JPH01271759A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01271759A
JPH01271759A JP10023388A JP10023388A JPH01271759A JP H01271759 A JPH01271759 A JP H01271759A JP 10023388 A JP10023388 A JP 10023388A JP 10023388 A JP10023388 A JP 10023388A JP H01271759 A JPH01271759 A JP H01271759A
Authority
JP
Japan
Prior art keywords
sol
transport layer
charge transport
oxide
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10023388A
Other languages
Japanese (ja)
Inventor
Masao Watabe
雅夫 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Business Innovation Corp
Original Assignee
Fuji Xerox Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Xerox Co Ltd filed Critical Fuji Xerox Co Ltd
Priority to JP10023388A priority Critical patent/JPH01271759A/en
Publication of JPH01271759A publication Critical patent/JPH01271759A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited

Abstract

PURPOSE:To improve chargeability and to reduce dark attenuation factor, of an electrophotographic sensitive body by providing a charge transfer layer prepd. by a sol-gel method and consisting primarily of oxide of at least one kind of element selected from the groups II-V of the periodic table. CONSTITUTION:A charge generating layer and a charge transfer layer are formed in layers on a base body. The charge transfer layer is prepd. by a sol-gel method and constituted primarily of oxide of at least one kind of elements selected from the groups II, III, IV, and V of the periodic table. Particularly preferred oxides are those of at least one elements selected from Ti, Zr, Zn, Al, Si, and Sn. Thus, an electrophotographic sensitive body having superior electrophotographic characteristics of high chargeability and low dark attenuation factor, is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、電子写真感光体、特に金属酸化物を電荷輸送
層の主成分として含む電子写真感光体に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an electrophotographic photoreceptor, particularly an electrophotographic photoreceptor containing a metal oxide as a main component of a charge transport layer.

描平の坊術 近年、感光層として、光照射により電荷キャリアを発生
させる電荷発生層と、電荷発生層で生じた電荷キャリア
を効率良く注入でき、かつ効率的に移動可能な電荷輸送
層とに分離した、いわゆる機能分離型感光層を有する電
子写真感光体が優れたものとして提案されている。この
様な機能分離型電子写真感光体にあける電荷輸送層とし
ては、無機材料を用いることが注目されてあり、例えば
、シラン、ジシラン等のシラン化合物のガスと、炭素、
酸素又は窒素含有カス及び微量の第■族或いは第V族元
素含有ガス(例えば、ホスフィン或いはジボラン等)の
混合ガスをグロー放電分解して、上記元素を含んだアモ
ルファスシリコン膜を5〜100μm程度の膜厚に形成
したものが用いられている。
In recent years, as a photosensitive layer, a charge generation layer that generates charge carriers by light irradiation, and a charge transport layer that can efficiently inject and move the charge carriers generated in the charge generation layer have been developed. An electrophotographic photoreceptor having a separate so-called functionally separated photosensitive layer has been proposed as an excellent one. The use of inorganic materials for the charge transport layer provided in such functionally separated electrophotographic photoreceptors has attracted attention. For example, silane compound gases such as silane and disilane, carbon,
A mixed gas of oxygen or nitrogen-containing scum and a trace amount of group Ⅰ or group V element-containing gas (for example, phosphine or diborane) is decomposed by glow discharge to form an amorphous silicon film containing the above elements to a thickness of about 5 to 100 μm. A thick film is used.

発明か解決しようとする課題 電荷輸送層をシラン化合物のグロー放電分解によって得
るとき、電子写真感光体として十分な性能を得るために
は、膜厚を大きくすることが必要となる。そのため、通
常の製造法では、製造時間を大きくとらねばならず、更
に厚膜作成に伴う欠陥発生確率の増大による得率の低下
が引き起こされ、電子写真感光体は極めて高コストとな
る。本発明者は、上記従来の技術にあける欠点を解決す
べく鋭意検討を重ねた結果、本発明を成すに至った。
Problems to be Solved by the Invention When a charge transport layer is obtained by glow discharge decomposition of a silane compound, it is necessary to increase the film thickness in order to obtain sufficient performance as an electrophotographic photoreceptor. Therefore, in the usual manufacturing method, a long manufacturing time is required, and furthermore, the yield rate decreases due to an increase in the probability of defect occurrence due to the formation of a thick film, and the cost of the electrophotographic photoreceptor becomes extremely high. The present inventor has completed the present invention as a result of intensive studies aimed at solving the drawbacks of the above-mentioned conventional techniques.

したがって、本発明の目的は、新規な電荷輸送層を有す
る電子写真感光体を提供することにある。
Therefore, an object of the present invention is to provide an electrophotographic photoreceptor having a novel charge transport layer.

課題を解決するための手段 従来、SiO2、A’203、ZrO3、TiO2等の
金属酸化物が、電子写真感光体の感光層と支持体界面に
存在する電荷注入阻止層として極めて薄い膜の状態で用
いられることは周知であるが、本発明者は、ゾル−ゲル
法によって作成された膜であって、周期律表第II、I
II、IV及び■族から選択される1種以上の元素の酸
化物よりなる膜が、電子写真感光体の電荷輸送層として
充分に機能することを見出だし、本発明を完成するに至
った。 すなわち、本発明は、支持体上に電荷発生層及
び電荷輸送層を有する電子写真感光体において、該電荷
輸送層が、ゾル−グル法により作成されたもので市って
、周期律表第II、III、IV及びV族から選択され
る1種以上の元素の酸化物を主たる成分としてなること
を特徴とする。
Means for Solving the Problem Conventionally, metal oxides such as SiO2, A'203, ZrO3, TiO2, etc. have been used in the form of an extremely thin film as a charge injection blocking layer existing at the interface between the photosensitive layer and the support of an electrophotographic photoreceptor. Although it is well known that the sol-gel method is used in
The present inventors have discovered that a film made of an oxide of one or more elements selected from Groups II, IV, and Group II functions satisfactorily as a charge transport layer of an electrophotographic photoreceptor, leading to the completion of the present invention. That is, the present invention provides an electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a support, in which the charge transport layer is prepared by the sol-glu method, , III, IV, and V groups as a main component.

本発明において、周期律表第II、III、IV及びV
族から選択される1種以上の元素の酸化物としては、チ
タン、ジルコニウム、亜鉛、アルミニウム、シリコン及
び錫から選択される1種以上の元素の酸化物よりなるも
のが特に好ましい。
In the present invention, periodic table II, III, IV and V
As the oxide of one or more elements selected from the group, oxides of one or more elements selected from titanium, zirconium, zinc, aluminum, silicon, and tin are particularly preferred.

以下、本発明の電子写真感光体について詳記する。The electrophotographic photoreceptor of the present invention will be described in detail below.

本発明の電子写真感光体において、支持体としては、導
電性、絶縁性のどちらのものも用いることができる。導
電性支持体としては、ステンレススヂール、アルミニウ
ム等の金属あるいは合金が用いられる。又、電気絶縁性
支持体としては、ポリエステル、ポリエチレン、ポリカ
ーボネート、ポリスチレン、ポリアミドなどの合成樹脂
フィルム又はシート、ガラス、セラミック、紙などが用
いられるか、支持体として電気絶縁性のものを用いる場
合には、少なくとも他の層と接触する面が導電処理され
ていることが必要でおる。これら導電性処理は、導電性
支持体に用いられる金属を蒸着、スパッタリング、ラミ
ネートなどの処理をすることによって行うことができる
。支持体は、円筒状、ベル1〜状、板状など任意の形状
をとりうる。
In the electrophotographic photoreceptor of the present invention, either conductive or insulating supports can be used. As the conductive support, metals or alloys such as stainless steel and aluminum are used. In addition, as the electrically insulating support, synthetic resin films or sheets such as polyester, polyethylene, polycarbonate, polystyrene, polyamide, glass, ceramic, paper, etc. are used, or when using an electrically insulating material as the support, It is necessary that at least the surface in contact with other layers be treated to be conductive. These conductive treatments can be carried out by vapor depositing, sputtering, laminating, or the like the metal used for the conductive support. The support body can take any shape such as a cylindrical shape, a bell shape, or a plate shape.

又、支持体は多層構造のものであってもよい。支持体の
厚さは、必要とされる電子写真感光体に応じて、適宜選
択されるが、通常10μm以上のものが適している。支
持体としては、導電性、絶縁性のいずれのものも用いる
ことができる。
Further, the support may have a multilayer structure. The thickness of the support is appropriately selected depending on the required electrophotographic photoreceptor, but a thickness of 10 μm or more is usually suitable. As the support, either conductive or insulating materials can be used.

上記支持体の上には、電荷発生層と電荷輸送層とが積層
されるか、その積層順序はどちらが先でもよい。
A charge generation layer and a charge transport layer may be laminated on the support, or the order of lamination may be arbitrary.

本発明における電荷輸送層は、周期律表第■、■、IV
及びV族から選択される1種以上の元素の酸化物を主た
る成分とするものであって、ゾル−ゲル法により作成さ
れるが、特に、チタン、ジルコニウム、亜鉛、アルミニ
ウム、シリコン及び錫から選択される1種以上の元素の
酸化物より構成されるものが好ましい。
In the present invention, the charge transport layer includes the periodic table No. 1, 2, and IV.
The main component is an oxide of one or more elements selected from Group V and Group V, and is produced by a sol-gel method, particularly selected from titanium, zirconium, zinc, aluminum, silicon, and tin. Preferably, the material is composed of an oxide of one or more elements.

一般に、金属アルコキシドの加水分解生成物からなるゾ
ルをゲル化し、低温で加熱してガラス貿に変化させる、
いわゆるゾル−グル法は、今日まで多く利用されており
、この方法によって高温まで加熱することができないガ
ラス、金属、プラスチックスとカラスの複合体が製造さ
れるが、本発明においては、このゾル−ゲル法を採用す
ることにより、周期律表第■、■、1v及びV族から選
択される1種以上の元素の酸化物を主たる成分とする膜
が、電荷輸送層としての機能を有し、しかも、低いコス
トで容易に形成されるのである。
Generally, a sol consisting of a metal alkoxide hydrolysis product is gelled and heated at low temperature to transform it into a glass material.
The so-called sol-glu method has been widely used to date, and this method produces composites of glass, metal, plastics, and glass that cannot be heated to high temperatures. By adopting the gel method, a film whose main component is an oxide of one or more elements selected from Groups ■, ■, 1v and V of the periodic table has a function as a charge transport layer, Moreover, it can be easily formed at low cost.

このゾル−グル法による電荷輸送層の作成について具体
的に説明する。
The preparation of the charge transport layer by this Sol-Glu method will be specifically explained.

原料物質として、チタンのアルコキシド、ジルコニウム
のアルコキシド及び亜鉛のアルコキシド等、周期律表第
II、III、IV及びV族の金属元素のアルコキシド
か使用される。これ等の原料物質に、触媒として塩酸等
の酸を加え、かつ加水分解を生じさせるために水を加え
る。それにより、原料物質は加水分解及び重合反応を起
こし、ゾル状態になる。このゾル状態の溶液を用いて、
上記支持体を浸漬塗布することによって、表面に塗膜を
形成させ、それを加熱炉中でi o O’C以上の温度
で乾燥させて、塗膜を焼結する。得られる酸化膜の膜厚
は、水及び触媒としての酸の量、更に溶媒としてのアル
ロールの量を変化させることにより、ゾルの粘性を変化
させ、適宜の値に設定することができるが、本発明にお
いては、電荷輸送層の膜厚は2〜100μm、好ましく
は3〜30μmの範囲に設定される。
As raw materials, alkoxides of metal elements of groups II, III, IV and V of the periodic table are used, such as titanium alkoxide, zirconium alkoxide and zinc alkoxide. To these raw materials, an acid such as hydrochloric acid is added as a catalyst, and water is added to cause hydrolysis. Thereby, the raw material undergoes hydrolysis and polymerization reactions and becomes a sol. Using this sol-state solution,
A coating film is formed on the surface by dip coating the support, and the coating film is sintered by drying it in a heating oven at a temperature of i o O'C or higher. The thickness of the resulting oxide film can be set to an appropriate value by changing the viscosity of the sol by changing the amount of water and acid as a catalyst, as well as the amount of alurol as a solvent. In the invention, the thickness of the charge transport layer is set in the range of 2 to 100 μm, preferably 3 to 30 μm.

本発明における電荷輸送層は、可視光領域において、実
質的に光感度を有しない。ここでいう光感度とは、可視
光領域の波長の光の照射によって、正孔−電子対からな
る電荷キャリアを発生しないことを意味しており、従来
提案されているZnO1T102を増感色素と共に樹脂
バインダ中に分散した電子写真感光層や、Se、Se・
下e、3等のカルコゲン化合物の蒸着膜とa−3i膜を
積層したような電子写真感光層とは全く構成を異にする
ものでおる。本発明における電荷輸送層は、紫外光に対
しては光感度を有してもよい。
The charge transport layer in the present invention has substantially no photosensitivity in the visible light region. Photosensitivity here means that charge carriers consisting of hole-electron pairs are not generated by irradiation with light with a wavelength in the visible light range. An electrophotographic photosensitive layer dispersed in a binder, Se, Se.
The structure is completely different from an electrophotographic photosensitive layer in which a vapor-deposited film of a chalcogen compound such as e and 3 and an a-3i film are laminated. The charge transport layer in the present invention may have photosensitivity to ultraviolet light.

一方、電荷発生層を構成する電荷発生材料としては、公
知の種々のものが使用される。例えば、無機半導体とし
てSl、5e1CdSなどがめげられ、これ等はCVD
法、スパッタリング法、真空蒸着法等により成膜するこ
とができる。又、有機半導体としては、ポリビニルカル
バゾールとトリニトロフルオレノン、ビスアゾ顔料、フ
タロシアニン、ピラゾリン化合物、ヒドラゾン化合物等
を使用することができ、これ等は、それ自体が成膜性を
有していない場合は、公知の成膜性樹脂を用いて層状に
形成される。
On the other hand, various known charge generation materials can be used as the charge generation material constituting the charge generation layer. For example, inorganic semiconductors such as Sl and 5e1CdS have been rejected, and these are
The film can be formed by a method such as a method, a sputtering method, a vacuum evaporation method, or the like. Further, as the organic semiconductor, polyvinylcarbazole, trinitrofluorenone, bisazo pigment, phthalocyanine, pyrazoline compound, hydrazone compound, etc. can be used, and if these do not have film-forming properties themselves, It is formed into a layer using a known film-forming resin.

また、本発明の電子写真感光体においては、表面保護の
目的で表面層か形成されていてもよい。
Further, in the electrophotographic photoreceptor of the present invention, a surface layer may be formed for the purpose of surface protection.

表面層は、炭素、酸素、又は窒素原子が添加された非晶
質ケイ素を主体としてなるものが好ましい実施例 以下、実施例によって本発明を説明する。
The surface layer is preferably made mainly of amorphous silicon to which carbon, oxygen, or nitrogen atoms are added.Examples The present invention will be explained below with reference to Examples.

実施例1 直径的120mmのアルミニウムパイプ上にプラズマC
VD装置で1 μmのBドープa−3iニド1膜を積層
した。すなわち、容量結合型プラズマCVD装置にシラ
ン(SiH4)ガス50secm、水素希釈5ppmジ
ホランガス(B21−16 > 10105e、水素ガ
ス101005eを導入し、圧力を1.0Torrとし
た。支持体温度は、250°Cであった。13.56■
H2の高周波出力80Wで1時間グロー放電分解を行っ
た。
Example 1 Plasma C on an aluminum pipe with a diameter of 120 mm
A 1 μm B-doped a-3i nide film was laminated using a VD device. That is, 50 sec of silane (SiH4) gas, 5 ppm diphorane gas diluted with hydrogen (B21-16 > 10105e, hydrogen gas 101005e) were introduced into a capacitively coupled plasma CVD apparatus, and the pressure was set at 1.0 Torr.The support temperature was 250°C. It was 13.56■
Glow discharge decomposition was performed for 1 hour at a high frequency output of H2 of 80 W.

その後、以下のゾル−グル法によって、主にチタンと酸
素とからなる薄膜をBドープa−3i:[」膜上に積層
した。まず、チタンテトラエトキシド30重量部をエチ
ルアルコール20型組部で希釈した。次にこの溶液に水
と1%塩酸25重量部のアルコール溶液を加え、ゆっく
りと攪拌した。この混合−9= 液に約ICm/Secの引上げ速度で、浸漬塗布を行い
、真空中、全部で6時間放置し、加水分解及び重合反応
を起こさせた。以上の操作を行った後、加熱炉で120
’Cにおいて2時間加熱し、焼結を行い、チタン酸化膜
よりなる6μmの電荷輸送層を形成した。
Thereafter, a thin film mainly consisting of titanium and oxygen was laminated on the B-doped a-3i:['' film by the following Sol-Glu method. First, 30 parts by weight of titanium tetraethoxide was diluted with 20 parts of ethyl alcohol. Next, water and an alcoholic solution of 25 parts by weight of 1% hydrochloric acid were added to this solution, and the mixture was slowly stirred. This mixture-9= solution was dip coated at a pulling rate of about ICm/Sec and left in vacuum for a total of 6 hours to allow hydrolysis and polymerization reactions to occur. After performing the above operations, heat in a heating furnace for 120 minutes.
It was heated for 2 hours at 'C and sintered to form a 6 μm charge transport layer made of a titanium oxide film.

得られた電子写真感光体に、コロナ放電により帯電させ
、600nmの光によって露光したところ、+20μA
/cmの感光体流入電流時に、コロナ放電による帯電か
ら0.1秒後の表面電位は+400Vであり、又、露光
後の残留電位は+50Vであった。更に、暗減衰率は1
0%/secであった。
The obtained electrophotographic photoreceptor was charged by corona discharge and exposed to 600 nm light, resulting in +20 μA.
The surface potential 0.1 seconds after charging by corona discharge was +400 V when the photoreceptor inflow current was /cm, and the residual potential after exposure was +50 V. Furthermore, the dark decay rate is 1
It was 0%/sec.

実施例2 厚さ1mmのステンレススチール基板上に、ゾル−グル
法により、ZrO2の膜を形成した。まず、ジルコニウ
ムテトライソプロポキシド:Zr(0−iso−C3H
7) 4のプロピルアルコール溶液20重量部と、エチ
ルアルコール30重量部からなる溶液を作成した。この
溶液を用いて実施例1におけると同様な操作を行ない、
膜厚的6μmの透明膜よりなる電荷輸送層を形成した。
Example 2 A ZrO2 film was formed on a 1 mm thick stainless steel substrate by the Sol-Glu method. First, zirconium tetraisopropoxide: Zr (0-iso-C3H
7) A solution consisting of 20 parts by weight of the propyl alcohol solution of 4 and 30 parts by weight of ethyl alcohol was prepared. Using this solution, perform the same operation as in Example 1,
A charge transport layer consisting of a transparent film having a thickness of 6 μm was formed.

次いで、プラズマCVD装置を用いて、シラン(S I
 H4)カス60cc/sec、圧力1.0Torr 
、支持体温度250°Cの条件に於いて、約1μmのa
−3iH膜を積層した。更に形成された電荷発生層の上
に、同様にしてシラン(S i H4)ガス50cc/
sec。
Next, using a plasma CVD device, silane (S I
H4) Waste 60cc/sec, pressure 1.0Torr
, at a support temperature of 250°C, an a of about 1 μm
-3iH films were laminated. Further, on the formed charge generation layer, 50 cc of silane (S i H4) gas was added in the same manner.
sec.

アンモニアカス(NH3>  10cc/sec、圧力
1.0TOrr、支持体温度250°Cの条件で膜厚6
00人のa−3i:N膜を積層した。
Ammonia gas (NH3 > 10 cc/sec, pressure 1.0 TOrr, support temperature 250°C, film thickness 6
00 a-3i:N films were stacked.

このようにして得られた電子写真感光体に負のコロナ帯
電を行ったところ、−20μA/cmの感光体流入電流
時にコロナ帯電から0.1秒後の表面電位は約−280
Vであった。半減衰露光量は550nmの単色露光時て
10erg/cmであり、又このときの残留電位は約−
40Vてあった。
When the electrophotographic photoreceptor thus obtained was subjected to negative corona charging, the surface potential 0.1 seconds after corona charging at a photoreceptor inflow current of -20 μA/cm was approximately -280.
It was V. The half-attenuation exposure amount is 10 erg/cm during monochrome exposure at 550 nm, and the residual potential at this time is approximately -
It was 40V.

発明の効果 本発明の電子写真感光体は、上記のようにゾル−ゲル法
により作成された、周期律表第■、■、IV及びV族か
ら選択される1種以上の元素の酸化物を主たる成分とす
る電荷輸送層を有することにより、低温の製造条件にお
いて製造することができ、そして、このものは、帯電性
がよく、暗減衰率が低く、又、高い感度を有するという
優れた電子写真特性を有する。
Effects of the Invention The electrophotographic photoreceptor of the present invention contains an oxide of one or more elements selected from Groups ■, ■, IV, and V of the periodic table, prepared by the sol-gel method as described above. By having a charge transport layer as the main component, it can be manufactured under low-temperature manufacturing conditions, and this product has excellent electronic properties such as good chargeability, low dark decay rate, and high sensitivity. Has photographic properties.

特許出願人  富士ゼロックス株式会社代理人    
弁理士  部品 剛
Patent applicant Fuji Xerox Co., Ltd. Agent
Patent Attorney Tsuyoshi Parts

Claims (2)

【特許請求の範囲】[Claims] (1)支持体上に電荷発生層及び電荷輸送層を有する電
子写真感光体において、該電荷輸送層が、ゾルーゲル法
により作成されたものであって、周期律表第II、III、
IV及びV族から選択される1種以上の元素の酸化物を主
たる成分としてなることを特徴とする電子写真感光体。
(1) In an electrophotographic photoreceptor having a charge generation layer and a charge transport layer on a support, the charge transport layer is prepared by a sol-gel method,
An electrophotographic photoreceptor comprising as a main component an oxide of one or more elements selected from Group IV and V groups.
(2)電荷輸送層が、ゾル−ゲル法により作成されたも
のであって、チタン、ジルコニウム、亜鉛、アルミニウ
ム、シリコン及び錫から選択される1種以上の元素の酸
化物よりなることを特徴とする請求項1記載の電子写真
感光体。
(2) The charge transport layer is created by a sol-gel method and is made of an oxide of one or more elements selected from titanium, zirconium, zinc, aluminum, silicon, and tin. The electrophotographic photoreceptor according to claim 1.
JP10023388A 1988-04-25 1988-04-25 Electrophotographic sensitive body Pending JPH01271759A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10023388A JPH01271759A (en) 1988-04-25 1988-04-25 Electrophotographic sensitive body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10023388A JPH01271759A (en) 1988-04-25 1988-04-25 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01271759A true JPH01271759A (en) 1989-10-30

Family

ID=14268553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10023388A Pending JPH01271759A (en) 1988-04-25 1988-04-25 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01271759A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296178A (en) * 1988-08-17 1990-04-06 Fuji Xerox Co Ltd Electrophotographic sensitive body
JP2005182027A (en) * 2003-12-19 2005-07-07 Xerox Corp Sol-gel process for photoreceptor layers

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363051A (en) * 1986-09-04 1988-03-19 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH01202759A (en) * 1988-02-09 1989-08-15 Seiko Epson Corp Electrophotographic sensitive body

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6363051A (en) * 1986-09-04 1988-03-19 Fuji Xerox Co Ltd Electrophotographic sensitive body
JPH01202759A (en) * 1988-02-09 1989-08-15 Seiko Epson Corp Electrophotographic sensitive body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296178A (en) * 1988-08-17 1990-04-06 Fuji Xerox Co Ltd Electrophotographic sensitive body
JP2005182027A (en) * 2003-12-19 2005-07-07 Xerox Corp Sol-gel process for photoreceptor layers

Similar Documents

Publication Publication Date Title
JPH021305B2 (en)
JPH021303B2 (en)
JPS59223444A (en) Electrophotographic sensitive body
JPH01319044A (en) Photoconductive image forming member containing electron transferring polysilirene
US5075187A (en) Electrophotographic photoreceptor with oxide of Al, Zr or Ta as charge transport layer
JPH01271759A (en) Electrophotographic sensitive body
JPH01179166A (en) Bipolarly electrified electrophotographic sensitive body
JPH01106071A (en) Electrophotographic sensitive body
JPH0810332B2 (en) Method for manufacturing electrophotographic photoreceptor
JP2705273B2 (en) Electrophotographic photoreceptor
JP2679366B2 (en) Electrophotographic photoreceptor
JPS61275856A (en) Electrophotographic sensitive body
JPS62273547A (en) Electrophotographic sensitive body
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JPH021302B2 (en)
JPS62273568A (en) Electrophotographic sensitive body
JPS62273562A (en) Electrophotographic sensitive body
JPS62273553A (en) Electrophotographic sensitive body
JPS58220145A (en) Electrophotographic receptor
JPS62273549A (en) Electrophotographic sensitive body
JPS59116756A (en) Electrophotographic sensitive body
JPS62273559A (en) Electrophotographic sensitive body
JPS62273556A (en) Electrophotographic sensitive body
JPS62273550A (en) Electrophotographic sensitive body
JPS62273557A (en) Electrophotographic sensitive body