JPH087448B2 - Method for manufacturing electrophotographic photoreceptor - Google Patents

Method for manufacturing electrophotographic photoreceptor

Info

Publication number
JPH087448B2
JPH087448B2 JP63107098A JP10709888A JPH087448B2 JP H087448 B2 JPH087448 B2 JP H087448B2 JP 63107098 A JP63107098 A JP 63107098A JP 10709888 A JP10709888 A JP 10709888A JP H087448 B2 JPH087448 B2 JP H087448B2
Authority
JP
Japan
Prior art keywords
sih
film
photosensitive member
photoconductive layer
atomic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63107098A
Other languages
Japanese (ja)
Other versions
JPH01277245A (en
Inventor
尚志 早川
志郎 成川
邦夫 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP63107098A priority Critical patent/JPH087448B2/en
Priority to US07/332,775 priority patent/US4971878A/en
Priority to DE68928210T priority patent/DE68928210T2/en
Priority to KR1019890004485A priority patent/KR910007719B1/en
Priority to EP89303300A priority patent/EP0336700B1/en
Publication of JPH01277245A publication Critical patent/JPH01277245A/en
Publication of JPH087448B2 publication Critical patent/JPH087448B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電子写真法を用いてなる画像形成装置に使
用される電子写真感光体を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Field of Industrial Application> The present invention relates to a method for producing an electrophotographic photosensitive member used in an image forming apparatus using electrophotography.

〈従来技術〉 最近、電子写真法を用いて画像を形成するための画像
形成装置に使用される電子写真感光体として、導電性基
体上に形成される光導電層をアモルファスシリコン(a
−Si)から構成した感光体が提案されている。このa−
Si感光体は以下に示す利点によりその実用化が望まれる
ようになった。
<Prior Art> Recently, as an electrophotographic photosensitive member used in an image forming apparatus for forming an image using an electrophotographic method, a photoconductive layer formed on a conductive substrate is formed of amorphous silicon (a).
Photoconductors composed of -Si) have been proposed. This a-
Due to the following advantages, Si photoconductors have been desired for practical use.

長寿命である。 It has a long life.

人体に対して無害である。 It is harmless to the human body.

感度が高い。 High sensitivity.

この様なa−Si感光体としては、特公昭60-35059号公
報に述べられている通りであり、光導電層のa−Si層を
形成するのに、ブラズマCVD法、スパッター法が用いら
れ、しかも水素の量としては10〜40atomic%にすること
が最適であると明記されている。
Such an a-Si photoreceptor is as described in JP-B-60-35059, and a plasma CVD method or a sputtering method is used to form the a-Si layer of the photoconductive layer. Moreover, it is specified that the optimum amount of hydrogen is 10 to 40 atomic%.

〈発明が解決しようとする問題点〉 従来のa−Si感光体は、a−Si層の膜中水素(H)量
は、上述の通り10〜40atomic%とすることが厳に規定さ
れている。また10〜40atomic%の水素を含有するa−Si
膜において、赤外線吸収スペクトルのSiH2結合に由来す
る2100cm-1付近における吸収の吸収係数α(SiH2)と、
SiH結合に由来する2000cm-1付近において吸収の吸収係
数α(SiH)との比α(SiH2)/α(SiH)が約0.2乃至
1.7とすることが、特開昭57-158650号公報に開示されて
いる。このような、a−Siによる電子写真感光体にとっ
て充分な光感度を保持しようとすると、その比抵抗が10
9Ωcmとなってしまい、ボロン(B)をドープしても10
11Ωcmと小さい。従って、既存のセレンやOPC感光体に
比べて、帯電保持能力に劣っていた。
<Problems to be Solved by the Invention> In the conventional a-Si photoconductor, the amount of hydrogen (H) in the film of the a-Si layer is strictly specified to be 10 to 40 atomic% as described above. . A-Si containing 10 to 40 atomic% hydrogen
In the film, the absorption coefficient α (SiH 2 ) of the absorption near 2100 cm −1, which originates from the SiH 2 bond in the infrared absorption spectrum,
The ratio α (SiH 2 ) / α (SiH) to the absorption coefficient α (SiH) of absorption around 2000 cm −1 derived from SiH bond is about 0.2 to
The setting of 1.7 is disclosed in Japanese Patent Application Laid-Open No. 57-158650. When it is attempted to maintain sufficient photosensitivity for such an a-Si electrophotographic photosensitive member, its specific resistance is 10%.
It becomes 9 Ωcm, and even if boron (B) is doped, 10
It is as small as 11 Ωcm. Therefore, it is inferior to the existing selenium and OPC photoconductors in charge retention ability.

あるいは、帯電保持能力を向上させようとすると、従
来のa−Si感光体では、上述の吸収係数比α(SiH2)/
α(SiH)を大きくする必要となる。そこで、プラズマC
VD法やスパッター法では、成膜時の高周波電力を大きく
する必要がでてくる。しかしながら、プラズマCVD法・
スパッター法では、成膜時の高周波電力を大きくするこ
とによって原料ガスの気相中での反応を活発にし(Si
H2)nなるポリマー粉が多量に発生してしまい、これが
製膜中に感光体の基板に付着し、正常な膜成長を妨げ、
その感光体を不良品としてしまっていた。更に、従来の
方法では、製膜速度が非常に小さく感光体の作成に長い
時間が必要でありコストを下げることが出来なかった。
Alternatively, in order to improve the charge retention ability, in the conventional a-Si photoconductor, the absorption coefficient ratio α (SiH 2 ) /
It is necessary to increase α (SiH). So plasma C
In the VD method and the sputtering method, it is necessary to increase the high frequency power during film formation. However, the plasma CVD method
In the sputter method, the high-frequency power during film formation is increased to activate the reaction of the source gas in the gas phase (Si
A large amount of H 2 ) n polymer powder is generated, which adheres to the substrate of the photoconductor during film formation and prevents normal film growth.
The photoconductor was a defective product. Further, in the conventional method, the film-forming speed is very small and it takes a long time to prepare the photosensitive member, so that the cost cannot be reduced.

〈問題を解決するための手段〉 上述の問題点を解決するために、本発明の電子写真感
光体の製造方法は、導電性基体上に、赤外吸収スペクト
ルのSiH2結合に由来する2100cm-1付近に現れる吸収の吸
収係数α(SiH2)と、SiH結合に由来する2000cm-1付近
に現れる吸収の吸収係数α(SiH)との比α(SiH2)/
α(SiH)を、1.3〜2.5となるように、かつ水素が40ato
mic%以上で60atomic%以下の範囲に含有されるアモル
ファスシリコンからなる光導電層をエレクトロン・サイ
クロトロン・レゾナンス法にて形成することを特徴とす
る。
<Means for Solving the Problem> In order to solve the above problems, the method for producing an electrophotographic photosensitive member of the present invention, on the conductive substrate, 2100 cm derived from SiH 2 bond of the infrared absorption spectrum- the ratio of the absorption coefficient of the absorption appears near 1 α (SiH 2), the absorption coefficient of the absorption appears near 2000 cm -1 derived from SiH bond α (SiH) α (SiH 2 ) /
α (SiH) should be 1.3 to 2.5, and hydrogen should be 40ato.
It is characterized in that a photoconductive layer made of amorphous silicon contained in a range of mic% or more and 60 atomic% or less is formed by an electron cyclotron resonance method.

〈作用〉 エレクトロン・サイクロトロン・レゾナンス法により
アモルファスシリコンからなる光導電層を形成してい
る。この製膜時に(SiH2)nのポリマー粉の発生の心配
がなく、この粉による影響を受けることがない。そのた
め、良品率の高い、かつ製膜速度を高めることができ、
よってこの製造方法によれば感光体のコスト低減を達成
できる。
<Operation> The photoconductive layer made of amorphous silicon is formed by the electron cyclotron resonance method. There is no concern about the generation of (SiH 2 ) n polymer powder during this film formation, and there is no influence of this powder. Therefore, the rate of non-defective products is high, and the film formation speed can be increased,
Therefore, according to this manufacturing method, cost reduction of the photoconductor can be achieved.

また、本発明の感光体によれば、水素を40atomic%以
上で60atomic%以下含有させ、かつ赤外吸収スペクトル
のSiH2結合に由来する2100cm-1付近に現れる吸収の吸収
係数α(SiH2)と、SiH結合に由来する2000cm-1付近に
現れる吸収の吸収係数α(SiH)との比α(SiH2)/α
(SiH)を、1.3〜2.5とすること、ボロンやリン等をド
ープしないにもかかわらず非常に高い暗比抵抗を示す。
これを電子写真用の感光体として用いることで、充分な
光感度を有し、かつ電荷保持能力にも優れているため、
より鮮明な画像を形成することが可能になる。
Further, according to the photoconductor of the present invention, the absorption coefficient α (SiH 2 ) of hydrogen, which contains 40 atomic% or more and 60 atomic% or less, and which appears near 2100 cm −1 derived from the SiH 2 bond in the infrared absorption spectrum. And the absorption coefficient α (SiH) of the absorption that appears near 2000 cm -1 due to the SiH bond, ratio α (SiH 2 ) / α
(SiH) is set to 1.3 to 2.5, and very high dark resistivity is exhibited even though boron or phosphorus is not doped.
By using this as a photoreceptor for electrophotography, it has sufficient photosensitivity and excellent charge retention ability.
It becomes possible to form a clearer image.

〈実施例〉 第1図は本発明による電子写真感光体の層構造を示す
断面図、第2図は第1図に示す如き電子写真感光体を作
成するためのエレクトロン・サイクロトロン・レゾナン
ス法による製膜装置を示す断面図である。
<Example> FIG. 1 is a sectional view showing a layer structure of an electrophotographic photosensitive member according to the present invention, and FIG. 2 is a process for producing an electrophotographic photosensitive member as shown in FIG. 1 by an electron cyclotron resonance method. It is sectional drawing which shows a membrane device.

まず、第2図において、製膜装置は、例えば水素プラ
ズマを発生させるプラズマ室11と、a−Si層を堆積させ
る堆積室12とを有している。プラズマ室11と堆積室12と
はプラズマ引出窓13で通じており、図示しない油拡散ポ
ンプあるいはターボ・モレキュラー・ポンプ、油回転ポ
ンプにより真空排気される。
First, in FIG. 2, the film forming apparatus has, for example, a plasma chamber 11 for generating hydrogen plasma and a deposition chamber 12 for depositing an a-Si layer. The plasma chamber 11 and the deposition chamber 12 communicate with each other through a plasma drawing window 13 and are evacuated by an oil diffusion pump, a turbo molecular pump, or an oil rotary pump (not shown).

プラズマ室11は空洞共振器構成となっており、導波管
14から2.45GHzのマイクロ波が導入される。なお、マイ
クロ波導入窓15はマイクロ波が通過できる石英ガラス板
でできている。プラズマ室11にはH2ガスが導入管17を通
して導入される。プラズマ室11の周囲には磁気コイル16
が配置されている。磁気コイル16はプラズマを発生さ
せ、プラズマ室11で発生したプラズマを堆積室12に引き
出すための発散磁場を形成する。
The plasma chamber 11 has a cavity resonator structure
Microwaves from 14 to 2.45 GHz are introduced. The microwave introduction window 15 is made of a quartz glass plate through which microwaves can pass. H 2 gas is introduced into the plasma chamber 11 through the introduction pipe 17. A magnetic coil 16 surrounds the plasma chamber 11.
Is arranged. The magnetic coil 16 generates plasma and forms a divergent magnetic field for drawing the plasma generated in the plasma chamber 11 to the deposition chamber 12.

堆積室12にはアルミ(Al)からなる導電性基体18が設
置されている。この実施例の場合は、導電性基体18はド
ラム状であるため、支持体に支持され回転される。堆積
室12には、原料ガスが導入管19を通して導入される。こ
の原料ガスとしては、例えばSiH4,Si2H6など水素(H)
を含むケイ素化合物、あるいはそれらを混合したガスで
ある。図中20は、マイクロ波発信器、21は導電性基体18
の加熱用ランプである。
A conductive substrate 18 made of aluminum (Al) is installed in the deposition chamber 12. In the case of this embodiment, since the conductive substrate 18 is drum-shaped, it is supported by the support and rotated. A raw material gas is introduced into the deposition chamber 12 through an introduction pipe 19. Examples of the source gas include hydrogen (H) such as SiH 4 and Si 2 H 6.
It is a silicon compound containing, or a gas obtained by mixing them. In the figure, 20 is a microwave transmitter, 21 is a conductive substrate 18
It is a heating lamp.

このような構成により、まず排気系によりプラズマ室
11及び堆積室12を排気し、プラズマ室11には導入管17を
介してH2ガスを、また堆積室12には導入管19を介して上
述した原料ガスをそれぞれ導入する。この時のガス圧は
10-3torr〜10-4torrに設定される。ここで、プラズマ室
11に発振器20からのマイクロ波を導入するとともに、磁
界をも印加しプラズマを励起する。プラズマ化されたH2
および原料ガスは、発散磁場により導電性基体18へと導
かれ、その表面にa−Siが堆積することとなる。支持体
は回転されるため、導電性基体18上に均一に製膜され
る。さらにプラズマ引き出し窓の位置、大きさを調製す
ることで、a−Si膜の均一性を向上することが可能であ
る。
With such a configuration, first, the plasma chamber is
11 and the deposition chamber 12 are evacuated, H 2 gas is introduced into the plasma chamber 11 through the introduction pipe 17, and the above-mentioned source gas is introduced into the deposition chamber 12 through the introduction pipe 19. The gas pressure at this time is
It is set to 10 -3 torr to 10 -4 torr. Where the plasma chamber
A microwave is introduced from the oscillator 20 to 11 and a magnetic field is also applied to excite plasma. Plasmaized H 2
The source gas is guided to the conductive substrate 18 by the divergent magnetic field, and a-Si is deposited on the surface thereof. Since the support is rotated, a film is uniformly formed on the conductive substrate 18. Furthermore, by adjusting the position and size of the plasma extraction window, it is possible to improve the uniformity of the a-Si film.

このような製膜装置にて、原料ガスとしてSiH4ガスを
用い、ガス圧を振って製膜実験を行った。このa−Si膜
のSiH2及びSiHの結合における吸収係数比α(SiH2)/
α(SiH)・明導電率(ημτ)・暗比抵抗率(ρd)
のガス圧依存性を第3図、第4図及び第5図にグラフに
してそれぞれ示す。
In such a film forming apparatus, SiH 4 gas was used as a raw material gas, and a film forming experiment was conducted by changing the gas pressure. Absorption coefficient ratio α (SiH 2 ) / SiH 2 and SiH bond of this a-Si film
α (SiH) / Bright conductivity (ημτ) / Dark resistivity (ρd)
The gas pressure dependence of is shown in graphs in FIGS. 3, 4, and 5, respectively.

これらに示されたとおり、吸収係数比α(SiH2)/α
(SiH)の値を1.3〜2.5にすることにより、暗比抵抗が1
012Ωcm以上となり、しかも明導電率が高い(光感度が
高い)a−Si膜が作成出来た。このように暗比抵抗が10
12Ωcm以上となり、しかも暗導電率が高い(光感度が高
い)a−Si膜は、従来の膜中H量が40atomic%以下で、
α(SiH2)/α(SiH)値が0.2〜1.7のa−Si膜では達
成することができないものであった。
As shown in these, the absorption coefficient ratio α (SiH 2 ) / α
By setting the value of (SiH) to 1.3 to 2.5, the dark resistivity becomes 1
It was possible to form an a-Si film having a high electrical conductivity (high photosensitivity) of 0 12 Ωcm or more. Thus, the dark resistivity is 10
The a-Si film with a resistivity of 12 Ωcm or more and high dark conductivity (high photosensitivity) has a conventional H content of 40 atomic% or less,
This cannot be achieved with an a-Si film having an α (SiH 2 ) / α (SiH) value of 0.2 to 1.7.

更に鋭意実験を重ねた結果、a−Si膜のα(SiH2)/
α(SiH)の値を、1.3〜2.5とし、しかもその膜中の水
素量を40atomic%以上にすると、本発明における効果
が、より一層助長されることになる。ただし、a−Si膜
中のH量を65atomic%以上にすると、その膜の光学的バ
ンドキャップが大きくなり過ぎて、可視光に対する光感
度を必要とする電子写真感光体の光導電層としては適さ
ないことが判明した。つまり、膜中のH量は、好適には
40〜60atomic%、最も好ましくは40〜55atomic%という
値である。
As a result of further diligent experiments, α (SiH 2 ) / of a-Si film
When the value of α (SiH) is 1.3 to 2.5 and the amount of hydrogen in the film is 40 atomic% or more, the effect of the present invention is further promoted. However, if the amount of H in the a-Si film is 65 atomic% or more, the optical band cap of the film becomes too large, and it is suitable as a photoconductive layer of an electrophotographic photosensitive member requiring photosensitivity to visible light. Turned out not. That is, the amount of H in the film is preferably
The value is 40 to 60 atomic%, most preferably 40 to 55 atomic%.

第2図に示す如き、本発明にかかる製膜によれば、エ
レクトロン・サイクロトロン・レゾナンス法により作成
しており、(SiH2)nなる粉は全く発生せず、しかも、
製膜速度・ガス利用効率とも従来法に比べて6〜10倍と
かなり高い値を得た。
As shown in FIG. 2, the film formation according to the present invention is performed by the electron cyclotron resonance method, and no powder of (SiH 2 ) n is generated.
Both film formation speed and gas utilization efficiency were 6 to 10 times higher than those of the conventional method.

また、本発明によるa−Si膜は、電子写真感光体の光
導電層、イメージ・センサーの感光部、液晶と積層され
た光情報の記憶素子の感光部等といった外部からの光情
報を電気信号に変換するデバイスの感光部に最も適して
いる。更には、太陽電池・薄膜トランジスターといった
デバイスにも適用可能である。
In addition, the a-Si film according to the present invention transmits optical information from outside such as a photoconductive layer of an electrophotographic photosensitive member, a photosensitive portion of an image sensor, a photosensitive portion of a storage device for optical information laminated with liquid crystal, and the like to an electric signal. Most suitable for the photosensitive part of the device to be converted into. Furthermore, it can be applied to devices such as solar cells and thin film transistors.

次に、この発明による膜中H量を40atomic%以上含有
するa−Si膜を電子写真感光体の光導電層として用いた
実施例を示す。
Next, examples in which the a-Si film containing 40 atomic% or more of H according to the present invention is used as a photoconductive layer of an electrophotographic photosensitive member will be described.

(実施例1) 第1図に示す如き構造の正帯電用の電子写真感光体1
を得るために、導電性基体2上に中間層3、光導電性4
及び表面被覆層5をこの順に形成した。
(Example 1) Electrophotographic photoreceptor 1 for positive charging having a structure as shown in FIG.
To obtain the intermediate layer 3 and the photoconductive layer 4 on the conductive substrate 2.
And the surface coating layer 5 were formed in this order.

即ち、光導電層4として水素を含み、赤外吸収スペク
トルの2100cm-1と2000cm-1における吸収係数比α(Si
H2)/α(SiH)が2.15であり、しかも、少量のボロン
(B)がドープされ、エレクトロン・サイクロトロン・
レゾナンス法によりa−Si膜を、更には表面被覆層5と
してエレクトロン・サイクロトロン・レゾナンス法によ
り作成されたa−SiC膜、及び、中間層3として同方法
により作成されボロンが多量にドープされたa−Si膜を
具備した正帯電用感光体を作成した。このときの作成条
件を下記表1にまとめておく。
That includes hydrogen as the photoconductive layer 4, the absorption coefficient ratio of 2100 cm -1 and 2000 cm -1 in the infrared absorption spectrum alpha (Si
H 2 ) / α (SiH) is 2.15, and a small amount of boron (B) is doped.
The a-Si film formed by the resonance method, the a-SiC film formed by the electron cyclotron resonance method as the surface coating layer 5, and the a-Si film formed by the same method as the intermediate layer 3 and heavily doped with boron. A positive charging photoreceptor having a -Si film was prepared. The preparation conditions at this time are summarized in Table 1 below.

ボロン(B)をドープするためのガスとしては、B
2H6,BH3などボロンと水素との化合物が好ましい。ま
た、ボロンと同じ働きをもった原子としては例えばアル
ミ,ガリュウム,インジュウムなどが適している。製膜
時に(SiH2)nなる粉は全く発生せず、しかも、製膜速
度・ガス利用効率とも従来に比べて6〜10倍とかなり高
い値を得た。更に作成された感光体の特性を測定したと
ころ、従来のa−Si感光体に比べて特に帯電特性に優れ
ていた。また、これを市販の正帯電用複写機に搭載し画
出しを行ったところ、良好な画を得た。また、この実施
例に述べたa−Si膜中に含まれるH量を測定したところ
48atomic%であった。
A gas for doping boron (B) is B
Compounds of boron and hydrogen such as 2 H 6 and BH 3 are preferable. Aluminum, gallium, indium, etc. are suitable as atoms having the same function as boron. No powder of (SiH 2 ) n was generated at the time of film formation, and the film formation speed and gas utilization efficiency were 6 to 10 times higher than those in the conventional case. Further, when the characteristics of the prepared photoconductor were measured, it was found that the charging property was particularly excellent as compared with the conventional a-Si photoconductor. When this was mounted on a commercially available copying machine for positive charging and images were printed, good images were obtained. Further, the amount of H contained in the a-Si film described in this example was measured.
It was 48 atomic%.

尚、表面被覆層5としてエレクトロン・サイクロトロ
ン・レゾナンス法により作成されたa−SiN膜あるいは
a−SiO膜を用いた場合でも良好な結果が得られてい
る。
Good results are obtained even when an a-SiN film or an a-SiO film formed by the electron cyclotron resonance method is used as the surface coating layer 5.

(実施例2) 光導電層作成時のガス圧のみを変化させ、その他の条
件は全く実施例1と同じにした場合のそれぞれの感光体
特性の結果を表2に示す。
(Example 2) Table 2 shows the results of the respective photoreceptor characteristics when only the gas pressure at the time of forming the photoconductive layer was changed and the other conditions were exactly the same as in Example 1.

上記表2に記した通り、ガス圧を選び吸収係数の比α
(SiH4)/α(SiH)の値を1.3〜2.5(第3図参照)と
した時に、良好な結果を得ている。
As shown in Table 2 above, the gas pressure is selected and the absorption coefficient ratio α
Good results are obtained when the value of (SiH 4 ) / α (SiH) is set to 1.3 to 2.5 (see FIG. 3).

尚、各サンプル(感光体)の光導電層に含まれるH含
有量を測定した結果、ガス圧が2.8〜3.4mtorrでは、45
〜52atomic%であって、3.8〜5.0mtorrでは20〜30atomi
c%という値であった。
In addition, as a result of measuring the H content contained in the photoconductive layer of each sample (photoreceptor), when the gas pressure was 2.8 to 3.4 mtorr, it was 45
~ 52atomic% and 20 ~ 30atomi at 3.8 ~ 5.0mtorr
It was a value of c%.

(実施例3) 光導電層4としてH量を46atomic%含有し、しかも、
少量のリン(P)がドープされてなるエレクトロン・サ
イクロトロン・レゾナンス法により作成されたa−Si
膜、更には表面被覆膜5としてエレクトロン・サイクロ
トロン・レゾナンス法により作成されたa−SiC膜、及
び、中間層3として同方法により作成されリン(P)が
多量にドープされたa−Si膜を具備した負帯電用感光体
を作成した。このときの作成条件を表3にまとめてお
く。
(Example 3) The photoconductive layer 4 contains 46 atomic% of H, and
A-Si prepared by electron cyclotron resonance method doped with a small amount of phosphorus (P)
The film, further, an a-SiC film formed by the electron cyclotron resonance method as the surface coating film 5, and an a-Si film formed by the same method as the intermediate layer 3 and heavily doped with phosphorus (P). To prepare a negative charging photoreceptor. The preparation conditions at this time are summarized in Table 3.

リンをドープするためのガスとしてはPH3などリンと
水素の化合物が適している。また、リンと同じ働きをも
った原子としては窒素,アンチモン,酸素などが適して
いる。
A compound of phosphorus and hydrogen such as PH 3 is suitable as a gas for doping phosphorus. Nitrogen, antimony, oxygen, etc. are suitable as atoms having the same function as phosphorus.

このとき(SiH2)nなる粉は全く発生せず、しかも、
製膜速度・ガス利用効率とも従来法に比べてかなり高い
値を得た。更に作成された感光体の特性を測定したとこ
ろ、特に帯電特性に優れていた。また、これを市販の負
帯電用複写機に搭載し画出しを行ったところ良好な画を
得た。
At this time, no powder of (SiH 2 ) n is generated, and moreover,
Both film formation speed and gas utilization efficiency were significantly higher than those of the conventional method. Further, when the characteristics of the photoconductor thus prepared were measured, it was found that the charging characteristics were particularly excellent. When this was mounted on a commercially available copying machine for negative charging and images were printed, good images were obtained.

尚、表面被覆層としてエレクトロン・サイクロトロン
・レゾナンス法により作成されたa−SiN膜あるいはa
−SiO膜を用いた場合でも良好な結果が得られている。
As the surface coating layer, an a-SiN film formed by the electron cyclotron resonance method or a
Good results have been obtained even when a -SiO film is used.

〈効果〉 本発明の電子写真感光体の製造方法によれば、エレク
トロン・サイクロトロン・レゾナンス法によりa−Si層
よりなる光導電層に、水素を40atomic%乃至60atomic%
の範囲内に含有させ、その時の赤外吸収比率α(SiH2
/α(SiH)を1.3〜2.5にすることから、感光体の製造
時、(SiH2)nなるポリマー粉の発生がなく、電子写真
用として重要となる暗比抵抗の大きな、かつ光感度に優
れた特性を有する感光体を得ることができる。
<Effect> According to the method for producing an electrophotographic photosensitive member of the present invention, hydrogen is added in an amount of 40 atomic% to 60 atomic% to the photoconductive layer formed of the a-Si layer by the electron cyclotron resonance method.
Infrared absorption ratio α (SiH 2 ) at that time
Since / α (SiH) is set to 1.3 to 2.5, no polymer powder of (SiH 2 ) n is generated during the production of the photoconductor, and the dark specific resistance and photosensitivity which are important for electrophotography are high. A photoreceptor having excellent characteristics can be obtained.

また、この製法による感光体によれば、上記の(Si
H2)nなる粉の発生がなく、製膜速度を速く、ガス利用
率とも従来法に比べてかなり高い値を示し、よって良品
率を高め、安価に製造できる。
Further, according to the photoconductor obtained by this manufacturing method,
There is no generation of H 2 ) n powder, the film formation rate is high, and the gas utilization rate is considerably higher than that of the conventional method, thus increasing the non-defective product rate and enabling inexpensive production.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る電子写真感光体の構造を示す断面
図、第2図は本発明のa−Si層を作成するエレクトロン
・サイクロトロン・レゾナンス法による製膜装置を示す
断面図、第3図、第4図及び第5図はガス圧に対する膜
中のα(SiH2)/α(SiH)値、明導電率(ημτ)及
び暗比抵抗率(ρd)を示す特性図である。 1:a−Si感光体導電性基体 2:導電性基体、3:中間層、4:光導電層 5:表面被覆層
FIG. 1 is a sectional view showing a structure of an electrophotographic photosensitive member according to the present invention, and FIG. 2 is a sectional view showing a film forming apparatus by an electron cyclotron resonance method for forming an a-Si layer of the present invention. FIG. 4, FIG. 5 and FIG. 5 are characteristic charts showing α (SiH 2 ) / α (SiH) value, light conductivity (ημτ) and dark resistivity (ρd) in the film with respect to gas pressure. 1: a-Si photoconductor conductive substrate 2: conductive substrate, 3: intermediate layer, 4: photoconductive layer 5: surface coating layer

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭58−186748(JP,A) 特開 昭54−98588(JP,A) 特開 昭61−83544(JP,A) 特開 昭59−159167(JP,A) 特開 昭63−81361(JP,A) 特開 昭57−158650(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-58-186748 (JP, A) JP-A-54-98588 (JP, A) JP-A-61-83544 (JP, A) JP-A-59- 159167 (JP, A) JP 63-81361 (JP, A) JP 57-158650 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】導電性基体上にアモルファスシリコンを成
分とした光導電層を形成する電子写真感光体の製造方法
において、 上記導電性基体上に赤外吸収スペクトルのSiH2結合に由
来する2100cm-1付近に現れる吸収の吸収係数α(SiH2
と、SiH結合に由来する2000cm-1付近に現れる吸収の吸
収係数α(SiH)との比α(SiH2)/α(SiH)を、1.3
〜2.5となるように、かつ水素が40atomic%以上で60ato
mic%以下の範囲に含有されるアモルファスシリコンか
らなる光導電層をエレクトロン・サイクロトロン・レゾ
ナンス法にて形成することを特徴とする電子写真感光体
の製造方法。
1. A method for producing an electrophotographic photosensitive member, comprising forming a photoconductive layer containing amorphous silicon as a component on a conductive substrate, wherein 2100 cm derived from SiH 2 bond of infrared absorption spectrum is formed on the conductive substrate. Absorption coefficient α (SiH 2 ) that appears near 1
And the ratio α (SiH 2 ) / α (SiH) between the absorption coefficient α (SiH) of the absorption appearing near 2000 cm −1 derived from the SiH bond are 1.3
~ 2.5, and 60atomic with hydrogen of 40atomic% or more
A method for manufacturing an electrophotographic photosensitive member, comprising forming a photoconductive layer made of amorphous silicon contained in a range of mic% or less by an electron cyclotron resonance method.
JP63107098A 1988-04-04 1988-04-28 Method for manufacturing electrophotographic photoreceptor Expired - Fee Related JPH087448B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP63107098A JPH087448B2 (en) 1988-04-28 1988-04-28 Method for manufacturing electrophotographic photoreceptor
US07/332,775 US4971878A (en) 1988-04-04 1989-04-03 Amorphous silicon photosensitive member for use in electrophotography
DE68928210T DE68928210T2 (en) 1988-04-04 1989-04-04 Electrophotographic photosensitive member
KR1019890004485A KR910007719B1 (en) 1988-04-04 1989-04-04 Electrographic photosensitive member
EP89303300A EP0336700B1 (en) 1988-04-04 1989-04-04 An electrophotographic photosensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63107098A JPH087448B2 (en) 1988-04-28 1988-04-28 Method for manufacturing electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH01277245A JPH01277245A (en) 1989-11-07
JPH087448B2 true JPH087448B2 (en) 1996-01-29

Family

ID=14450409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63107098A Expired - Fee Related JPH087448B2 (en) 1988-04-04 1988-04-28 Method for manufacturing electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JPH087448B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239397A (en) * 1989-10-12 1993-08-24 Sharp Kabushiki Liquid crystal light valve with amorphous silicon photoconductor of amorphous silicon and hydrogen or a halogen
JP3352292B2 (en) * 1995-08-21 2002-12-03 キヤノン株式会社 Image forming device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4147667A (en) * 1978-01-13 1979-04-03 International Business Machines Corporation Photoconductor for GaAs laser addressed devices
JPS57158650A (en) * 1981-03-25 1982-09-30 Minolta Camera Co Ltd Amorphous silicon photoconductor layer
JPS58186748A (en) * 1982-04-26 1983-10-31 Mitsubishi Chem Ind Ltd Electrophotographic receptor
JPS59159167A (en) * 1983-03-01 1984-09-08 Zenko Hirose Manufacture of amorphous silicon film
JPS6183544A (en) * 1984-09-29 1986-04-28 Toshiba Corp Electrophotographic sensitive body
US4738913A (en) * 1986-01-23 1988-04-19 Canon Kabushiki Kaisha Light receiving member for use in electrophotography comprising surface layer of a-Si:C:H
JPS6381361A (en) * 1986-09-26 1988-04-12 Canon Inc Manufacture of electrophotographic sensitive body
JPH07117764B2 (en) * 1988-04-04 1995-12-18 シャープ株式会社 Method for manufacturing electrophotographic photoreceptor

Also Published As

Publication number Publication date
JPH01277245A (en) 1989-11-07

Similar Documents

Publication Publication Date Title
JPS6161103B2 (en)
US4943503A (en) Amorphous silicon photoreceptor
JPH087448B2 (en) Method for manufacturing electrophotographic photoreceptor
US4960662A (en) Positively and negatively chargeable electrophotographic photoreceptor
JPH071395B2 (en) Electrophotographic photoreceptor
JPS6363051A (en) Electrophotographic sensitive body
JPH07117764B2 (en) Method for manufacturing electrophotographic photoreceptor
US4971878A (en) Amorphous silicon photosensitive member for use in electrophotography
US4990423A (en) Photosensitive member for electrophotography
US5100749A (en) Photosensitive member for electrophotography
US5009977A (en) Photosensitive member for electrophotography having amorphous silicon
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JP2720448B2 (en) Manufacturing method of electrophotographic photoreceptor
JPS616654A (en) Electrophotographic sensitive body and its manufacture
JPH028858A (en) Electrophotographic sensitive body
JPH0647738B2 (en) Method for forming deposited film by plasma CVD method
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JPH0241023B2 (en)
JPS6410067B2 (en)
JPH0212265A (en) Production of electrophotographic sensitive body
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH0334060B2 (en)
JP2598003B2 (en) Method for forming functional deposited film by microwave plasma CVD method
JPS61130956A (en) Electrophotographic sensitive body
JPH0210369A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees