JPH028858A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH028858A
JPH028858A JP16197888A JP16197888A JPH028858A JP H028858 A JPH028858 A JP H028858A JP 16197888 A JP16197888 A JP 16197888A JP 16197888 A JP16197888 A JP 16197888A JP H028858 A JPH028858 A JP H028858A
Authority
JP
Japan
Prior art keywords
film
photoreceptor
layer
photoconductive layer
halogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16197888A
Other languages
Japanese (ja)
Inventor
Hisashi Hayakawa
尚志 早川
Shiro Narukawa
成川 志郎
Kunio Ohashi
邦夫 大橋
Koji Tsujimoto
辻本 好治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP16197888A priority Critical patent/JPH028858A/en
Priority to US07/369,473 priority patent/US5009977A/en
Priority to EP89111472A priority patent/EP0348843B1/en
Priority to DE68925760T priority patent/DE68925760T2/en
Publication of JPH028858A publication Critical patent/JPH028858A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08278Depositing methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To improve sensitivity, electrostatic characteristic, nondefective rate, and film forming speed by using an a-SiN film contg. H and/or halogen at a specific % value or above as a photoconductive layer and forming said layer by an electron cyclotron resonance method. CONSTITUTION:This photosensitive body is incorporated by laminating an intermediate layer 2 for blocking the injection of charge from a base 1 side, the photoconductive layer 3 consisting of the a-Si contg. nitrogen and a surface coating layer 4 for protecting the surface and improving the electrostatic chargeability successively on the conductive base 1. The photoconductive layer 3 is formed of the a-SiN film contg. >=40atom.% H and/or halogen and is formed by the electron cyclotron resonance method. The sufficient photosensitivity and the excellent electrostatic charge holding power at the time of repeating are obtd. in this way and the nondefective rate and film forming rate are improved.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電子写真法をもちいて画像形成を行う画像形
成装置に使用される電子写真感光体に関し、例えば静電
転写型複写機等の感光体として利用される。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electrophotographic photoreceptor used in an image forming apparatus that forms an image using an electrophotographic method, such as an electrostatic transfer type copying machine. Used as a photoreceptor.

〈従来技術〉 最近、電子写真法をもちいて画像形成を行う画像形成装
置に使用される電子写真感光体として水素(H)を含む
アモルファス・シリコンナイトライド(a−3iNと称
す)を光導電層とする感光体(a−5iN感光体と称す
)が、以下に示す利点によりその実用化が望まれている
<Prior art> Recently, amorphous silicon nitride (referred to as a-3iN) containing hydrogen (H) has been used as a photoconductive layer as an electrophotographic photoreceptor used in image forming apparatuses that form images using electrophotography. Practical use of a photoreceptor (referred to as a-5iN photoreceptor) is desired due to the following advantages.

■長寿命である。■Long lifespan.

■人体に対して無害である。■Harmless to the human body.

■感度が高い。■High sensitivity.

この際、a−SiN感光体はプラズマCVD法あるいは
メツパター法により作成され、しかも、その膜中Hff
iは、厳に1〜4 Q Btomic%であるものと特
開昭54−145539号公報に記載されている。
At this time, the a-SiN photoreceptor is produced by plasma CVD method or metsputter method, and Hff in the film is
JP-A-54-145539 states that i is strictly 1 to 4 Q Btomic%.

〈発明が解決しようとする問題点〉 電子写真感光体の光導電層として用いられその膜中Hf
fiを1〜40 atomic%であると厳に限定され
ていた従来のa−3iN膜は、その膜中Nff1を規定
することによって感光体として使用可能な光感度(ημ
τとして10−’〜l O−’cm/v)を有し、かつ
、B(ボロン)をドープすることによって暗比抵抗値も
10′3Ωcm程度と感光体として充分使用可能な特性
を示していた。
<Problems to be solved by the invention> Hf in the film used as a photoconductive layer of an electrophotographic photoreceptor
The conventional a-3iN film, whose fi is strictly limited to 1 to 40 atomic%, has a photosensitivity (ημ
It has a τ of 10-' to 1 O-'cm/v), and by doping with B (boron), the dark specific resistance value is also about 10'3 Ωcm, which is sufficient for use as a photoreceptor. Ta.

しかしながら、上記感光体の繰り返し特性を測定してみ
ると、最明に感光体表面に電荷を乗せて得られた帯電電
位に比べて、露光あるいは光除電を経て改めて電荷を乗
せて得られた帯電電位は、初期の値の20%以上低下し
た値であった。つまり、その膜中■]1をl〜4 Q 
atomic%であると厳に限定されていた従来のa−
SiN膜を光導電層として用いられた感光体は、実用段
階においては、非常に帯電能の低いものであり、実用化
には、適さないものであった。この理由としては、Nを
含むことによってSiのダングリング・ボンドを初めと
したギャップ・ステイトが増加し、感光体表面の電荷量
に比べて有り余る数の、露光・光除電によって励起され
た電荷が、そのギャップ・ステイトにトラップされ、次
の帯電により印加される電界により再び励起され表面電
荷を打ち消すためと考える。
However, when we measured the repetition characteristics of the photoreceptor, we found that compared to the charging potential obtained by placing a charge on the surface of the photoreceptor in the brightest light, the charging potential obtained by placing a charge anew after exposure or photostatic discharge The potential was a value that was 20% or more lower than the initial value. In other words, in that film ■] 1 is 1 to 4 Q
Conventional a-, which was strictly limited to atomic%
A photoreceptor using a SiN film as a photoconductive layer had a very low charging ability in the practical stage, and was not suitable for practical use. The reason for this is that the inclusion of N increases gap states such as dangling bonds of Si, and the charges excited by exposure and photo-neutralization are excessive compared to the amount of charge on the photoreceptor surface. , is trapped in the gap state, and is excited again by the electric field applied during the next charging, canceling out the surface charge.

しかも、従来のa−3iN感光体は、プラズマCVD法
・メツパター法により作成されるためどうしても(Si
H2)nなるポリマー粉が発生してしまい、これが製膜
中に感光体の基板に付着し正常な膜成長を妨げ、その感
光体を不良品としてしまっていた。更に、従来の製法で
は、製膜速度が非常に小さ(感光体の作成に長い時間が
必要でありコストを下げることが出来なかった。また、
充分な光感度を得るためには基板加熱を行わなければな
らない。
Moreover, since the conventional a-3iN photoreceptor is manufactured by plasma CVD method and metsuputter method, it is unavoidable to use (Si)
H2) Polymer powder called n was generated, which adhered to the substrate of the photoreceptor during film formation, hindering normal film growth, and resulting in the photoreceptor being rejected. Furthermore, with conventional manufacturing methods, the film formation speed is extremely slow (it takes a long time to create the photoreceptor, making it impossible to reduce costs.
In order to obtain sufficient photosensitivity, the substrate must be heated.

く問題を解決するための手段〉 本発明による電子写真感光体は、■]及び/又はハロゲ
ンを40 atomic%以上含むa−3iN膜を感光
体の光導電層としたことを特徴とするもんである。
Means for Solving the Problems> The electrophotographic photoreceptor according to the present invention is characterized in that the photoconductive layer of the photoreceptor is an a-3iN film containing 40 atomic% or more of 1 and/or halogen. be.

又、そのa−SiH層をエレクトロン・サイクロトロン
・レゾナンス法により作成する。
Further, the a-SiH layer is created by an electron cyclotron resonance method.

く作 用〉 本発明の電子写真感光体によれば、H及び/又はハロゲ
ンを40 atomic%以上含むa−3iN膜は比抵
抗が1013Ωcmと非常に高く、かつ、充分の光感度
も有する。また、励起された電荷のトラップ・センター
として働くギャップ・ステイトを少なくすることが可能
である。そこで、このa−3iN膜を電子写真感光体の
光導電層として用いることにより、充分な光感度を有し
、特に繰り返し時の帯電保持能力に優れた感光体を創出
できる。
Effects> According to the electrophotographic photoreceptor of the present invention, the a-3iN film containing 40 atomic % or more of H and/or halogen has a very high specific resistance of 10 13 Ωcm and also has sufficient photosensitivity. Furthermore, it is possible to reduce the number of gap states that act as trap centers for excited charges. Therefore, by using this a-3iN film as a photoconductive layer of an electrophotographic photoreceptor, it is possible to create a photoreceptor that has sufficient photosensitivity and is particularly excellent in charge retention ability during repeated cycles.

しかも、これをエレクトロン・サイクロトロン・レゾナ
ンス法により作成することにより良品率、及び、製膜速
度を高くすることができコストの低減を達成できる。
Furthermore, by producing this film using the electron cyclotron resonance method, the yield rate and film forming rate can be increased, and costs can be reduced.

〈実施例〉 第1図に本発明にかかる電子写真感光体の積層構造につ
いて示す。図は、AI等からなる導電性支持体l上に支
持体側からの電荷の注入を阻止するための中間層2、窒
素を含むa−3iからなる光導電B3、表面を保護し帯
電能を向上させるための表面被覆層4を順次積層して形
成して構成される電子写真感光体である。
<Example> FIG. 1 shows a laminated structure of an electrophotographic photoreceptor according to the present invention. The figure shows a conductive support l made of AI, etc., an intermediate layer 2 to prevent charge injection from the support side, a photoconductive layer B3 made of a-3i containing nitrogen, and a photoconductive layer B3 to protect the surface and improve charging ability. This is an electrophotographic photoreceptor that is formed by sequentially laminating a surface coating layer 4 for the purpose of increasing the image quality.

第2図に、エレクトロン・サイクロトロン・レゾナンス
法によりa−3iN膜を作成する製膜装置を示す。製膜
装置においてはプラズマ室11は空胴共振機構成となっ
ており、導波管14を通して2.45G、4zのマイク
ロ波が導入される。尚、マイクロ波導入窓15はマイク
ロ波が通過できる石英ガラスでできている。
FIG. 2 shows a film forming apparatus for forming an a-3iN film by the electron cyclotron resonance method. In the film forming apparatus, the plasma chamber 11 has a cavity resonator configuration, and microwaves of 2.45G and 4z are introduced through the waveguide 14. Note that the microwave introduction window 15 is made of quartz glass through which microwaves can pass.

プラズマ室11にはH3が導入される。また、このプラ
ズマ室の回りには磁気コイル16が設置されており、こ
こで発生したプラズマを引き出すための発散磁場が印加
されている。堆積室12にはAI等からなる導電性基板
18が設置されており、この実施例の場合はドラム状で
あるため支持体に支持され回転される。堆積室12には
原料ガスとして例えばS+)14・5i2Ha−3iF
aSiC1,・5iHC13・SiHyCI2などHあ
るいはハロゲンを含むケイ素化合物あるいは、それらを
混合して導入管19より導入する。また、窒素(N)を
供給するガスとしてはNHy・N、といったガスも導入
管19より導入される。また、He、Ar等の不活性ガ
スは、導入管17より導入される。
H3 is introduced into the plasma chamber 11. Further, a magnetic coil 16 is installed around this plasma chamber, and a divergent magnetic field is applied to draw out the plasma generated here. A conductive substrate 18 made of AI or the like is installed in the deposition chamber 12, and in this embodiment, since it is drum-shaped, it is supported by a support and rotated. The deposition chamber 12 contains, for example, S+)14.5i2Ha-3iF as a raw material gas.
A silicon compound containing H or a halogen, such as aSiC1, 5iHC13, SiHyCI2, or a mixture thereof is introduced from the introduction pipe 19. Further, as a gas for supplying nitrogen (N), a gas such as NHy.N is also introduced from the introduction pipe 19. Further, an inert gas such as He or Ar is introduced through the introduction pipe 17.

まず、プラズマ室11・堆積室12が排気され、それぞ
れの室にHff1l 原料ガスが導入される。この時の
ガス圧は10”torr〜10−’torrに設定され
る。ここで、プラズマ室11にマイクロ波電源20によ
り発生したマイクロ波を矩型導波管14を通して導入す
るとともに、磁界をも印加しプラズマを励起する。プラ
ズマ化されたH2および原料ガスは発散磁場により基板
18へと導かれa −3iNが堆積することとなる。支
持体は回転されるため均一に製膜される。さらにプラズ
マ引き出し窓13の位置、大きさを調整することにより
膜の均一性を向上することが可能である。
First, the plasma chamber 11 and the deposition chamber 12 are evacuated, and Hff1l source gas is introduced into each chamber. The gas pressure at this time is set to 10''torr to 10-'torr.Here, microwaves generated by the microwave power source 20 are introduced into the plasma chamber 11 through the rectangular waveguide 14, and a magnetic field is also applied. is applied to excite the plasma. The plasma-formed H2 and source gas are guided to the substrate 18 by the divergent magnetic field, and a-3iN is deposited. Since the support is rotated, a uniform film is formed. Furthermore, By adjusting the position and size of the plasma extraction window 13, it is possible to improve the uniformity of the film.

以上のような構成の製膜装置において、原料ガスとして
SiHyガスとNHyガスを用いて実験を行った。この
時の製膜条件は、原料ガス原遺が(S + H4+ N
 H3) = 120 s e c m−ガス比が(S
 fHy/S iHy+NHy+)〜0.96、マイク
ロ波パワー=2.5kwとし、ガス圧を2.7〜4、 
3mTorrに変化させてA、 1基板上にa−3iG
e層を積層した。なお、基板加熱は施していない。
In the film forming apparatus configured as described above, an experiment was conducted using SiHy gas and NHy gas as source gases. The film forming conditions at this time were such that the raw material gas was (S + H4 + N
H3) = 120 sec m-gas ratio is (S
fHy/SiHy+NHy+)~0.96, microwave power = 2.5kw, gas pressure 2.7~4,
Change to 3mTorr, A, a-3iG on one board
The e layer was laminated. Note that the substrate was not heated.

こ(Da  S+N膜の、膜中Hff1565nmに対
する引導電率(lμτ)・暗比抵抗率(ρd)のガス圧
依存特性を第3図、第4図及び第5図にそれぞれ示す。
The gas pressure dependence characteristics of the attractive conductivity (lμτ) and dark specific resistivity (ρd) of this (Da S+N film) with respect to Hff 1565 nm in the film are shown in FIGS. 3, 4, and 5, respectively.

これらに示されたとおり、ガス圧を選びHlを40 a
toIIlic%以上にすることにより、ボロンをドー
プすることなしにもかかわらず初めて暗比抵抗が10+
3Ωcm以上となり、しかも引導電率が高い(光感度が
高い)a−3iN膜が作成出来た。
As shown in these, select the gas pressure and set Hl to 40 a
By increasing toIIlic% or more, the dark specific resistance becomes 10+ for the first time without boron doping.
An a-3iN film with a conductivity of 3 Ωcm or more and high conductivity (high photosensitivity) was created.

また、引導電率(lμτ)が、大きくなっている領域に
おいて、μに反比例する暗比抵抗率(ρd)が大きくな
っている事からτが延びている事が分かる。τとダング
リング・ボンドとの因果関係が強い(ダングリング・ボ
ンドが減少するとτが延びる。)ことは公知の事実であ
る。よって、この様にrイ量を40 atomic%以
上にすることによって主にSi原子のダングリング・ボ
ンドを減少さすことが出来た事が分かった。
Furthermore, in a region where the attractive conductivity (lμτ) increases, the dark specific resistivity (ρd), which is inversely proportional to μ, increases, which indicates that τ is elongated. It is a well-known fact that there is a strong causal relationship between τ and dangling bonds (as dangling bonds decrease, τ increases). Therefore, it was found that by increasing the amount of R to 40 atomic% or more, it was possible to mainly reduce the dangling bonds of Si atoms.

このようにボロンをドープすることなしに暗比抵抗が1
0+3Ωcm以上となり、しかも引導電率が高い(光感
度が高い)a−3iN膜は、従来の膜中1(量が40 
atomic%以下のa−3iN膜では達成することが
出来なかった。
In this way, the dark resistivity is 1 without doping with boron.
The a-3iN film, which has a conductivity of 0+3 Ωcm or more and has high conductivity (high photosensitivity), is the best among conventional films (the amount is 40
This could not be achieved with an a-3iN film having atomic% or less.

本発明では、エレクトロン・サイクロトロン・レゾナン
ス法によって、a−3illlを作成することにより(
s I 82) nなる粉は全く発生しなっかた。
In the present invention, by creating a-3ill by the electron cyclotron resonance method (
s I 82) No powder was generated.

しかも、この時、製膜速度・ガス利用効率ともガス圧に
大きく依存し、ガス圧を選ぶことにより従来法に比べて
6〜10倍とかなり高い値の製膜速度・ガス利用効率を
得た。更に好ましいことにはHlを4 Q atomi
c%以上にするガス圧、つまり、暗比抵抗が10”00
m以上となり、しかも引導電率が高い(光感度が高い)
a−3i膜を作製することが出来るガス圧(2〜3 、
5 mtorr)において製膜速度・ガス利用効率とも
高い値を示す“バが判明した。これに対して従来法によ
り作製されたIlを40 atomic%以下含有する
a−3iN膜では一般に製膜速度が太き(なる領域にお
いては光感度が劣化してしまうという傾向があった。
Moreover, at this time, both the film forming speed and gas utilization efficiency depended greatly on the gas pressure, and by selecting the gas pressure, we were able to obtain a film forming speed and gas utilization efficiency that were 6 to 10 times higher than with conventional methods. . More preferably, Hl is 4 Q atoms
The gas pressure is higher than c%, that is, the dark specific resistance is 10"00
m or more, and has high conductivity (high photosensitivity)
The gas pressure (2~3,
5 mtorr) showed high values for both film formation speed and gas utilization efficiency.On the other hand, a-3iN films containing less than 40 atomic% of Il prepared by the conventional method generally had a low film formation speed. There was a tendency for photosensitivity to deteriorate in areas where the area was thick.

この点からしても従来法にない本発明の優位な点が存在
することが判明した。
From this point as well, it has been found that the present invention has an advantage over conventional methods.

原料ガスとしてハロゲンを含むケイ素化合物が導入され
る場合には膜中Hffl及びハロゲン量の合計が40 
atomic%以上である必要があることは言うまでも
ない。更に鋭意実験を重ねた結果、膜中のHyl及び/
又はハロゲン量を60 atomic%以上にするとそ
の膜の光学的バンドギャップが大きくなり過ぎて、可視
光に対する光感度を必要とする電子写真感光体の光導電
層としては適さないことが判明した。つまり、膜中のH
l及び/又はハロゲン量は、好適には40〜60 at
omic%であって、最も好ましくは40〜55 at
omic%という値である。
When a silicon compound containing halogen is introduced as a raw material gas, the total amount of Hffl and halogen in the film is 40
Needless to say, it needs to be atomic% or more. As a result of further intensive experiments, Hyl and/or
Alternatively, it has been found that when the amount of halogen is 60 atomic % or more, the optical band gap of the film becomes too large, making it unsuitable as a photoconductive layer of an electrophotographic photoreceptor that requires photosensitivity to visible light. In other words, H in the film
l and/or halogen amount is preferably 40 to 60 at
omic%, most preferably 40-55 at
The value is omic%.

次に、膜中Hffiを43〜46 atomic%の範
囲内に固定して、S i H4とNH3ガスの混合比を
変化させ膜中N量を変化させたところ、0.01ato
mic%以下では暗比抵抗の上昇効果がないどころか、
Nのドナーとしての働きが優勢となり暗比抵抗がむしろ
低下してしまい、電子写真感光体の光導電層としては適
さないことが判明した。また、28 atomic%以
上では、今度は可視光に対する感度が急激に低下してし
まいこれもまた電子写真感光体の光導電層としては適さ
ないことが判明した。つまり、膜中のNilとしてはS
i原子量に対して通常は0.01〜28 atomic
%適しており、好適には0.2〜28 atomic%
という値になる。
Next, while fixing the Hffi in the film within the range of 43 to 46 atomic%, we changed the mixing ratio of Si H4 and NH3 gas to change the amount of N in the film.
Below mic%, there is not only no effect of increasing dark resistivity, but also
It was found that the function of N as a donor was dominant and the dark resistivity was rather lowered, making it unsuitable as a photoconductive layer of an electrophotographic photoreceptor. Furthermore, it has been found that when the content is 28 atomic % or more, the sensitivity to visible light decreases rapidly, and this is also not suitable as a photoconductive layer of an electrophotographic photoreceptor. In other words, as Nil in the film, S
Normally 0.01 to 28 atomic to i atomic weight
%, preferably 0.2-28 atomic%
The value is .

また、伝導型の制御において、P型にするにはB 、 
Hy等の周期律表第■族に属する元素を含むガスを、ま
たN型にするにはPHy等の第■族に属する元素を含有
するガスを導入することで達成できる。
In addition, in controlling the conduction type, to make it P type, B,
A gas containing an element belonging to group Ⅰ of the periodic table, such as Hy, can be converted to N-type by introducing a gas containing an element belonging to group Ⅰ, such as PHy.

本発明によるa−SiN膜は、電子写真感光体の光導電
層、イメージ・センサーの感光部、液晶と積層された表
示素子の感光部等といった外部からの光情報を電気信号
に変換するデバイスの感光部に最も適している。更には
、太陽電池・薄膜トランジスターといったデバイスにも
適用可能である。
The a-SiN film according to the present invention can be used in devices that convert external optical information into electrical signals, such as photoconductive layers of electrophotographic photoreceptors, photosensitive parts of image sensors, and photosensitive parts of display elements laminated with liquid crystals. Most suitable for photosensitive areas. Furthermore, it can also be applied to devices such as solar cells and thin film transistors.

次に、この本発明に開示された膜中Hfi及び/または
ハロゲン量を40 atoIRic%以上含有するa−
3iNを電子写真感光体の光導電層として用いた実施例
を以下に記す。
Next, a-
An example in which 3iN was used as a photoconductive layer of an electrophotographic photoreceptor will be described below.

(実施例1) N原子の含有@(N/Si)がl l atomic%
であり、Hf1lを48 atomic%含有し、しか
も、微量のボロンがドープされた膜厚が24μmである
a−3iNを光導電層とし、更には表面被覆層としてエ
レクトロン・サイクロトロン・レゾナンス法により作成
されたa−3iC膜、及び、中間層として同方法により
作成されボロンが多量にドープされたa−Si膜を具備
した正帯電用感光体を作成した。このときの作成条件を
表1にまとめておく。
(Example 1) N atom content @(N/Si) is l l atomic%
A-3iN containing 48 atomic% of Hf1l and doped with a trace amount of boron and having a film thickness of 24 μm was used as the photoconductive layer, and the surface coating layer was prepared by the electron cyclotron resonance method. A photoreceptor for positive charging was prepared, which included an a-3iC film and an a-Si film, which was prepared by the same method and doped with a large amount of boron, as an intermediate layer. The preparation conditions at this time are summarized in Table 1.

ここで、ボロンをドープするためのガスとじては、B 
t Ha・BCI、・BHyなどボロンとHあるいはハ
ロゲとの化合物が好ましい。また、ボロンと同じ働きを
もった原子そしては、例えばアルミ・ガリウム・インジ
ュウムなどが適している。
Here, the gas for doping boron is B
Compounds of boron and H or halogen such as tHa.BCI and .BHy are preferred. Also, atoms that have the same function as boron, such as aluminum, gallium, and indium, are suitable.

衣  l ただし、中間層あるいは光導電層を作成するときのB 
、 I−1、はそれぞれH、中に3000pprrlあ
るいは30ppmに希釈されている。
However, B when creating an intermediate layer or photoconductive layer
, I-1, are each diluted in H to 3000 pprrl or 30 ppm.

このとき(SiHy)nなる粉は全く発生せず、しかも
、製膜速度・ガス利用効率とも従来法に比べて6〜10
倍とかなり高い値を得た。更に作成された感光体の特性
を測定したところ、特に繰り返し時の帯電特性に優れて
いた。また、これを市販の正帯電用tq写機に搭載し画
出しを行ったところ良好な画を得た。
At this time, (SiHy)n powder was not generated at all, and the film forming speed and gas utilization efficiency were 6 to 10 times higher than the conventional method.
I got a much higher value. Furthermore, when the characteristics of the produced photoreceptor were measured, it was found to be particularly excellent in charging characteristics during repeated cycles. In addition, when this was mounted on a commercially available positive charging tq photographic machine and an image was produced, a good image was obtained.

尚、表面被覆層としてエレクトロン・サイクロトロン・
レゾナンス法により作成されたa −3iN膜あるいは
a−SiH膜を用いた場合でも良好な結果が得られてい
る。
In addition, as a surface coating layer, electron, cyclotron,
Good results have also been obtained when using an a-3iN film or an a-SiH film produced by the resonance method.

(実施例2) 光導電層作成時のガス圧のみを変化させ、その他の条件
は全〈実施例1と同じにした場合の繰り返し時の帯電特
性、及び、画像特性の評価結果をそれぞれ表2に示す。
(Example 2) When only the gas pressure during photoconductive layer formation was changed and all other conditions were the same as in Example 1, the evaluation results of charging characteristics and image characteristics during repetition are shown in Table 2. Shown below.

ここに示されたとおり、ガス圧を選びHffiを40 
atomic%以上含んだとき良好な結果を得ている。
As shown here, select the gas pressure and set Hffi to 40
Good results have been obtained when the content is atomic% or more.

尚、この時のa−3iN膜のN原子の含有ff1(N/
Si)は9〜12%の範囲に固定した。つまり、この実
施例においてN原子含有量は、その結果に影響は与えず
、Hffiが膜質に与える影響のみを判断できる実験と
なっている。
Note that the N atom content ff1(N/
Si) was fixed in the range of 9 to 12%. In other words, in this example, the N atom content does not affect the results, and the experiment allows only the influence of Hffi on the film quality to be determined.

表  2 (実施例3) 先導電層及び、中間層にボロンをドープする替わりにリ
ンをドープする以外は実施例2と同じ条件にて負帯電用
の感光体を作成した。このときの作成条件を表3にまと
めておく。リンをドープするためのガスとしてはPHy
・Pct、・Pct。
Table 2 (Example 3) A photoreceptor for negative charging was prepared under the same conditions as in Example 2 except that the leading conductive layer and the intermediate layer were doped with phosphorus instead of boron. The preparation conditions at this time are summarized in Table 3. PHy is used as a gas for doping phosphorus.
・Pct, ・Pct.

などリンとHあるいはハロゲンとの化合物が適している
Compounds of phosphorus and H or halogen are suitable.

このとき(5iHy)nなる粉は全く発生せず、しかも
、製膜速度・ガス利用効率とも従来法に比べて6〜10
倍とかなり高い値を得た。更に作成された感光体の特性
を測定したところ、特に繰り返し時の帯電特性に優れて
いた。また、これを市販の負帯電用の複写機に搭載し画
出しを行ったところ良好な画を得た。
At this time, (5iHy)n powder was not generated at all, and both film forming speed and gas utilization efficiency were 6 to 10 times higher than the conventional method.
I got a much higher value. Furthermore, when the characteristics of the produced photoreceptor were measured, it was found to be particularly excellent in charging characteristics during repeated cycles. In addition, when this was installed in a commercially available copying machine for negative charging and an image was produced, a good image was obtained.

尚、表面被覆層としてエレクトロン・サイクロトロン・
レゾナンス法により作成されたa −3iN膜あるいは
a−3iO膜を用いた場合でも良好な結果が得られてい
る。
In addition, as a surface coating layer, electron, cyclotron,
Good results have also been obtained when using an a-3iN film or an a-3iO film produced by the resonance method.

〈発明の効果〉 本発明の電子写真感光体によれば、膜中のHffi及び
/またはハロケン量が4 Q Btomic%以上であ
るa−3iN膜を光導電層として用いており、そのため
充分な光感度を有し、かつ、暗比抵抗が非常に大きく、
感度は言うまでもなく特に繰り返し時の帯電特性の優れ
た感光体を作成できる。
<Effects of the Invention> According to the electrophotographic photoreceptor of the present invention, an a-3iN film in which the amount of Hffi and/or halogen in the film is 4 Q Btomic% or more is used as a photoconductive layer, so that sufficient light can be absorbed. It has high sensitivity and a very large dark specific resistance.
It is possible to create a photoreceptor with excellent charging characteristics, especially during repeated cycles, as well as sensitivity.

また、この感光体をエレクトロン・サイクロトロン・レ
ゾナンス法により作成することにより(S i Hy)
 nなる粉は全く発生せず、しかも、製膜速度・ガス利
用効率とも従来法に比べてかなり高い値を得、その結果
安価な電子写真感光体を作成できる。
In addition, by creating this photoreceptor using the electron cyclotron resonance method (S i Hy)
No powder is generated at all, and both film forming speed and gas utilization efficiency are considerably higher than those of conventional methods, and as a result, an inexpensive electrophotographic photoreceptor can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる電子写真感光体の構造を示す断
面図、第2図は本発明のa−3iN層を作成するエレク
トロン・サイクロトロン・レゾナンス法による製膜装置
を示す断面図、第3図、第4図及び第5図はそれぞれ膜
中の水素含有量、565nmの光に対する引導電率(η
μτ)、暗比抵抗率(ρd)のガス依存特性を示す性菌
である。 1;導電性支持体 2;中間層 3;光導電層 4;表面被覆層 代理人 弁理士 杉山毅至(他1名) 篇10 1#気先 第2図 手続補正書 平成 1年 6月27日
FIG. 1 is a cross-sectional view showing the structure of an electrophotographic photoreceptor according to the present invention, FIG. Figures 4 and 5 show the hydrogen content in the film and the electrical conductivity (η
μτ) and dark specific resistivity (ρd), which exhibit gas-dependent characteristics. 1; Conductive support 2; Intermediate layer 3; Photoconductive layer 4; Surface coating layer Agent Patent attorney Takeshi Sugiyama (and 1 other person) Edition 10 1 #Kisen Diagram 2 Procedural Amendments June 27, 1999 Day

Claims (1)

【特許請求の範囲】 1、導電性基体と、該導電性基体上に形成され40at
omic%以上の水素、及び/又はハロゲンを含むアモ
ルファス・シリコンナイトライド(a−Si_1_−_
x_−_y_−_zN_x:H_y:X_zただし、X
はハロゲン)からなる光導電層とを具備する電子写真感
光体。 2、上記アモルファス・シリコンナイトライド層がエレ
クトロン・サイクロトロン・レゾナンス法により作成さ
れた事を特徴とする請求範囲第1項記載の電子写真感光
体。
[Scope of Claims] 1. A conductive substrate, and a 40at
Amorphous silicon nitride (a-Si_1_-_
x_-_y_-_zN_x:H_y:X_zHowever, X
is a halogen). 2. The electrophotographic photoreceptor according to claim 1, wherein the amorphous silicon nitride layer is formed by an electron cyclotron resonance method.
JP16197888A 1988-06-28 1988-06-28 Electrophotographic sensitive body Pending JPH028858A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16197888A JPH028858A (en) 1988-06-28 1988-06-28 Electrophotographic sensitive body
US07/369,473 US5009977A (en) 1988-06-28 1989-06-21 Photosensitive member for electrophotography having amorphous silicon
EP89111472A EP0348843B1 (en) 1988-06-28 1989-06-23 Photosensitive member for electrophotography
DE68925760T DE68925760T2 (en) 1988-06-28 1989-06-23 Photosensitive element for electrophotography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16197888A JPH028858A (en) 1988-06-28 1988-06-28 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH028858A true JPH028858A (en) 1990-01-12

Family

ID=15745699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16197888A Pending JPH028858A (en) 1988-06-28 1988-06-28 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH028858A (en)

Similar Documents

Publication Publication Date Title
JPH0792611B2 (en) Heterogeneous electrophotographic imaging member consisting of amorphous silicon and silicon oxide
JPH028858A (en) Electrophotographic sensitive body
JPS6363051A (en) Electrophotographic sensitive body
US4960662A (en) Positively and negatively chargeable electrophotographic photoreceptor
JPH01204057A (en) Manufacture of electrophotographic sensitive body
JPH0234863A (en) Electrophotographic sensitive body
JPH087448B2 (en) Method for manufacturing electrophotographic photoreceptor
US4990423A (en) Photosensitive member for electrophotography
US5009977A (en) Photosensitive member for electrophotography having amorphous silicon
JPH03242653A (en) Electrophotographic sensitive body
JPH0241742B2 (en)
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JPS6184656A (en) Electrophotographic sensitive body
JPH02301769A (en) Electrophotographic sensitive body
JPH0210369A (en) Electrophotographic sensitive body
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH01271759A (en) Electrophotographic sensitive body
JPH0210370A (en) Electrophotographic sensitive body
JPS60112047A (en) Photoconductive member
JPS63243954A (en) Electrophotographic sensitive body
JPS60178459A (en) Electrophotographic sensitive body
JPS5811949A (en) Photoconductive member
JPS60205457A (en) Electrophotographic sensitive body
JPH02146054A (en) Electrophotographic sensitive body
JPS58220145A (en) Electrophotographic receptor