JPH01277245A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01277245A
JPH01277245A JP63107098A JP10709888A JPH01277245A JP H01277245 A JPH01277245 A JP H01277245A JP 63107098 A JP63107098 A JP 63107098A JP 10709888 A JP10709888 A JP 10709888A JP H01277245 A JPH01277245 A JP H01277245A
Authority
JP
Japan
Prior art keywords
film
sih
sih2
alpha
absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63107098A
Other languages
Japanese (ja)
Other versions
JPH087448B2 (en
Inventor
Hisashi Hayakawa
尚志 早川
Shiro Narukawa
成川 志郎
Kunio Ohashi
邦夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63107098A priority Critical patent/JPH087448B2/en
Priority to US07/332,775 priority patent/US4971878A/en
Priority to DE68928210T priority patent/DE68928210T2/en
Priority to EP89303300A priority patent/EP0336700B1/en
Priority to KR1019890004485A priority patent/KR910007719B1/en
Publication of JPH01277245A publication Critical patent/JPH01277245A/en
Publication of JPH087448B2 publication Critical patent/JPH087448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve an electrostatic charge characteristic by incorporating >=40atomic% hydrogen into an a-Si film and specifying the alpha(SiH2)/alpha(SiH) value to 1.3-2.5. CONSTITUTION:A photoconductive layer 4 is constituted of the amorphous silicon which contains >=40atomic% hydrogen and has 1.32.5 ratio alpha(SiH2)/alpha(SiH) of the absorption coefft. alpha(SiH2) of the absorption appearing at about 2,100cm<-1> derived from the SiH2 bond of IR absorption spectra and the absorption coefft. alpha(SiH) of the absorption appearing at about 2,000cm<-1> derived from the SiH bond. Such a-Si film has the dark specific resistance as extremely high as 10<12>OMEGAcm even if boron, phosphorus or the like is not doped to the film. The photosensitive body having the sufficient photosensitivity and the excellent electrostatic charge holding power is, therefore, obtd. by using such film as the photoconductive layer 4 of the electrophotographic sensitive body.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電子写真法を用いてなる画像形成装置に使用
される電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to an electrophotographic photoreceptor used in an image forming apparatus using electrophotography.

〈従来技術〉 最近、電子写真法を用いて画像を形成するための画像形
成装置に使用される電子写真感光体として、導電性基体
上に形成される光導電層をアモルファスシリコン(a−
8i’)から構成した感光体が提案されている。このa
−8i感光体は以下に示す利点によりその実用化が望ま
れるようになった0 ■ 長寿命である。
<Prior Art> Recently, a photoconductive layer formed on a conductive substrate is made of amorphous silicon (a-
8i') has been proposed. This a
The -8i photoreceptor has a long life, which has made its practical use desirable due to the following advantages.

■ 人体に対して無害である。■ It is harmless to the human body.

■ 感度が高い。■ High sensitivity.

この様なa−3i感光体としては、特公昭60−850
59号公報に述べられている通りであり、光導電層のa
−8i層を形成するのに、プラズマCVD法、スパック
−法が用いられ、しかも水素の量としては10〜40a
tomic%にすることが最適であると明記されている
As such a-3i photoreceptor,
As stated in Publication No. 59, a of the photoconductive layer
- To form the 8i layer, plasma CVD method and spackle method are used, and the amount of hydrogen is 10 to 40a.
It is specified that it is optimal to set the value to tomic%.

〈発明が解決しようとする問題点〉 従来のa−8i感光体は、a−3i層の膜中水素(H)
量は、上述の通v10〜40atomic%とすること
が厳に規定されている。また、lO〜40 atomi
c%の水素を含有するa−8t膜において、赤外線吸収
スペクトルのSiH2結合に由来する2100α  付
近における吸収される吸収係数α(SiH2)と、5i
−H結合に由来する200OclR付近において吸収さ
れる吸収係数α(Si−H)との比α(S i −H2
)/α(Si  H2)とが約0.2乃至1.7とする
ことが、特開昭57−158650号公報に開示されて
いる。このような、a−8iによる電子写真感光体にと
って充分な光感度を保持しようとすると、その比抵抗が
lO0個となってしまい、ボロンCB)をドープしても
10 Ωαと小さい。従って、既存のセレンやOPC感
光体に比べて、帯電保持能力に劣っていた。
<Problems to be solved by the invention> In the conventional a-8i photoreceptor, hydrogen (H) in the a-3i layer
The amount is strictly defined to be 10 to 40 atomic% as described above. Also, lO ~ 40 atoms
In the a-8t film containing c% of hydrogen, the absorption coefficient α (SiH2) derived from SiH2 bonds in the infrared absorption spectrum near 2100α and 5i
The ratio α (S i −H2
)/α(Si H2) is approximately 0.2 to 1.7, as disclosed in Japanese Patent Application Laid-Open No. 158650/1983. If an attempt is made to maintain sufficient photosensitivity for such an a-8i electrophotographic photoreceptor, its specific resistance will be 100, and even if it is doped with boron (CB), it will be as small as 10 Ωα. Therefore, compared to existing selenium and OPC photoreceptors, the charge retention ability was inferior.

あるいは、帯電保持能力を向上させようとすると、従来
のa−8i悪感光では、上述の吸収係数比α(SiH2
)/α(SfH)を大きくする必要がある。しかしなが
ら、プラズマCvD法・スパッター法では、成膜時の高
周波電力を大きくすることによって原料ガスの気相中で
の反応を活発にしく5iH2)nなるポリマー粉が多量
に発生してしまい、これが製膜中に感光体の基板に付着
し、正常な膜成長を妨げ、その感光体を不良品としてし
まっていた。更に、従来の製法では、製膜速度が非常に
小さく感光体の作成に長い時間が必要でありコストを下
げることが出来なかった。
Alternatively, when trying to improve the charge retention ability, the absorption coefficient ratio α (SiH2
)/α(SfH) needs to be increased. However, in the plasma CvD method and sputtering method, increasing the high-frequency power during film formation activates the reaction in the gas phase of the raw material gas, resulting in the generation of a large amount of 5iH2)n polymer powder. The film adheres to the substrate of the photoreceptor, preventing normal film growth and rendering the photoreceptor a defective product. Furthermore, in the conventional manufacturing method, the film forming speed is very low and it takes a long time to prepare the photoreceptor, making it impossible to reduce costs.

く問題を解決するための手段〉 本発明の電子写真感光体は、導電性基体上に水X(H)
を含むアモルファスシリコンからなる光導電層を形成し
た電子写真感光体において、40atomic%以上の
水素を含有し、赤外吸収スペクトルのSiH2結合に由
来する2100Lv 付近に現われる吸収の吸収係数(
α5iH2)と、SiH結合に由来する2000−  
 付近に現われる吸収の吸収係数(α5iH)との比(
αSiH+/α5iH)  が、1.3〜2.5となる
アモルファスシリコン(a−8i)を光導電層としたこ
とを特徴とするものである。
Means for Solving the Problems〉 The electrophotographic photoreceptor of the present invention has water X(H) on a conductive substrate.
In an electrophotographic photoreceptor formed with a photoconductive layer made of amorphous silicon containing 40 atomic% or more of hydrogen, the absorption coefficient of absorption appearing around 2100 Lv derived from SiH2 bonds in the infrared absorption spectrum (
α5iH2) and 2000- derived from SiH bond.
The ratio of the absorption coefficient (α5iH) of the absorption appearing nearby (
The photoconductive layer is made of amorphous silicon (a-8i) with αSiH+/α5iH) of 1.3 to 2.5.

また、上記a  Si層をエレクトロン・サイクロトロ
ン・レゾナンス法により作成する。
Further, the above a Si layer is formed by an electron cyclotron resonance method.

く作 用〉 本発明の電子写真感光体によれば、Hを含み、かつ、赤
外吸収スペクトルのSiH2結合に由来する210(1
+   付近に現われる吸収の吸収係数a’(SiH2
)と、SiH結合に由来する2000−   付近に現
われる吸収の吸収係数α(S iH)  との比α(S
iHz  )/α(SiH)が、1.3〜2,5である
a−8t膜としては、ボロン・リン等をドープしないに
もかかわらず暗比抵抗が1012Ω備と非常に高くなる
。これを電子写真感光体の光導電層として用いることに
より、充分な光感度を有し、かつ帯電保持能力に優れた
感光体を創出できる。
Effect> According to the electrophotographic photoreceptor of the present invention, 210 (1
The absorption coefficient a' (SiH2
) and the absorption coefficient α(S iH) of absorption appearing around 2000- derived from SiH bond
An a-8t film with iHz )/α(SiH) of 1.3 to 2.5 has a very high dark specific resistance of 10 12 Ω even though it is not doped with boron or phosphorus. By using this as a photoconductive layer of an electrophotographic photoreceptor, a photoreceptor having sufficient photosensitivity and excellent charge retention ability can be created.

しかも、これをエレクトロン・サイクロトロン・レゾナ
ンス法により作成することにより良品率、及び、製膜速
度を高くすることができコストの低減を達成できる。
Furthermore, by producing this film using the electron cyclotron resonance method, the yield rate and film forming rate can be increased, and costs can be reduced.

〈実施例〉 第1図は本発明による電子写真感光体の層構造を示す断
面図、第2図は第1図に示す如き電子写真感光体を作成
するためのエレクトロン・サイクロトロン・レゾナンス
法による製膜装置を示す断面図である。
<Example> FIG. 1 is a cross-sectional view showing the layer structure of an electrophotographic photoreceptor according to the present invention, and FIG. It is a sectional view showing a membrane device.

まず、第2図において、製膜装置は、例えば水素プラズ
マを発生させるプラズマ室+1と、a−3+層を堆積さ
せる堆積室12とを有している。
First, in FIG. 2, the film forming apparatus has a plasma chamber +1 for generating hydrogen plasma, for example, and a deposition chamber 12 for depositing an a-3+ layer.

プラズマ室11と堆積室12とはプラズマ引出窓13で
通じており、図示しない油拡散ポンプ、油回転ポンプに
より真空排気される。
The plasma chamber 11 and the deposition chamber 12 communicate with each other through a plasma extraction window 13, and are evacuated by an oil diffusion pump and an oil rotary pump (not shown).

プラズマ室11は空胴共振器構成となっており、導波管
14から2.45GHzのマイクロ波が導入される。な
お、マイクロ波導入窓I5はマイクロ波が通過できる石
英ガラス板でできている。プラズマ室11にはH2ガス
が導入管17を通して導入される。プラズマ室11の周
囲には磁気コイル16が配置されている。磁気コイル1
6はプラズマを発生させ、プラズマ室】lで発生したプ
ラズマを堆積室12に引き出すための発散磁場を形成す
る。
The plasma chamber 11 has a cavity resonator configuration, and a 2.45 GHz microwave is introduced from a waveguide 14. Note that the microwave introduction window I5 is made of a quartz glass plate through which microwaves can pass. H2 gas is introduced into the plasma chamber 11 through an introduction pipe 17. A magnetic coil 16 is arranged around the plasma chamber 11 . magnetic coil 1
6 generates plasma and forms a diverging magnetic field for drawing out the plasma generated in the plasma chamber 1 to the deposition chamber 12.

堆積室12にはアルミ(Anからなる導電性基体18が
設置されている。この実施例の場合は、導電性基体18
はドラム状であるため、支持体に支持され回転される。
A conductive substrate 18 made of aluminum (An) is installed in the deposition chamber 12. In this embodiment, the conductive substrate 18 is made of aluminum (An).
Since it is drum-shaped, it is supported by a support and rotated.

堆積室12には、原料ガスが導入管19を通して導入さ
れる。この原料ガスとしては、例えばSiH4+ 5i
zHa 、 5iFa 。
A source gas is introduced into the deposition chamber 12 through an introduction pipe 19 . As this raw material gas, for example, SiH4+ 5i
zHa, 5iFa.

5iC14,5iHC13,5iHzC1z など水素
Iを含むケイ素化合物、あるいはそれらを混合したガス
である。図中20は、マイクロ波発振器、21は導電性
基体18の加熱用ランプである。
It is a silicon compound containing hydrogen I, such as 5iC14, 5iHC13, 5iHzC1z, or a gas mixture thereof. In the figure, 20 is a microwave oscillator, and 21 is a lamp for heating the conductive substrate 18.

このような構成により、まず排気系によりプラズマ室1
1及び堆積室12を排気し、プラズマ室11Cは導入管
17を介してH2ガスを、また堆積室12には導入管1
9を介して上述した原料ガスをそれぞれ導入する。この
時のガス圧は1O−3torr〜10  torrに設
定される。ここで、プラズマ室11に発振器20からの
マイクロ波を導入するとともに、磁界をも印加しプラズ
マを励起する。プラズマ化されたH2および原料ガスは
、発散磁場により導電性基体18へと導かれくその表面
にa−8iが堆積することとなる。支持体は回転される
ため、導電性基体18上に均一に製膜される。さらにプ
ラズマ引き出し窓の位置、大きさを調整することで、a
−8t膜の均一性を向上することが可能である。
With this configuration, first, the plasma chamber 1 is
1 and the deposition chamber 12 are evacuated, the plasma chamber 11C is supplied with H2 gas via the introduction pipe 17, and the deposition chamber 12 is supplied with H2 gas via the introduction pipe 17.
The above-mentioned raw material gases are respectively introduced through 9. The gas pressure at this time is set to 10-3 torr to 10 torr. Here, microwaves from the oscillator 20 are introduced into the plasma chamber 11, and a magnetic field is also applied to excite the plasma. The plasma H2 and source gas are guided to the conductive substrate 18 by the divergent magnetic field, and a-8i is deposited on the surface thereof. Since the support is rotated, a film is uniformly formed on the conductive substrate 18. Furthermore, by adjusting the position and size of the plasma drawer window, a
It is possible to improve the uniformity of the −8t film.

このような製膜装置にて、原料ガスとして5in4ガス
を用い、ガス圧を振って製膜実験を行った。このa−8
t膜のS 1−H2及び5t−Hの結合における吸収係
数比α(SiH2)/α(SiH)・明導電率(ημτ
)・暗比抵抗率CP、()のガス圧依存性を第3図、第
4図及び%5図にグラフにしてそれぞれ示す。
In such a film forming apparatus, a film forming experiment was conducted using 5 in 4 gas as a raw material gas and varying the gas pressure. This a-8
Absorption coefficient ratio α(SiH2)/α(SiH)・bright conductivity (ημτ
)・Dark specific resistivity CP, () dependence on gas pressure is shown in graphs in FIGS. 3, 4, and %5, respectively.

これらに示されたとおり、吸収係数比α(SiH2)/
α(SiH)の値を1.3〜2.5にすることにより、
暗比抵抗が10 0個以上となり、しかも明導電率が高
い(光感度が高い)a−3t膜が作成出来た。このよう
に暗比抵抗が10  Ω1以上となり、しかも明導電率
が高い(光感度が高い)a−8t膜は、従来の膜中H量
が40atomic%以下で、α(SiH2)/α(S
iH)値が0.2〜1.7のa−8i膜テは達成するこ
とができないものであった。
As shown in these, the absorption coefficient ratio α(SiH2)/
By setting the value of α(SiH) to 1.3 to 2.5,
An a-3t film with a dark specific resistance of 100 or more and high bright conductivity (high photosensitivity) was created. In this way, the a-8t film, which has a dark specific resistance of 10 Ω1 or more and high bright conductivity (high photosensitivity), has a conventional H content of 40 atomic% or less, α(SiH2)/α(S
An a-8i film with an iH) value of 0.2 to 1.7 could not be achieved.

更に鋭意実験を重ねた結果、a−8t膜のα(S’iH
2)/α(SiH)の値を、1.3〜2.5とし、しか
もその膜中の水素量を40atomic%以上にすると
、本発明における効果が、より一層助長されることにな
る。ただし、a−8i膜中のH量を60 atomi 
c%以上にすると、その膜の光学的バンドキャップが大
きくなり過ぎて、可視光に対する光感度を必要とする電
子写真感光体の光導電層としては適さないことが判明し
たす、′:)まり、膜中のH量は、好適には40−60
 atomic%、最も好ましくは40〜50 ato
mic%という値である。
As a result of further repeated experiments, α(S'iH
When the value of 2)/α(SiH) is set to 1.3 to 2.5 and the amount of hydrogen in the film is set to 40 atomic % or more, the effects of the present invention are further enhanced. However, the amount of H in the a-8i film is reduced to 60 atoms.
It has been found that when the concentration exceeds c%, the optical band gap of the film becomes too large, making it unsuitable as a photoconductive layer for an electrophotographic photoreceptor that requires photosensitivity to visible light. , the amount of H in the film is preferably 40-60
atomic%, most preferably 40-50 atomic%
The value is mic%.

第2図に示す如き、本発明にがかる製膜によれば、エレ
クトロン・サイクロトロン・レゾナンス法により作成し
ており、(SiH2)nなる粉は全く発生せず、しかも
、製膜速度・ガス利用効率とも従来法に比べて6〜10
倍とかなり高い値を得た0 また、本発明によるa−8i膜は、電子写真感光体の光
導電層、イメージ・センサーの感光部、液晶と積層され
た表示素子の感光部等といった外部からの光情報を電気
信号に変換するデバイスの感光部に最も適している。更
には、太陽電池・薄膜トランジスターといったデバイス
にも適用可能である。
As shown in Figure 2, according to the film formation according to the present invention, it is created by the electron cyclotron resonance method, and no (SiH2)n powder is generated at all, and the film formation speed and gas usage efficiency are Both are 6 to 10 times lower than the conventional method.
In addition, the a-8i film according to the present invention can be used from external sources such as the photoconductive layer of an electrophotographic photoreceptor, the photosensitive part of an image sensor, and the photosensitive part of a display element laminated with a liquid crystal. It is most suitable for the photosensitive part of a device that converts optical information into electrical signals. Furthermore, it can also be applied to devices such as solar cells and thin film transistors.

次に、この本発明による膜中H量を40 atomic
%以上含有するa−8t膜を電子写真感光体の光導層と
して用いた実施例を示す。
Next, the amount of H in the film according to the present invention was reduced to 40 atomic
An example will be described in which an a-8t film containing at least % of the a-8t content is used as a light guide layer of an electrophotographic photoreceptor.

(実施例1) 第1図に示す如き構造の正帯電用の電子写真感光体1を
得るために、導電性基体2上に中間層3、光導電層4及
び表面被覆層5をこの順に形成した。
(Example 1) In order to obtain a positively charging electrophotographic photoreceptor 1 having the structure shown in FIG. 1, an intermediate layer 3, a photoconductive layer 4, and a surface coating layer 5 are formed in this order on a conductive substrate 2. did.

即ち、光導電層4として水素を含み、赤外吸収スペクト
ルの2100cm  と2000ctn における吸収
係数比α(SiH2)/α(SiH)が2.15でちゃ
、しかも、少量のポロン(B)がドープされ、エレクト
ロン、・サイクロトロンΦレゾナンス法ニよりa−8i
膜を、更には表面被覆層5としてエレクトロン・サイク
ロトロン−レゾナンス法により作成されたa−8iC膜
、及び、中間層3として同方法により作成されボロ/が
多量にドープされたa−3i膜を具備した正帯電用感光
体を作成した0このときの作成条件を下記衣1にまとめ
ておく。
That is, the photoconductive layer 4 should contain hydrogen, have an absorption coefficient ratio α(SiH2)/α(SiH) of 2.15 at 2100 cm 2 and 2000 ctn in the infrared absorption spectrum, and be doped with a small amount of poron (B). , electron, cyclotron Φ resonance method a-8i
Furthermore, the surface coating layer 5 is an a-8iC film made by the electron cyclotron resonance method, and the intermediate layer 3 is an a-3i film made by the same method and heavily doped with boro/. A positive charging photoreceptor was fabricated using the following method.The fabrication conditions at this time are summarized in Item 1 below.

表1 ボロンをドープするだめのガスとしては、B2H6゜B
H3などボロンと水素との化合物が好ましい。また、ボ
ロンと同じ働きをもった原子としては例えばアルミ、ガ
リュウム、インジュウムなどが適している。このとき(
SiH2)nなる粉は全く発生せず、しかも、製膜速度
・ガス利用効率とも従来に比べて6〜10倍とかなり高
い値を得た。更に作成された感光体の特性を測定したと
ころ、従来のa−8i感光体に比べて特に帯電特性に優
れていた。また、これを市販の正帯電用複写機に搭載し
画出しを行ったところ、良好な画を得た。また、この実
施例に述べたa−8i膜中に含まれるH量を測定したと
ころ48 atomi c%であった。
Table 1 As a gas for doping boron, B2H6°B
A compound of boron and hydrogen such as H3 is preferred. Also, suitable atoms having the same function as boron include aluminum, gallium, and indium. At this time(
No SiH2)n powder was generated, and both the film forming speed and gas utilization efficiency were 6 to 10 times higher than conventional methods. Furthermore, when the characteristics of the produced photoreceptor were measured, it was found that the charging characteristics were particularly excellent compared to the conventional a-8i photoreceptor. Further, when this was installed in a commercially available positively charging copying machine and an image was produced, a good image was obtained. Further, when the amount of H contained in the a-8i film described in this example was measured, it was found to be 48 atomic%.

尚、表面被覆層5としてエレクトロン・サイクロトロン
・レゾナンス法により作成されたa−8iN膜あるいは
a−3iO膜を用いた場合でも良好な結果が得られてい
る。
Note that good results have also been obtained when an a-8iN film or an a-3iO film prepared by the electron cyclotron resonance method is used as the surface coating layer 5.

(実施例2) 光導電層作成時のガス圧のみを変化させ、その他の条件
は全〈実施例1と同じにした場合のそれ表2 上記衣2に記した通り、ガス圧を選びα(S 1H2)
/α(SiH)の値を、1,3〜2.5(第3図参照)
としだ時に、良好な結果を得ている。
(Example 2) Only the gas pressure during photoconductive layer formation was changed, and all other conditions were the same as in Example 1.Table 2 As described in Cloth 2 above, the gas pressure was selected and α( S 1H2)
/α(SiH) value from 1.3 to 2.5 (see Figure 3)
At the beginning, good results were obtained.

尚、各サンプル(感光体)の光導電層に含ま引。In addition, the amount contained in the photoconductive layer of each sample (photoreceptor) is excluded.

るH含有量を測定した結果、ガス圧が2.8〜3.4m
torrでは、45〜52 atomic%であって、
3.8〜5、0 mtorrでは20〜30 atom
ic%という値であった。
As a result of measuring the H content, the gas pressure was 2.8 to 3.4 m.
at torr, 45-52 atomic%,
3.8-5, 20-30 atoms at 0 mtorr
The value was ic%.

(実施例3) 光導電層4としてH量を46 atomic%含有し、
しかも、少量のリン(P)がドープされてなるエレクト
ロン・サイクロトロン・レゾナンス法により作成された
a−8i膜、更には表面被覆膜5としてエレクトロン・
サイクロトロン・レゾナンス法により作成されたa−8
iC膜、及び、中間層3として同方法により作成されリ
ン(P)が多量にドープされたa−8t膜を具備した負
帯電用感光体を作成した。このときの作成条件を表3に
まとめておく。
(Example 3) The photoconductive layer 4 contains 46 atomic% of H,
Furthermore, the a-8i film made by the electron cyclotron resonance method doped with a small amount of phosphorus (P), and furthermore, the surface coating film 5 is
A-8 created by cyclotron resonance method
A photoreceptor for negative charging was prepared which included an iC film and an a-8t film prepared by the same method and doped with a large amount of phosphorus (P) as the intermediate layer 3. The preparation conditions at this time are summarized in Table 3.

表3 リンをドープするためのガスとしてはPH3゜PC13
,PCt5などリンと水素あるいはそれらの化合物が適
している。また、リンと同じ働きをもった原子としては
窒素、アンチモン、酸素などが適している。
Table 3 PH3゜PC13 as a gas for doping phosphorus
, PCt5, or their compounds are suitable. Also, suitable atoms that have the same function as phosphorus include nitrogen, antimony, and oxygen.

このとき(SiH2)nなる粉は全く発生せず、しかも
、製膜速度・ガス利用効率とも従来法に比べてかなり高
い値を得た。更に作成された感光体の特性を測定したと
ころ、特に帯電特性に優れていた。また、これを市販の
負帯電用複写機に搭載し画出しを行ったところ良好な画
を得た。
At this time, (SiH2)n powder was not generated at all, and both film forming speed and gas utilization efficiency were significantly higher than those of the conventional method. Furthermore, when the characteristics of the produced photoreceptor were measured, it was found that it was particularly excellent in charging characteristics. Also, when this was installed in a commercially available negatively charged copying machine and image output was performed, a good image was obtained.

尚、表面被覆層としてエレクトロン・サイクロトロン・
レゾナンス法により作成されたa−3iN膜あるいはa
−8iO膜を用いた場合でも良好な結果が得られている
In addition, as a surface coating layer, electron, cyclotron,
a-3iN film or a made by resonance method
Good results were also obtained using the -8iO film.

く効 果〉 本発明の電子写真感光体によれば、a−8i膜中に40
 atomic%以上の水素を含み且つa (S 1H
2)/α(SiH)値が1.3〜2.5となるようにし
たことで充分な光感度を有し、かつ、暗比抵抗が非常に
大きいため、特に帯電特性の優れた感光体を作成できる
Effect> According to the electrophotographic photoreceptor of the present invention, 40
Contains atomic% or more hydrogen and a (S 1H
2) The /α(SiH) value is set to 1.3 to 2.5, so it has sufficient photosensitivity and has a very large dark resistivity, making it a photoreceptor with particularly excellent charging characteristics. can be created.

尚、本発明によるa−8i膜を、エレクトロン・サイク
ロトロン・レゾナンス法により作成することにより、(
SiH2)nなる粉が全く発生せず、しかも製膜速度・
ガス利用効率とも従来法に比べてかなり高い値を得、a
−8t悪感光安価に作成できる。
In addition, by creating the a-8i film according to the present invention by the electron cyclotron resonance method, (
No SiH2)n powder is generated, and the film forming speed is low.
Both gas utilization efficiency values were significantly higher than those of the conventional method, and a
-8t Nausea can be produced at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る電子写真感光体の構造を示す断面
図、第2図は本発明のa−3i層を作成するエレクトロ
ン・サイクロトロン拳レゾナンス法による製膜装置を示
す断面図、第3図、第4図。 及び第5図はガス圧に対する膜中のα(SiH2)/α
(SiH)値、間溝電率(ημτ)及び暗比抵抗率(9
d)を示す特性図である。 1:a−8i感光体導電性基体 2:導電性基体3:中
間層 4:光導電層 5:表面被覆層代理人 弁理士 
杉 山 毅 至(他1名)免l − m番 □2”a Of    234   5 J′ズ圧 <mTorr) 第3図 0    /    234   56オ゛ズエ(mT
Qrf) オ゛ス圧(mrorr)
FIG. 1 is a cross-sectional view showing the structure of an electrophotographic photoreceptor according to the present invention, FIG. Figure, Figure 4. and Figure 5 shows α(SiH2)/α in the film versus gas pressure.
(SiH) value, groove electrical conductivity (ημτ) and dark specific resistivity (9
It is a characteristic diagram showing d). 1: a-8i photoreceptor conductive substrate 2: conductive substrate 3: intermediate layer 4: photoconductive layer 5: surface coating layer agent patent attorney
Takeshi Sugiyama (and 1 other person) I-M number □2”a Of 234 5 J's pressure <mTorr) Figure 3 0 / 234 56 OZE (mT
Qrf)Ocean pressure (mrorr)

Claims (1)

【特許請求の範囲】 1、導電性基体と、該基体上に形成され水素(H)を含
むアモルファスシリコン(a−Si)で構成された光導
電層とを具備してなる電子写真感光体において、 上記光導電層が40atomic%以上の水素を含有し
、赤外吸収スペクトルのSiH_2結合に由来する21
00cm^−^1付近に現われる吸収の吸収係数α(S
iH_2)とSiH結合に由来する2000cm^−^
1付近に現われる吸収の吸収係数α(SiH)との比α
(SiH_2/α(SiH)を、1.3〜2.5として
なるアモルファスシリコンで構成されたことを特徴とす
る電子写真感光体。
[Claims] 1. In an electrophotographic photoreceptor comprising a conductive substrate and a photoconductive layer formed on the substrate and made of amorphous silicon (a-Si) containing hydrogen (H). , the photoconductive layer contains 40 atomic% or more of hydrogen, and the infrared absorption spectrum is 21 derived from SiH_2 bonds.
The absorption coefficient α (S
iH_2) and 2000cm^-^ derived from SiH bond
Ratio α of absorption appearing near 1 to absorption coefficient α (SiH)
(An electrophotographic photoreceptor comprising an amorphous silicon having SiH_2/α(SiH) of 1.3 to 2.5.
JP63107098A 1988-04-04 1988-04-28 Method for manufacturing electrophotographic photoreceptor Expired - Fee Related JPH087448B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63107098A JPH087448B2 (en) 1988-04-28 1988-04-28 Method for manufacturing electrophotographic photoreceptor
US07/332,775 US4971878A (en) 1988-04-04 1989-04-03 Amorphous silicon photosensitive member for use in electrophotography
DE68928210T DE68928210T2 (en) 1988-04-04 1989-04-04 Electrophotographic photosensitive member
EP89303300A EP0336700B1 (en) 1988-04-04 1989-04-04 An electrophotographic photosensitive member
KR1019890004485A KR910007719B1 (en) 1988-04-04 1989-04-04 Electrographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63107098A JPH087448B2 (en) 1988-04-28 1988-04-28 Method for manufacturing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01277245A true JPH01277245A (en) 1989-11-07
JPH087448B2 JPH087448B2 (en) 1996-01-29

Family

ID=14450409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63107098A Expired - Fee Related JPH087448B2 (en) 1988-04-04 1988-04-28 Method for manufacturing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH087448B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239397A (en) * 1989-10-12 1993-08-24 Sharp Kabushiki Liquid crystal light valve with amorphous silicon photoconductor of amorphous silicon and hydrogen or a halogen
EP0762229A2 (en) * 1995-08-21 1997-03-12 Canon Kabushiki Kaisha Image-forming apparatus and image-forming method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498588A (en) * 1978-01-13 1979-08-03 Ibm Photoconductive element
JPS57158650A (en) * 1981-03-25 1982-09-30 Minolta Camera Co Ltd Amorphous silicon photoconductor layer
JPS58186748A (en) * 1982-04-26 1983-10-31 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS59159167A (en) * 1983-03-01 1984-09-08 Zenko Hirose Manufacture of amorphous silicon film
JPS6183544A (en) * 1984-09-29 1986-04-28 Toshiba Corp Electrophotographic sensitive body
JPS632067A (en) * 1986-01-23 1988-01-07 Canon Inc Electrophotographic photoreceptive member
JPS6381361A (en) * 1986-09-26 1988-04-12 Canon Inc Manufacture of electrophotographic sensitive body
JPH0234863A (en) * 1988-04-04 1990-02-05 Sharp Corp Electrophotographic sensitive body

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5498588A (en) * 1978-01-13 1979-08-03 Ibm Photoconductive element
JPS57158650A (en) * 1981-03-25 1982-09-30 Minolta Camera Co Ltd Amorphous silicon photoconductor layer
JPS58186748A (en) * 1982-04-26 1983-10-31 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS59159167A (en) * 1983-03-01 1984-09-08 Zenko Hirose Manufacture of amorphous silicon film
JPS6183544A (en) * 1984-09-29 1986-04-28 Toshiba Corp Electrophotographic sensitive body
JPS632067A (en) * 1986-01-23 1988-01-07 Canon Inc Electrophotographic photoreceptive member
JPS6381361A (en) * 1986-09-26 1988-04-12 Canon Inc Manufacture of electrophotographic sensitive body
JPH0234863A (en) * 1988-04-04 1990-02-05 Sharp Corp Electrophotographic sensitive body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239397A (en) * 1989-10-12 1993-08-24 Sharp Kabushiki Liquid crystal light valve with amorphous silicon photoconductor of amorphous silicon and hydrogen or a halogen
EP0762229A2 (en) * 1995-08-21 1997-03-12 Canon Kabushiki Kaisha Image-forming apparatus and image-forming method
EP0762229A3 (en) * 1995-08-21 2000-10-04 Canon Kabushiki Kaisha Image-forming apparatus and image-forming method

Also Published As

Publication number Publication date
JPH087448B2 (en) 1996-01-29

Similar Documents

Publication Publication Date Title
JPH01277245A (en) Electrophotographic sensitive body
JPS649625B2 (en)
JPS6348057B2 (en)
JPS6247303B2 (en)
JPS6363051A (en) Electrophotographic sensitive body
JPH071395B2 (en) Electrophotographic photoreceptor
US4960662A (en) Positively and negatively chargeable electrophotographic photoreceptor
JPH0234863A (en) Electrophotographic sensitive body
US4971878A (en) Amorphous silicon photosensitive member for use in electrophotography
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JP2595575B2 (en) Manufacturing method of electrophotographic photoreceptor
US5100749A (en) Photosensitive member for electrophotography
US5009977A (en) Photosensitive member for electrophotography having amorphous silicon
JPH0212261A (en) Electrophotographic sensitive body
JPS6410066B2 (en)
JPH028858A (en) Electrophotographic sensitive body
JPH0212260A (en) Electrophotographic sensitive body and production of same
JPS616654A (en) Electrophotographic sensitive body and its manufacture
JPH0210370A (en) Electrophotographic sensitive body
JP2598002B2 (en) Method for forming functional deposited film by microwave plasma CVD method
JPS6184656A (en) Electrophotographic sensitive body
JPH0241023B2 (en)
JPS6410067B2 (en)
JPH01156758A (en) Electrophotographic sensitive body
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees