JPH02146054A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH02146054A
JPH02146054A JP30036688A JP30036688A JPH02146054A JP H02146054 A JPH02146054 A JP H02146054A JP 30036688 A JP30036688 A JP 30036688A JP 30036688 A JP30036688 A JP 30036688A JP H02146054 A JPH02146054 A JP H02146054A
Authority
JP
Japan
Prior art keywords
layer
electrophotographic photoreceptor
photoconductive layer
organic
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30036688A
Other languages
Japanese (ja)
Other versions
JP2761741B2 (en
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Hitoshi Takemura
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP30036688A priority Critical patent/JP2761741B2/en
Publication of JPH02146054A publication Critical patent/JPH02146054A/en
Application granted granted Critical
Publication of JP2761741B2 publication Critical patent/JP2761741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Abstract

PURPOSE:To enhance photosensitivity by successively laminating an a-SiC photoconductive layer and an organic photosemiconductive layer on a conductive substrate, specifying an elementary proportion of the layer, and incorporating a specified amount of an element of group Va of the periodic table. CONSTITUTION:The electrophotographic sensitive body is formed by successively laminating on the conductive substrate 1 the amorphous silicon carbide a-SiC photoconductive layer 2 and the organic photosemiconductive layer 3. The layer 2 is composed of Si, C, and H or halogen elements represented by an elementary composition formula: (Si1-xCx)1-yAy, where A is hydrogen or halogen, and 0.05 < x < 0.5, and 0.2 < y < 0.5, and containing further an element of group Va of the periodic table in an amount of <=100ppm, thus permitting the obtained electrophotographic sensitive body to be high in photosensitivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド光導電層と有
機光半導体層を積層して成る電子写真感光体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料には、Se、 5e−Te
Photoconductive materials for electrophotographic photoreceptors include Se, 5e-Te,
.

AszS az+ZnO1CdS、アモルファスシリコ
ンなどの無機材料と各種有機材料がある。そのなかで最
初に実用化されたものはSeであり、そして、ZnO,
CdS、アモルファスシリコンも実用化された。一方、
有機材料ではPVK−TNFが最初に実用化され、その
後、電荷の発生並びに電荷の輸送という機能を別々の材
料に分担させるという機能分離型感光体が提案され、こ
の機能分離型感光体によって有機材料の開発が飛躍的に
発展している。
There are inorganic materials such as AszS az+ZnO1CdS and amorphous silicon, and various organic materials. Among them, Se was the first to be put into practical use, and then ZnO,
CdS and amorphous silicon have also been put into practical use. on the other hand,
Among organic materials, PVK-TNF was first put into practical use, and later, a functionally separated photoreceptor was proposed in which the functions of charge generation and charge transport were shared between separate materials. development is progressing rapidly.

一方、無機光導電層の上に有機光半導体層を積層した電
子写真感光体も提案された。
On the other hand, an electrophotographic photoreceptor in which an organic photoconductive layer is laminated on an inorganic photoconductive layer has also been proposed.

例えばSe層と有機光半導体層の積層型感光体があり、
既に実用化されたが、この感光体によれば、Se自体有
害であり、しかも、長波長側の感度に劣るという欠点も
あった。
For example, there is a laminated photoreceptor with a Se layer and an organic optical semiconductor layer.
Although this photoreceptor has already been put into practical use, it has the disadvantage that Se itself is harmful and that the sensitivity is poor on the long wavelength side.

そこで、特開昭56−14241号公報υ号公報上ルフ
ァスシリコンカーバイド光導電層と有機光半導体層から
成る積層型感光体が提案されており、この感光体によれ
ば、上記問題点を解決して無公害性並びに高光感度な特
性が得られた。
Therefore, a laminated photoreceptor consisting of a rufous silicon carbide photoconductive layer and an organic optical semiconductor layer has been proposed in JP-A-56-14241 No. υ, and this photoreceptor solves the above problems. The characteristics of non-polluting properties and high photosensitivity were obtained.

上記公報の電子写真感光体によれば、化学式5iXCX
l!、(但し0<x<1.0.05≦y≦0,2)で表
わされるアモルファスシリコンカーバイド層と、有機光
半導体層が順次積層された構造から成る。
According to the electrophotographic photoreceptor of the above publication, the chemical formula 5iXCX
l! , (where 0<x<1.0.05≦y≦0,2) and an organic optical semiconductor layer are sequentially laminated.

しかし乍ら、本発明者等がこのような電子写真感光体を
製作し、その光感度を測定したところ、未だ満足し得る
ような特性が得られず、更に改善を要することが判明し
た。
However, when the present inventors manufactured such an electrophotographic photoreceptor and measured its photosensitivity, it was found that satisfactory characteristics were not yet obtained and further improvement was required.

しかも、上記提案の電子写真感光体、並びに有機光半導
体層を光キヤリア発生層として用いた電子写真感光体、
即ちopc感光体においては、負帯電用に使用されてお
り、そのため、コロナ放電によって帯電電荷にムラが生
じたり、あるいはオゾンの発生量が多くなって感光体表
面が劣化し、その結果、コピー画像の画質が低下したり
、感光体自体の耐久性を劣化せしめている。
Furthermore, the electrophotographic photoreceptor proposed above, as well as an electrophotographic photoreceptor using an organic photosemiconductor layer as a photocarrier generation layer,
In other words, OPC photoreceptors are used for negative charging, and as a result, corona discharge may cause uneven charging, or an increased amount of ozone may be generated, deteriorating the photoreceptor surface, resulting in poor quality of the copied image. The image quality of the photoreceptor itself deteriorates, and the durability of the photoreceptor itself deteriorates.

従って、本発明は叙上に鑑みて完成されたものであり、
その目的は高い光感度が得られた電子写真感光体を提供
することにある。
Therefore, the present invention has been completed in view of the above,
The purpose is to provide an electrophotographic photoreceptor with high photosensitivity.

本発明の他の目的は正帯電用の電子写真感光体を提供す
ることにある。
Another object of the present invention is to provide an electrophotographic photoreceptor for positive charging.

本発明の更に他の目的は優れた電子写真特性を長期間に
亘って維持せしめた電子写真感光体を提供することにあ
る。
Still another object of the present invention is to provide an electrophotographic photoreceptor that maintains excellent electrophotographic properties over a long period of time.

c問題点を解決するための手段〕 本発明によれば、導電性基板上にアモルファスシリコン
カーバイド光導電層(以下、アモルファスシリコンカー
バイドをa−3iCと略す)と有機光半導体層を順次積
層した電子写真感光体において、前記a−3iC光導電
層の構成元素がSi元素、C元素並びに水素又はハロゲ
ンであって、水素又はハロゲンをへ元素と表記し、核層
の元素比率を組成式(S!+−x Cx ) +−y 
 八、で表わした場合、X及びyをそれぞれ0.05 
< x <0.5.0.2 < y < 0.5の範囲
内に設定し、更に上記光導電層に周期律表第Va族元素
を100ppn+以下の範囲内で含有したことを特徴と
する電子写真感光体が提供される。
Means for Solving Problem c] According to the present invention, an electronic photoconductive layer in which an amorphous silicon carbide photoconductive layer (hereinafter amorphous silicon carbide is abbreviated as a-3iC) and an organic photoconductive layer are sequentially laminated on a conductive substrate. In the photographic photoreceptor, the constituent elements of the a-3iC photoconductive layer are Si element, C element, and hydrogen or halogen, hydrogen or halogen is expressed as H element, and the element ratio of the core layer is expressed by the composition formula (S! +-x Cx) +-y
When expressed as 8, X and y are each 0.05
< x < 0.5. An electrophotographic photoreceptor is provided.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
同図によれば、導電性基板(1)の上にaSiC光導電
層(2)及び有機光半導体層(3)が順次積層されてい
る。そして、a−SiC光導電層(2)には電荷発生と
いう機能があり、他方の有機光半導体層(3)には電荷
輸送という機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
According to the figure, an aSiC photoconductive layer (2) and an organic photo-semiconductor layer (3) are sequentially laminated on a conductive substrate (1). The a-SiC photoconductive layer (2) has a function of charge generation, and the other organic photoconductive layer (3) has a function of charge transport.

本発明は上記a−SiC光導電層(2)の元素比率並び
に周期律表第Va族元素(以下、Va族元素と略す)の
含有量を下記の通りの範囲内に設定し、核層(2)の上
に電子吸引性の有機光半導体層(3)を積層した場合、
正帯電が可能となり、しかも光感度を顕著に高めること
ができたことが特徴である。
In the present invention, the element ratio of the a-SiC photoconductive layer (2) and the content of Group Va elements of the periodic table (hereinafter abbreviated as Group Va elements) are set within the following ranges, and the nuclear layer ( When an electron-withdrawing organic optical semiconductor layer (3) is laminated on 2),
It is characterized by being able to be positively charged and also being able to significantly increase photosensitivity.

組成式: (Si+−x Cx ) +−AV(但しA
は水素又はハロゲン) 0.05  <  x  <  0.5 、 好適には
0.1  <  x  <  0.40.2 < V 
< 0.5 、好適には0.25< y < 0.45
Va族元素含有i1:1100pp以下、好適には0.
1〜50 ppm 上記X値が0.05以下の場合には短波長側の光感度が
高められず、X値が0.5以上の場合には光導電性が著
しく低くなり、光キャリアの励起機能が低下する。
Compositional formula: (Si+-x Cx) +-AV (However, A
is hydrogen or halogen) 0.05 < x < 0.5, preferably 0.1 < x < 0.40.2 < V
< 0.5, preferably 0.25 < y < 0.45
Va group element content i1: 1100 pp or less, preferably 0.
1 to 50 ppm If the above X value is 0.05 or less, the photosensitivity on the short wavelength side will not be increased, and if the X value is 0.5 or more, the photoconductivity will be extremely low and the excitation of photocarriers Function deteriorates.

また、ν値が0.2以下の場合には暗導電率が大きくな
る傾向にあり、しかも、光導電率が低下傾向にあり、そ
のために所望通りの光導電性が得られず、y値が0.5
以上の場合にはa−SiC層の内部応力が増大し、基板
との密着性が低下して剥離し易くなる。
In addition, when the ν value is 0.2 or less, the dark conductivity tends to increase, and the photoconductivity tends to decrease, so that the desired photoconductivity cannot be obtained and the y value decreases. 0.5
In the above case, the internal stress of the a-SiC layer increases, and the adhesion with the substrate decreases, making it easy to peel off.

上記Va族元素含有量については、100ρpI11を
越えた場合、暗導電率が著しく大きくなり、そして、光
導電率の暗導電率に対する比率が小さくなり、所望通り
の光感度が得られない。
Regarding the Va group element content, if it exceeds 100 pI11, the dark conductivity becomes significantly large, and the ratio of the photoconductivity to the dark conductivity becomes small, making it impossible to obtain the desired photosensitivity.

a−5iC光導電層(2)にVa族元素を含有させるに
当たり、そのドーピング分布はその層厚方向に亘って均
−又は不均一のいずれでもよい。不均一にドーピングさ
せた場合、この層(2)の一部にVa族元素が含有され
ない層領域があってもよく、その場合にはVa族元素含
有のa−5iC層領域並びにVa族元素が含有されてい
ないa−SiC層領域の両者から成るa−3iC層全体
に対するVa族元素平均含有量が100p四以下でなく
てはならない。
When the Va group element is contained in the a-5iC photoconductive layer (2), the doping distribution may be either uniform or non-uniform over the layer thickness direction. In the case of non-uniform doping, there may be a layer region in which the Va group element is not contained in a part of this layer (2). The average content of Va group elements in the entire a-3iC layer, which is composed of both the a-SiC layer region and the non-containing a-SiC layer region, must be 100 p4 or less.

このVa族元素にはN、 P、 As、 Sb、 Bi
があるが、Pが共有結合性に優れて半導体特性を敏怒に
変え得る点で、その上、優れた帯電能並びに光感度が得
られるという点で望ましい。
These Va group elements include N, P, As, Sb, Bi
However, P is desirable because it has excellent covalent bonding properties and can quickly change semiconductor properties, and also provides excellent charging ability and photosensitivity.

また、上記a−5iC光導電層(2)には水素(11)
元素やハロゲン元素がダングリングボンド終端用に含有
されているが、これらの元素のなかでl[元素が終端部
に取り込まれ易く、これによってパントギャップ中の局
在準位密度が低減化されるという点で望ましい。
Further, the a-5iC photoconductive layer (2) contains hydrogen (11).
Elements and halogen elements are contained for dangling bond termination, but among these elements, l[element is easily incorporated into the termination, which reduces the localized level density in the punt gap. It is desirable in that sense.

a−5iC光導電層(2)の厚みは0.05〜5μm、
好適には0.1〜3μmの範囲内に設定すればよく、こ
の範囲内であれば、高い光感度が得られ、残留電位が低
くなる。
The thickness of the a-5iC photoconductive layer (2) is 0.05 to 5 μm,
It is preferable to set it within the range of 0.1 to 3 μm, and within this range, high photosensitivity can be obtained and the residual potential will be low.

前記基板(1)には銅、黄銅、5tlS 、 At等の
金属導電体、或いはガラス、セラミックス等の絶縁体の
表面に導電体薄膜をコーティングしたものがあり、就中
、A1がコスト面並びにa−3iC層との密着性という
点で有利である。
The substrate (1) includes a metal conductor such as copper, brass, 5TLS, At, or an insulator such as glass or ceramics coated with a conductive thin film on the surface. -3 It is advantageous in terms of adhesion to the iC layer.

前記有機光半導体層(3)に用いられる電子吸弓性化合
物には2.4.7−1−リニトロフルオレンなどがある
Examples of the electron-absorbing compound used in the organic optical semiconductor layer (3) include 2.4.7-1-linitrofluorene.

、残留電位が低くなる。, the residual potential becomes lower.

かくして、本発明の積層型感光体においては、所定組成
のa−3iC光導電層(2)により光感度が高められ、
しかも、有機光半導体N(3)との組合せにより正帯電
型となる。
Thus, in the laminated photoreceptor of the present invention, the photosensitivity is increased by the a-3iC photoconductive layer (2) having a predetermined composition,
Furthermore, the combination with the organic optical semiconductor N(3) makes it positively charged.

次に本発明電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−SiC層を形成するにはグロー放電分解法、イオン
ブレーティング法、反応性スパッタリング法、真空蒸着
法、CVD法などの薄膜形成方法がある。
To form the a-SiC layer, there are thin film forming methods such as glow discharge decomposition method, ion blating method, reactive sputtering method, vacuum evaporation method, and CVD method.

グロー放電分解法を用いる場合、Si元素含有ガスとC
元素含有ガスを組合せ、この混合ガスをプラズマ分解し
て成膜形成する。このSi元素含有ガスにはSiH4,
5izlL、5iJa、SiF4,5iC14,5il
lCI3等々があり、また、C元素含有ガスニはCHt
、 CJt、Czl12+C:IHe等々があり、就中
、C,H2は高速成膜性が得られるという点で望ましい
When using the glow discharge decomposition method, Si element-containing gas and C
A film is formed by combining element-containing gases and plasma decomposing the mixed gas. This Si element-containing gas includes SiH4,
5izlL, 5iJa, SiF4,5iC14,5il
lCI3, etc., and the C element-containing gas is CHt.
, CJt, Czl12+C:IHe, etc., and C and H2 are particularly desirable in that they can provide high-speed film formation.

本実施例に用いられるグロー放電分解装置を第2図によ
り説明する。
The glow discharge decomposition device used in this example will be explained with reference to FIG.

図中、第1タンク(4)、第2タンク(5)、第3タン
ク(6)、第4タンク(7)にはそれぞれSiH4,C
ztlz、PIIff、 (PHzが30pprrl濃
度で水素希釈されでいる)並びにH2が密封され、これ
らのガスは各々対応する第1調整弁(8)、第2調整弁
(9)、第3調整弁(10)及び第4調製弁(11)を
開放することにより放出される。その放出ガスの流量は
それぞれマスフローコントローラ(12) (13) 
(14) (15)により制御され、各々のガスは混合
されて主管(16)へ送られる。尚、(17) (18
)は止め弁である。
In the figure, the first tank (4), second tank (5), third tank (6), and fourth tank (7) are filled with SiH4 and C, respectively.
ztlz, PIIff, (PHz has been diluted with hydrogen at a concentration of 30 pprrl) and H2 are sealed, and these gases are supplied to the corresponding first regulating valve (8), second regulating valve (9), and third regulating valve ( 10) and the fourth regulator valve (11) are opened. The flow rate of the released gas is controlled by a mass flow controller (12) (13), respectively.
(14) and (15), each gas is mixed and sent to the main pipe (16). Furthermore, (17) (18
) is a stop valve.

主管(16)を通じて流れるガスは反応管(19)へ流
入されるが、この反応管(19)の内部には容量結合型
放電用電極(20)が設置され、また、筒状の成膜用基
板(21)が基板支持体(22)の上に載置され、基板
支持体(22)がモータ(23)により回転駆動され、
これに伴って基板(21)が回転される。そして、電極
(20)に電力50W 〜3Kw 、周波数1〜50M
IIzの高周波電力が印加され、しかも、基板(21)
が適当な加熱手段により約200〜400℃、好適には
約200〜350℃の温度に加熱される。また、反応管
(19)は回転ポンプ(24)と拡散ポンプ(25)に
連結されており、これによってグロー放電による成膜形
成時に所要な減圧状B(放電時のガス圧0.1〜2.0
Torr)が維持される。
The gas flowing through the main pipe (16) flows into the reaction tube (19), and a capacitively coupled discharge electrode (20) is installed inside this reaction tube (19), and a cylindrical film-forming electrode (20) is installed inside the reaction tube (19). A substrate (21) is placed on a substrate support (22), the substrate support (22) is rotationally driven by a motor (23),
Along with this, the substrate (21) is rotated. Then, the electrode (20) has a power of 50W to 3Kw and a frequency of 1 to 50M.
IIz high frequency power is applied, and the substrate (21)
is heated by suitable heating means to a temperature of about 200-400°C, preferably about 200-350°C. In addition, the reaction tube (19) is connected to a rotary pump (24) and a diffusion pump (25), which provide the necessary reduced pressure B (gas pressure during discharge 0.1 to 2) during film formation by glow discharge. .0
Torr) is maintained.

このような構成のグロー放電分解装置を用いて基板(2
1)の上にa−5iC層を形成する場合、第1調整弁(
8)、第2調整弁(9)、第3調整弁(10)及び第4
調製弁(11)を開いてS iHa + Cz ”□、
PII+、Hzの各々のガスを放出し、その放出量をマ
スフローコントローラ(12) (13) (14) 
(15)により制御し、各々のガスは混合されて主管(
16)を介して反応管(19)へ流入される。そして、
反応管内部の減圧状態、基板温度、電極印加用高周波電
力をそれぞれ所定の条件に設定するとグロー放電が発生
し、ガスの分解に伴ってP元素含有のa−5iC膜が基
板上に高速に形成される。
The substrate (2
When forming the a-5iC layer on 1), the first regulating valve (
8), second regulating valve (9), third regulating valve (10) and fourth regulating valve
Open the adjustment valve (11) and set S iHa + Cz ”□,
PII+ and Hz gases are released and the release amount is controlled by a mass flow controller (12) (13) (14)
(15), each gas is mixed and sent to the main pipe (
16) into the reaction tube (19). and,
When the reduced pressure inside the reaction tube, substrate temperature, and high-frequency power applied to the electrodes are set to predetermined conditions, glow discharge occurs, and as the gas decomposes, an a-5iC film containing P element is rapidly formed on the substrate. be done.

上述した通りに薄膜形成方法によりa−5iC層を形成
すると、次に有機光半導体層を形成する。
After forming the a-5iC layer by the thin film forming method as described above, an organic optical semiconductor layer is then formed.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成し、前者は感光材が溶媒中に分散された塗工液の
中に浸漬し、次いで、一定の速度で引上げ、そして、自
然乾燥及び熱エージング(約150℃、約1時間)を行
うという方法であり、また、後者のコーティング法によ
れば、コーター(塗機)を用いて、溶媒に分散された感
光材を塗布し、次いで熱風乾燥を行う。
The organic photosemiconductor layer is formed by a dip coating method or a coating method. According to the latter coating method, a photosensitive material dispersed in a solvent is applied using a coater, and then dried with hot air. I do.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第2図のグロー放電分解装置を用いて、5il14ガス
を200secmの流量で1、水素希釈円(3ガスを9
0、sccmの流量で、H2ガスを270secmの流
量で、そして、C、112ガスの流量を変化させ、また
、ガス圧をQ、6Torr 、高周波電力を150W、
基板温度を250℃に設定し、グロー放電によってa−
3iC膜(膜厚約1μm)を形成した。
(Example 1) Using the glow discharge decomposition device shown in Fig. 2, 5il14 gas was mixed with 1 hydrogen dilution circle (3 gas was mixed with 9
The flow rate of H2 gas was 270 seconds, and the flow rate of C112 gas was changed at a flow rate of 0, sccm, and the gas pressure was Q, 6 Torr, and the high frequency power was 150 W.
The substrate temperature was set at 250℃, and a-
A 3iC film (film thickness approximately 1 μm) was formed.

このようにしてa−5iC膜のカーボン含有比率を変え
、そして、膜中のカーボン量をXMA法により測定し、
また、光導電率及び暗導電率を測定したところ、第3図
に示す通りの結果が得られた。尚、各々のa−3iC膜
に含有されたP元素含有量を二次イオン質量分析計によ
り測定したところ、いずれも約10ppmであった。
In this way, the carbon content ratio of the a-5iC film was changed, and the amount of carbon in the film was measured by the XMA method.
Further, when the photoconductivity and dark conductivity were measured, the results shown in FIG. 3 were obtained. In addition, when the P element content contained in each a-3iC film was measured using a secondary ion mass spectrometer, it was found to be approximately 10 ppm in each case.

第3図中、横軸はカーボン含有比率、即ち5iXCXの
X値であり、縦軸は導電率を表わし、○印は発光波長5
50r++n (光量50μ−/am”)の光に対する
光導電率のプロットであり、・印は暗導電率のプロット
であり、また、a、bはそれぞれの特性曲線である。
In Figure 3, the horizontal axis represents the carbon content ratio, that is, the X value of 5iXCX, the vertical axis represents the electrical conductivity, and the circle indicates the emission wavelength
It is a plot of photoconductivity for light of 50r++n (light intensity 50 μ-/am”), the * mark is a plot of dark conductivity, and a and b are respective characteristic curves.

上記各a−5iC膜について、その水素含有量を赤外吸
収測定法により求めたところ、第4図に示す通りの結果
が得られた。
When the hydrogen content of each of the above a-5iC films was determined by infrared absorption measurement, the results shown in FIG. 4 were obtained.

第4図中、横軸はSi+−x CxOX値であり、縦軸
は水素含有量、即ち(Si+−x CX ) l−y 
 LOy値であり、○印はSi原子に結合した水素量の
プロットであり、・印はC原子に結合した水素量のプロ
ットであり、また、c、dはそれぞれの特性曲線である
In Fig. 4, the horizontal axis is the Si+-x CxOX value, and the vertical axis is the hydrogen content, i.e. (Si+-x CX) ly
These are the LOy values, the ◯ mark is a plot of the amount of hydrogen bonded to the Si atom, the * mark is the plot of the amount of hydrogen bonded to the C atom, and c and d are the respective characteristic curves.

第4図より明らかな通り、本例のa−3iC膜はいずれ
もy値が0.3〜0.4の範囲内にあることが判る。
As is clear from FIG. 4, it can be seen that the a-3iC films of this example all have y values within the range of 0.3 to 0.4.

また、第3図より明らかな通り、カーボン含有比率Xが
0.2 < x < 0.5の範囲内であれば、光導電
率と暗導電率の比率が顕著に大きくなり、優れた光感度
が得られることが判る。
Furthermore, as is clear from Fig. 3, if the carbon content ratio X is within the range of 0.2 < It turns out that is obtained.

(例2) 次に本例においては、SiH4ガスを200secmの
流量で、C211□ガスを20secmの流量で、水素
希釈P1(3ガスを90sccmのm!で、11□ガス
をO〜101000scの流量で導入し、そして、高周
波電力を50〜300W。
(Example 2) Next, in this example, SiH4 gas is used at a flow rate of 200 sec, C211□ gas is used at a flow rate of 20 sec, hydrogen dilution P1 (3 gases are used at a flow rate of 90 sccm, and 11□ gas is used at a flow rate of O~101000 sc. and high frequency power of 50 to 300W.

ガス圧を0.3〜1.2Torrに設定し、グロー放電
によりa−SiC膜(膜厚約1μm )を形成した。
The gas pressure was set at 0.3 to 1.2 Torr, and an a-SiC film (film thickness of approximately 1 μm) was formed by glow discharge.

かくして、カーボン含有比率Xを0.3に設定し、そし
て、水素含有ff1yを変化させた種々のa−3iC膜
を形成し、各々の膜について光導電率及び暗導電率を測
定したところ、第5図に示す通りの結果が得られた。尚
、いずれのa−SiC膜もP元素含有量は約10ρpn
+であった・ 第5図中、横1袖は水素含有量、即ち[Sio、+ C
8,3]1□ 11.のy値であり、縦軸は導電率を表
わし、O印は発光波長550nm(光量50 p W/
cmz)の光に対する光導電率のプロットであり、・印
は暗導電率のプロットであり、また、e、fはそれぞれ
の特性曲線である。
In this way, various a-3iC films were formed with the carbon content ratio X set to 0.3 and the hydrogen content ff1y varied, and the photoconductivity and dark conductivity of each film were measured. The results shown in Figure 5 were obtained. In addition, the P element content of each a-SiC film is approximately 10ρpn.
In Figure 5, the horizontal one is the hydrogen content, that is, [Sio, + C
8, 3] 1□ 11. The vertical axis represents the conductivity, and the O mark indicates the emission wavelength of 550 nm (light intensity: 50 p W/
3.cmz) is a plot of photoconductivity for light, the * mark is a plot of dark conductivity, and e and f are respective characteristic curves.

第5図より明らかな通り、y値が0.2を超えた場合、
高い光導電率並びに低い暗導電率が得られることが判る
As is clear from Figure 5, when the y value exceeds 0.2,
It can be seen that high photoconductivity as well as low dark conductivity are obtained.

(例3) 本例においては、S i 114ガスを200secm
の流量で、C,H2ガスを20secmの流量で、水素
希釈Plhガス(iWt度0.2χ又は30ppm)を
5〜500secmの流量で、H2ガスを200sec
mの流量で導入し、そして、高周波電力を150圓、ガ
ス圧を0.6Torrに設定し、グロー放電によりP元
素含有のa−3jC膜(膜厚約1μm)を形成した。
(Example 3) In this example, S i 114 gas is
C, H2 gas at a flow rate of 20 sec, hydrogen diluted PLh gas (iWt degree 0.2χ or 30 ppm) at a flow rate of 5 to 500 sec, and H2 gas at a flow rate of 200 sec.
Then, the high frequency power was set to 150 m, the gas pressure was set to 0.6 Torr, and a P element-containing a-3jC film (film thickness of about 1 μm) was formed by glow discharge.

かくして、カーボン含有比率Xを0.2に設定し、そし
て、P元素含有量を変化させた種々のa−5iC膜を形
成し、各々の膜について光導電率及び暗導電率を測定し
たところ、第6図に示す通りの結果が得られた。
Thus, the carbon content ratio The results shown in FIG. 6 were obtained.

本例においては、上記円13ガスに代えてBzHi、ガ
スを導入させ、これによって8元素含有量を変化させた
種々のa−3iC膜も形成し、これらの測定結果も求め
た。
In this example, BzHi gas was introduced in place of the above-mentioned circle 13 gas, and various a-3iC films with varying eight element contents were also formed, and the measurement results thereof were also obtained.

同図中、横軸はP元素含有量(又は8元素含有量)であ
り、縦軸は導電率を表わし、○印は発光波長550nm
(光量50μW/cm2)の光に対する光導電率のプロ
ットであり、・印は暗導電率のプロットであり、また、
g+hはそれぞれの特性曲線である。
In the figure, the horizontal axis represents the P element content (or 8 element content), the vertical axis represents the electrical conductivity, and the circle indicates the emission wavelength of 550 nm.
It is a plot of photoconductivity for light with a light intensity of 50 μW/cm2, and the mark is a plot of dark conductivity, and
g+h are the respective characteristic curves.

第6図より明らかな通り、P元素が1100pp以下の
範囲内で含有された場合、光導電率と暗導電率の比が十
分に大きくなることが判る。
As is clear from FIG. 6, it can be seen that when the P element is contained within a range of 1100 pp or less, the ratio of photoconductivity to dark conductivity becomes sufficiently large.

尚、本例のいずれのa−3iC膜もカーボン含有比率×
及び水素含有量yはそれぞれx =0.30.y・0.
35である。
Incidentally, any a-3iC film in this example has a carbon content ratio ×
and hydrogen content y are respectively x = 0.30. y・0.
It is 35.

また、本発明者等はP元素を約10ppm含有して[S
io、 ? Co、 i) o、 6sllo、 35
 の組成から成るa−3iC光導電層並びに2.4.7
−トリニトロフルオレンの有機光半導体層が順次積層さ
れた電子写真感光体を製作し、正帯電によりその特性評
価を行ったところ、高い表面電位、優れた光感度が得ら
れ、しかも、低い残留電位となった。
In addition, the present inventors have found that [S
io,? Co, i) o, 6sllo, 35
an a-3iC photoconductive layer having the composition of 2.4.7 and
- When we fabricated an electrophotographic photoreceptor in which organic photoconductor layers of trinitrofluorene were sequentially laminated and evaluated its characteristics by positive charging, we found that it had a high surface potential, excellent photosensitivity, and a low residual potential. It became.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明の電子写真感光体によれば、a−3
iC光導電層のカーボン量及びダングリングボンド終端
用元素の量並びに第Va族元素含有量をそれぞれ所定の
範囲内に設定した場合、優れた光感度が得られ、そのた
め、このa−SiC光導電層と有機光半導体層を組合せ
たことにより高性能且つ高品質な電子写真感光体が提供
できる。
As mentioned above, according to the electrophotographic photoreceptor of the present invention, a-3
When the amount of carbon, the amount of the dangling bond termination element, and the Group Va element content of the iC photoconductive layer are set within predetermined ranges, excellent photosensitivity can be obtained, and therefore, this a-SiC photoconductive layer A high performance and high quality electrophotographic photoreceptor can be provided by combining the organic photoconductor layer and the organic photoconductor layer.

また、本発明の電子写真感光体においては、正帯電用に
用いられており、これにより、コロナ放電に伴う帯電電
荷のムラが生じなくなり、しかも、オゾンの発生量も少
なく、その結果、高画質の画像を長期間に亘って提供す
ることができた。
In addition, the electrophotographic photoreceptor of the present invention is used for positive charging, which prevents uneven charging due to corona discharge and generates less ozone, resulting in high image quality. images could be provided for a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の層構成を表わす断面図
、第2図は実施例に用いられるグロー放電分解装置の概
略図、第3図はカーボン含有比率と導電率の関係を示す
線図、第4図はカーボン含有比率と水素含有量の関係を
示す線図、第5図は水素含有量と導電率の関係を示す線
図、第6図は周朋律表第■a族元素又は第Va族元素含
有量と導電率の関係を示す線図である。 1・・・導電性基板 2・・・アモルファスシリコンカーバイト光導電層 ・有機光半導体層 3 ・ 特許出願人 (663)京セラ株式会社a*!j安城欽
寿 同         河 村 孝 夫
FIG. 1 is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is a schematic diagram of a glow discharge decomposition device used in Examples, and FIG. 3 is a line showing the relationship between carbon content ratio and electrical conductivity. Figure 4 is a diagram showing the relationship between carbon content ratio and hydrogen content, Figure 5 is a diagram showing the relationship between hydrogen content and electrical conductivity, and Figure 6 is a diagram showing the relationship between hydrogen content and electrical conductivity. FIG. 2 is a diagram showing the relationship between Va group element content and electrical conductivity. 1... Conductive substrate 2... Amorphous silicon carbide photoconductive layer/organic optical semiconductor layer 3 Patent applicant (663) Kyocera Corporation a*! j Anjo Kinjudo Takao Kawamura

Claims (6)

【特許請求の範囲】[Claims] (1)導電性基板上にアモルファスシリコンカーバイド
光導電層と有機光半導体層を順次積層した電子写真感光
体において、前記アモルファスシリコンカーバイド光導
電層の構成元素がSi元素、C元素並びに水素又はハロ
ゲンであって、水素又はハロゲンをA元素と表記し、該
層の元素比率を組成式〔Si_1_−_xC_x〕_1
_−_yA_yで表わした場合、x及びyをそれぞれ0
.05<x<0.5、0.2<y<0.5の範囲内に設
定し、更に上記光導電層に周期律表第Va族元素を10
0ppm以下の範囲内で含有したことを特徴とする電子
写真感光体。
(1) In an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer and an organic photoconductive layer are sequentially laminated on a conductive substrate, the constituent elements of the amorphous silicon carbide photoconductive layer are Si element, C element, hydrogen, or halogen. Therefore, hydrogen or halogen is expressed as element A, and the element ratio of the layer is given by the composition formula [Si_1_-_xC_x]_1
When expressed as ____yA_y, x and y are each 0
.. 05<x<0.5, 0.2<y<0.5, and further contains 10 elements of group Va of the periodic table in the photoconductive layer.
An electrophotographic photoreceptor characterized in that the content is within a range of 0 ppm or less.
(2)正帯電型である請求項(1)記載の電子写真感光
体。
(2) The electrophotographic photoreceptor according to claim (1), which is a positively charged type.
(3)周期律表第Va族元素がPである請求項(1)記
載の電子写真感光体。
(3) The electrophotographic photoreceptor according to claim (1), wherein the Group Va element of the periodic table is P.
(4)有機光半導体層が電子吸引性化合物から成る請求
項(1)記載の電子写真感光体。
(4) The electrophotographic photoreceptor according to claim (1), wherein the organic optical semiconductor layer comprises an electron-withdrawing compound.
(5)アモルファスシリコンカーバイド光導電層の厚み
が0.05〜5μmの範囲内でる請求項(1)記載の電
子写真感光体。
(5) The electrophotographic photoreceptor according to claim 1, wherein the amorphous silicon carbide photoconductive layer has a thickness within the range of 0.05 to 5 μm.
(6)有機光半導体層の厚みが10〜50μmの範囲内
である請求項(1)記載の電子写真感光体。
(6) The electrophotographic photoreceptor according to claim (1), wherein the thickness of the organic optical semiconductor layer is within the range of 10 to 50 μm.
JP30036688A 1988-11-28 1988-11-28 Electrophotographic photoreceptor Expired - Fee Related JP2761741B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30036688A JP2761741B2 (en) 1988-11-28 1988-11-28 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30036688A JP2761741B2 (en) 1988-11-28 1988-11-28 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH02146054A true JPH02146054A (en) 1990-06-05
JP2761741B2 JP2761741B2 (en) 1998-06-04

Family

ID=17883911

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30036688A Expired - Fee Related JP2761741B2 (en) 1988-11-28 1988-11-28 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2761741B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175938A (en) * 2005-12-27 2007-07-12 Duplo Seiko Corp Used master scrapping device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007175938A (en) * 2005-12-27 2007-07-12 Duplo Seiko Corp Used master scrapping device

Also Published As

Publication number Publication date
JP2761741B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
US4518670A (en) Recording material for electrophotography comprising amorphous silicon containing nitrogen
JPS59200248A (en) Production of image forming member
JPS6050540A (en) Electrophotographic sensitive body
JPH0792611B2 (en) Heterogeneous electrophotographic imaging member consisting of amorphous silicon and silicon oxide
JPH02146054A (en) Electrophotographic sensitive body
JPS6125154A (en) Electrophotographic sensitive body
JPH02213853A (en) Electrophotographic sensitive body
JP2668242B2 (en) Electrophotographic photoreceptor
JP2668241B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JP2775259B2 (en) Electrophotographic photoreceptor
JPH0683091A (en) Electrophotographic sensitive body and manufacture thereof
JPH01315760A (en) Electrophotographic sensitive body
JPS58217940A (en) Recording material
JP2789100B2 (en) Electrophotographic photoreceptor
JPH01315761A (en) Electrophotographic sensitive body
JP2668240B2 (en) Electrophotographic photoreceptor
JPH01315764A (en) Electrophotographic sensitive body
JPH01315759A (en) Electrophotographic sensitive body
JPS6357781B2 (en)
JPS58150960A (en) Photoconductive material
JPS58150963A (en) Photoconductive material
JPH02167555A (en) Electrophotographic sensitive body
JPH01315765A (en) Electrophotographic sensitive body
JPH01315763A (en) Electrophotographic sensitive body

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees