of 200 ° C. or lower, wherein the weight% is more than C 0.35% and 0.50% or less, Si 0.11 to 1.00 %, Mn 1.5% or less, Cr
4.35 to 5.65%, 1 or 2 types of W and Mo are 1/2 W + Mo
Of 0.5 to 3.5% and V of 0.2 to 1.5%, the Si and Cr contents satisfy the relational expression of Si <(18.7 / Cr) -3.3, and the balance Fe and unavoidable impurities make it hardened and tempered. Is 46 HRC
Above, and the impact value at room temperature is 4.8kgfm / cm 2 or more, aluminum forging die steel.
【請求項3】 Feの一部をNi 1.5%以下で置換する請
求項1または2に記載のアルミ鍛造金型用鋼。
3. The aluminum forging die steel according to claim 1, wherein a part of Fe is replaced by Ni 1.5% or less.
【請求項4】 Feの一部をCo 5.0%以下で置換する請
求項1ないし3のいずれかに記載のアルミ鍛造金型用
鋼。
4. The aluminum forging die steel according to claim 1, wherein a part of Fe is replaced by Co 5.0% or less.
JP01791094A 1994-01-18 1994-01-18 Aluminum forging die steel Expired - Fee Related JP3508943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01791094A JP3508943B2 (en) 1994-01-18 1994-01-18 Aluminum forging die steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01791094A JP3508943B2 (en) 1994-01-18 1994-01-18 Aluminum forging die steel

Publications (2)

Publication Number Publication Date
JPH07207414A JPH07207414A (en) 1995-08-08
JP3508943B2 true JP3508943B2 (en) 2004-03-22

Family

ID=11956913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01791094A Expired - Fee Related JP3508943B2 (en) 1994-01-18 1994-01-18 Aluminum forging die steel

Country Status (1)

Country Link
JP (1) JP3508943B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206913A (en) 2004-01-26 2005-08-04 Daido Steel Co Ltd Alloy tool steel
JP5090257B2 (en) * 2008-06-05 2012-12-05 山陽特殊製鋼株式会社 Tool steel suitable for aluminum machining dies and aluminum machining dies
EP4230759A1 (en) * 2018-10-05 2023-08-23 Proterial, Ltd. Hot work tool steel and hot work tool
CN115161544B (en) * 2022-04-07 2023-05-16 燕山大学 Secondary hardening nano bainite hot work die steel and preparation method thereof
CN116516130B (en) * 2023-07-05 2023-10-13 成都先进金属材料产业技术研究院股份有限公司 Cr-Mo-V hot work die steel with high hardness and high impact toughness and preparation method thereof

Also Published As

Publication number Publication date
JPH07207414A (en) 1995-08-08

Similar Documents

Publication Publication Date Title
JP5143531B2 (en) Cold mold steel and molds
US20070130772A1 (en) Method for producing a three-dimensionally formed armoring component for motor vehicle bodies
JP2013213255A (en) Hot working die steel
CN101528962A (en) Cold work die steel, die, and method for production of cold work die steel
JP2008169411A (en) Steel for die materials
JP5929963B2 (en) Hardening method of steel
EP2412840A1 (en) High-strength and high-ductility steel for spring, method for producing same, and spring
AU2018211466A1 (en) Quench hardened steel
JPH0892690A (en) Carburized parts excellent in fatigue resistance and its production
CN114427091B (en) High-wear-resistance die steel product for hot stamping and additive manufacturing process thereof
JP2004204263A (en) Steel material for case hardening superior in cold workability and coarse-particle-preventing property in carburization, and manufacturing method therefor
JP3508943B2 (en) Aluminum forging die steel
JP2020026567A (en) Hot stamp die steel, hot stamp die and method for producing the same
JPH11131176A (en) Induction hardened parts and production thereof
CN115386789B (en) Steel material and steel product using the same
JP2001294974A (en) Tool steel excellent in machinability and small in dimensional change cause by heat treatment and its producing method
JP4984319B2 (en) Method for producing pre-hardened steel with excellent machinability and toughness
JP5345415B2 (en) Steel for cold press dies and press dies excellent in machinability, heat treatment sizing characteristics and impact characteristics
JPH11269541A (en) Manufacture of high strength steel excellent in fatigue characteristic
JPH0688166A (en) Die for hot working excellent in heat cracking resistance
JP6680406B1 (en) Machine parts and method of manufacturing machine parts
KR101379058B1 (en) Precipitation hardening type die steel with excellent hardness and toughness and the method of manufacturing the same
JP4393344B2 (en) Manufacturing method of case hardening steel with excellent cold workability and grain coarsening resistance
JP4265819B2 (en) Cold forging steel with excellent nitriding properties and method for producing the same
JP4778626B2 (en) Manufacturing method of steel parts with low heat treatment strain

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090109

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100109

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110109

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees