JPH01315765A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01315765A
JPH01315765A JP6723089A JP6723089A JPH01315765A JP H01315765 A JPH01315765 A JP H01315765A JP 6723089 A JP6723089 A JP 6723089A JP 6723089 A JP6723089 A JP 6723089A JP H01315765 A JPH01315765 A JP H01315765A
Authority
JP
Japan
Prior art keywords
layer
photosensitivity
photoreceptor
photoconductive layer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6723089A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Yasuo Nishiguchi
泰夫 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP6723089A priority Critical patent/JPH01315765A/en
Publication of JPH01315765A publication Critical patent/JPH01315765A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance photosensitivity by forming an amorphous silicon carbide photoconductive layer having a specified atomic composition containing a specified amount of specified element. CONSTITUTION:The amorphous silicon carbide photoconductive layer 2 forming a photosensitive layer on a conductive substrate together with an organic photosemiconductor layer has an atomic composition satisfying the atomic formula: (Si1-xCx)1-yAy (A is H or halogen), and 0<x<0.5, and 0.2<y<0.5, and contains an element of group IIIa of the periodic table in an amount of 1-1,000ppm, thus permitting the obtained electrophotographic sensitive body to be enhanced in photosensitivity.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド光導電層と有
機光半導体層を積層して成る電子写真感光体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料には、Se、 5e−Te
Photoconductive materials for electrophotographic photoreceptors include Se, 5e-Te,
.

A s z S e z + Z n O+ Cd S
 %アモルファスシリコンなどの無機材料と各種有機材
料があり、最初に実用化されたものはSeであり、そし
て、ZnO,CdS 、アモルファスシリコンも実用化
された。有機材料ではPVK−TNFが最初に実用化さ
れ、その後、電荷の発生並びに電荷の輸送という機能を
別々の材料に分担させるという機能分離型感光体が提案
され、この機能分離型感光体によって有機材料の開発が
飛躍的に発展した。
A s z S e z + Z n O+ Cd S
There are inorganic materials such as % amorphous silicon and various organic materials, of which Se was first put into practical use, and ZnO, CdS, and amorphous silicon were also put into practical use. Among organic materials, PVK-TNF was first put into practical use, and later, a functionally separated photoreceptor was proposed in which the functions of charge generation and charge transport were shared between separate materials. development has progressed dramatically.

一方、無機光導電層の上に有機光半導体層を積層した電
子写真感光体も提案された。
On the other hand, an electrophotographic photoreceptor in which an organic photoconductive layer is laminated on an inorganic photoconductive layer has also been proposed.

例えばSe層と有機光半導体層の積層型感光体があり、
既に実用化されたが、この感光体によれば、Se自体有
害であり、しかも、長波長側の感度に劣るという欠点も
あった。
For example, there is a laminated photoreceptor with a Se layer and an organic optical semiconductor layer.
Although this photoreceptor has already been put into practical use, it has the disadvantage that Se itself is harmful and that the sensitivity is poor on the long wavelength side.

そこで、特開昭56−14241号にはアモルファスシ
リコンカーバイド光導電層と有機光半導体層から成る積
層型感光体が提案されており、この感光体によれば、上
記問題点を解消して無公害性並びに高光感度な特性が得
られた。
Therefore, Japanese Patent Application Laid-Open No. 56-14241 proposes a laminated photoconductor consisting of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer, and this photoconductor solves the above problems and is non-polluting. Characteristics of high light sensitivity and light sensitivity were obtained.

上記提案の電子写真感光体は組成式si、−XCXH,
(但し0<x<1.0.05≦y≦0.2)で表わされ
るアモルファスシリコンカーバイド層並びに有機光半導
体層が順次積層された構造である。
The electrophotographic photoreceptor proposed above has the composition formula si, -XCXH,
(However, 0<x<1.0.05≦y≦0.2) It has a structure in which an amorphous silicon carbide layer and an organic optical semiconductor layer are sequentially laminated.

しかしながら、本発明者等がこのような電子写真感光体
を製作し、その光感度を測定したところ、未だ満足し得
るような特性が得られず、更に改善を要することが判明
した。
However, when the present inventors manufactured such an electrophotographic photoreceptor and measured its photosensitivity, it was found that satisfactory characteristics were not yet obtained and further improvement was required.

従って本発明は畝上に鑑みて完成されたものであり、そ
の目的は高い光感度が得られた電子写真感光体を提供す
ることにある。
Therefore, the present invention was completed in view of the ridges, and its object is to provide an electrophotographic photoreceptor that has high photosensitivity.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の電子写真感光体は導電性基板上にアモルファス
シリコンカーバイド光導電層(以下、アモルファスシリ
コンカーバイドをa−SiCと略す)と有機光半導体層
を順次積層し、そして、上記a−5iC光導電層の構成
元素がS′1元素、C元素並びに水素又はハロゲンであ
って、水素又はハロゲンをへ元素と表記し、核層の元素
比率を組成式〔Si1−XCX) l−y A yと表
わした場合、X及びyをそれぞh O< X < 0.
5.0.2 < y < 0.5 (7)範囲内に設定
し、更に核層に周期律表第1[[a族元素を1〜1 *
 000ppmの範囲内で含有させたことを特徴とする
The electrophotographic photoreceptor of the present invention has an amorphous silicon carbide photoconductive layer (hereinafter amorphous silicon carbide abbreviated as a-SiC) and an organic photoconductive layer sequentially laminated on a conductive substrate, and the a-5iC photoconductive layer described above is laminated in sequence. The constituent elements of the layer are the S'1 element, the C element, and hydrogen or halogen, where hydrogen or halogen is expressed as the element, and the element ratio of the core layer is expressed as the composition formula [Si1-XCX) ly A y. , then let X and y be h O < X < 0.
5.0.2 < y < 0.5 (7) Set within the range, and further add the periodic table 1 [[A group elements from 1 to 1 *
It is characterized in that it is contained within a range of 0,000 ppm.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
同図によれば、導電性基板(1)の上にa−5iC光導
電層(2)及び有機光半導体N(3)が順次積層される
。そして、a−5iC光導電層(2)には電荷発生とい
う機能があり、他方の有機光半導体層(3)には電荷輸
送という機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
According to the figure, an a-5iC photoconductive layer (2) and an organic optical semiconductor N (3) are sequentially laminated on a conductive substrate (1). The a-5iC photoconductive layer (2) has a function of charge generation, and the other organic photoconductive layer (3) has a function of charge transport.

本発明は上記a−3iC光導電層(2)の元素比率並び
に周期律表第IIIa族元素(以下、IIIa族元素と
略す)の含有量を下記の通りの範囲内に設定した場合、
このN(2)自体の光感度を顕著に高めることができた
ことが特徴である。
In the present invention, when the element ratio of the a-3iC photoconductive layer (2) and the content of Group IIIa elements of the periodic table (hereinafter abbreviated as Group IIIa elements) are set within the following ranges,
The feature is that the photosensitivity of this N(2) itself can be significantly increased.

組成式: 〔Si1−xc x ) +□A。Composition formula: [Si1-xc x) +□A.

(但しAは水素又はハロゲン) Q < x < 0.5、好適には0.01 < x 
< 0.40.2 < V < 0.5 、好適には0
.25 < y < 0.45IIIa族元素含存1 
: 1〜1 、000ppmX値が0.5以上の場合に
は光導電性が著しく低くなり、光キャリアの励起機能が
低下する。
(However, A is hydrogen or halogen) Q < x < 0.5, preferably 0.01 < x
< 0.40.2 < V < 0.5, preferably 0
.. 25 < y < 0.45 Group IIIa element content 1
: 1 to 1,000ppm When the X value is 0.5 or more, the photoconductivity becomes significantly low, and the excitation function of photocarriers deteriorates.

y値が0.2以下の場合には暗導電率が大きくなる傾向
になり、しかも、光導電率が低下傾向にあり、そのため
に所望通りの光導電性が得られず、y値が0.5以上の
場合には基板との密着性が劣化して剥離し易くなる。
When the y value is 0.2 or less, the dark conductivity tends to increase, and the photoconductivity tends to decrease, so that the desired photoconductivity cannot be obtained and the y value is 0.2 or less. If it is 5 or more, the adhesion to the substrate deteriorates and peeling becomes easy.

また、IIIa族元素含有量についてはa−5iC層全
体当りの平均値によって表わされ、その平均含有量が1
 ppm未満の場合には光感度の向上が認められず、一
方、1 、000ppmを超えた場合には暗導電率が著
しく大きくなり、しかも、光導電率の暗導電率に対す曇
化率が小さくなり、所望通りの光感度が得られない。
In addition, the Group IIIa element content is expressed by the average value per entire a-5iC layer, and the average content is 1
If it is less than 1,000 ppm, no improvement in photosensitivity is observed, whereas if it exceeds 1,000 ppm, the dark conductivity becomes significantly large, and the clouding rate of the photoconductivity relative to the dark conductivity is small. Therefore, the desired photosensitivity cannot be obtained.

また正帯電用感光体として用いる場合には上記1[1a
族元素含有量を1100pp以下の範囲内に設定しても
よい。即ち、この範囲内であれば、励起キャリアのうち
電子の移動度が高くなり、そのために怒光体表面に帯電
した正電荷をスムーズに中和でき、その結果、光感度が
高められる。
In addition, when used as a positive charging photoreceptor, the above 1[1a
The group element content may be set within a range of 1100 pp or less. That is, within this range, the mobility of electrons among the excited carriers will be high, so that the positive charges on the surface of the photoreceptor can be smoothly neutralized, and as a result, the photosensitivity will be increased.

a−SiC光導電層(2)にIIIa族元素を含有させ
るに当たり、そのドーピング分布はその層厚方向に亘っ
て均−又は不均一のいずれでもよい。不均一にドーピン
グさせた場合、この層(2)の一部にIIIa族元素が
含有されない層領域があってもよく、その場合にはII
Ia族元素含有の層領域並びにI[[a族元素が含有さ
れない層領域の両者から成るa−SiC層全体に対する
IIIa族元素平均含有量が1〜1 + 000ppm
でなくてはならない。
When a group IIIa element is contained in the a-SiC photoconductive layer (2), the doping distribution may be uniform or non-uniform over the layer thickness direction. In the case of non-uniform doping, there may be a layer region in a part of this layer (2) that does not contain group IIIa elements;
The average content of group IIIa elements in the entire a-SiC layer consisting of both the layer region containing group Ia elements and the layer region not containing group I[[[[a group elements] is 1 to 1 + 000 ppm.
Must be.

このIIIa族元素にはB、AI、Ga、Inなどがあ
るが、8元素が共有結合性に優れて半導体特性を敏感に
変え得る点で、その上、優れた帯電能並びに光感度が得
られるという点で望ましい。
Group IIIa elements include B, AI, Ga, and In, and these eight elements have excellent covalent bonding properties and can sensitively change semiconductor properties, and in addition, provide excellent charging ability and photosensitivity. It is desirable in that sense.

また、a−SiC光導電層(2)には水素(H)元素や
ハロゲン元素がダングリングボンド終端用に含有されて
いるが、これらの元素のなかでH元素が終端部に取り込
まれ易く、これによってバンドギャップ中の局在準位密
度が低減化されるという点で望ましい。
Furthermore, the a-SiC photoconductive layer (2) contains hydrogen (H) element and halogen element for terminating dangling bonds, but among these elements, H element is easily incorporated into the terminating portion. This is desirable in that the local level density in the band gap is reduced.

a−SiC光導電層(2)の厚みは0.05〜5 μm
 、好適には0.1〜3μmの範囲内に設定すればよく
、この範囲内であれば、高い光感度が得られ、残留電位
が低くなる。
The thickness of the a-SiC photoconductive layer (2) is 0.05 to 5 μm
, is preferably set within the range of 0.1 to 3 μm; within this range, high photosensitivity can be obtained and the residual potential will be low.

前記基板(1)には銅、黄銅、SOS 、 AIなどの
金属導電体、或いはガラス、セラミックスなどの絶縁体
の表面に導電体薄膜をコーティングしたものがあり、就
中、^lがコスト面並びにa−SiC層との密着性とい
う点で有利である。
The substrate (1) includes a metal conductor such as copper, brass, SOS, or AI, or an insulator such as glass or ceramics coated with a conductive thin film on the surface. This is advantageous in terms of adhesion to the a-SiC layer.

また、本発明の電子写真感光体は有機光半導体層(3)
の材料選択により負帯電型又は正帯電型に設定すること
ができる。即ち、負帯電型電子写真感光体の場合、有機
光半導体層(3)に電子供与性化合物が選ばれ、一方、
正帯電型電子写真感光体の場合には有機光半導体層(3
)に電子吸引性化合物が選ばれる。
Further, the electrophotographic photoreceptor of the present invention has an organic photoconductor layer (3).
It can be set to a negatively charged type or a positively charged type by selecting the material. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-donating compound is selected for the organic optical semiconductor layer (3);
In the case of a positively charged electrophotographic photoreceptor, an organic optical semiconductor layer (3
) is selected as an electron-withdrawing compound.

電子供与性化合物には高分子量のものとしてポリ−N−
ビニルカルバゾール、ポリビニルピレン、ポリビニルア
ントラセン、ピレン−ホルムアルデヒド縮重合体などが
あり、また、低分子量のものとしてオキサジアゾール、
オキサゾール、ピラゾリン、トリフェニルメタン、ヒド
ラゾン、トリアリールアミン、N−フェニルカルバゾー
ル、スチルベンなどがあり、この低分子物質はポリカー
ボネート、ポリエステル、メタアクリル樹脂、ポリアミ
ド、アクリルエポキシ、ポリエチレン、フェノール、ポ
リウレタン、ブチラール樹脂、ポリ酢酸ビニル、ユリア
樹脂などのバインダに分散されて用いられる。
Electron-donating compounds include poly-N-
Examples include vinylcarbazole, polyvinylpyrene, polyvinylanthracene, pyrene-formaldehyde condensation polymer, and low molecular weight ones such as oxadiazole,
These include oxazole, pyrazoline, triphenylmethane, hydrazone, triarylamine, N-phenylcarbazole, and stilbene, and these low-molecular substances include polycarbonate, polyester, methacrylic resin, polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, and butyral resin. It is used dispersed in a binder such as polyvinyl acetate or urea resin.

電子吸引性化合物には2.4.7−1−リニトロフルオ
レノンなどがある。
Electron-withdrawing compounds include 2.4.7-1-linitrofluorenone.

次に本発明電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−SiC層を形成するにはグロー放電分解法、イオン
ブレーティング法、反応性スパッタリング法、真空蒸着
法、CVO法などの薄膜形成方法がある。
To form the a-SiC layer, there are thin film forming methods such as glow discharge decomposition method, ion blating method, reactive sputtering method, vacuum evaporation method, and CVO method.

グロー放電分解法を用いる場合、Si元素含有ガスとC
元素含有ガスを組合せ、この混合ガスをプラズマ分解し
て成膜形成する。このSi元素含有ガスにはSiH4+
Si2H6,Si:lHa、5iFa−+5iC14+
5iHC1:+などがあり、また、C元素含有ガスには
CH4,CzH4,CzH2+C3H1lなどがあり、
就中、CzHzが高速成膜性が得られるという点で望ま
しい。
When using the glow discharge decomposition method, Si element-containing gas and C
A film is formed by combining element-containing gases and plasma decomposing the mixed gas. This Si element-containing gas contains SiH4+
Si2H6, Si:lHa, 5iFa-+5iC14+
5iHC1:+, etc., and C element-containing gases include CH4, CzH4, CzH2+C3H1l, etc.
Among these, CzHz is preferable because it allows high-speed film formation.

本実施例に・用いられるグロー放電分解装置を第2図に
より説明する。
The glow discharge decomposition device used in this example will be explained with reference to FIG.

同図中第1タンク(4)、第2タンク(5)、第3タン
ク(6)、第4タンク(7)にはそれぞれSiH,、C
tHt、BiI3並びにH2が密封され、これらのガス
は各々対応する第1調整弁(8)、第2調整弁(9)、
第3調整弁(10)及び第4調整弁(11)を開放する
ことにより放出される。その放出ガスの流量はそれぞれ
マスフローコントローラ(12) (13) (14)
 (15)により制御され、各々のガスは混合されて主
管(16)へ送られる。尚、(17) (18)は止め
弁である。
In the figure, the first tank (4), second tank (5), third tank (6), and fourth tank (7) are filled with SiH, C, and
tHt, BiI3 and H2 are sealed, and these gases are passed through the corresponding first regulating valve (8), second regulating valve (9),
It is released by opening the third regulating valve (10) and the fourth regulating valve (11). The flow rate of the released gas is determined by the mass flow controller (12) (13) (14).
(15), each gas is mixed and sent to the main pipe (16). Note that (17) and (18) are stop valves.

主管(16)を流れるガスは反応管(19)へ流入する
が、この反応管(19)の内部には容量結合型放電用電
極(20)を設置し、また、筒状の成膜用基板(21)
を基板支持体(22)上に載置し、基板支持体(22)
をモータ(23)により回転駆動し、これに伴って基板
(21)が回転する。そして、電極(20)に電力50
W〜3KW 、周波数1〜50MHzの高周波電力を印
加し、しかも、基板(21)を適当な加熱手段により約
200〜400℃、好適には約200〜350℃の温度
に加熱する。また反応管(19)には回転ポンプ(24
)と拡散ポンプ(25)を連結し、これによってグロー
放電による成膜形成時に所要な真空状態(放電時のガス
圧0.01〜2.0Torr)を維持する。
The gas flowing through the main pipe (16) flows into the reaction tube (19), which is equipped with a capacitively coupled discharge electrode (20) and a cylindrical film-forming substrate. (21)
is placed on the substrate support (22), and
is rotationally driven by a motor (23), and the substrate (21) rotates accordingly. Then, power 50 is applied to the electrode (20).
A high frequency power of W to 3 KW and a frequency of 1 to 50 MHz is applied, and the substrate (21) is heated to a temperature of about 200 to 400°C, preferably about 200 to 350°C, by a suitable heating means. In addition, the reaction tube (19) is equipped with a rotary pump (24).
) and a diffusion pump (25), thereby maintaining the necessary vacuum state (gas pressure during discharge of 0.01 to 2.0 Torr) during film formation by glow discharge.

このような構成のグロー放電分解装置を用いて基板(2
1)の上にa−SiC層を形成する場合、第1調整弁(
8)、第2調整弁(9)、第3 BM整弁(10)及び
第4調整弁(11)を開いてそれぞれ5i14.CzH
z、BJ6、Ihのガスを放出し、その放出量をマスフ
ローコントローラ(12) (13) (14) (1
5)により制御し、各々のガスは混合されて主管(16
)を介して反応管(19)へ流入する。そして、反応管
内部の真空状態、基板温度、電極印加用高周波電力をそ
れぞれ所定の条件に設定するとグロー放電が発生し、ガ
スの分解に伴ってB元素含有のa−5iC膜が基板上に
高速に形成される。
The substrate (2
When forming an a-SiC layer on 1), the first regulating valve (
8), open the second regulating valve (9), the third BM regulating valve (10), and the fourth regulating valve (11) to 5i14. CzH
z, BJ6, and Ih gases are released, and the amount of the released gases is controlled by a mass flow controller (12) (13) (14) (1
5), each gas is mixed and sent to the main pipe (16
) into the reaction tube (19). Then, by setting the vacuum inside the reaction tube, the substrate temperature, and the high-frequency power applied to the electrodes to predetermined conditions, a glow discharge occurs, and as the gas decomposes, the a-5iC film containing B element is rapidly spread onto the substrate. is formed.

上述した通りの薄膜形成方法によりa−SiC層が形成
すると、次に有機光半導体層を形成する。
After the a-SiC layer is formed by the thin film forming method as described above, an organic optical semiconductor layer is then formed.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成する。即ち、前者は感光材が溶媒中に分散された
塗工液の中に浸漬し、次いで一定な速度で引上げ、そし
て、自然乾燥並びに熱エージング(約150℃、約1時
間)を行なうという方法であり、また、後者のコーティ
ング法によれば、コーター(塗機)を用いて溶媒に分散
された感光材を塗布し、次いで熱風乾燥を行なう。
The organic optical semiconductor layer is formed by a dip coating method or a coating method. That is, in the former method, the photosensitive material is immersed in a coating liquid dispersed in a solvent, then pulled up at a constant speed, and then subjected to natural drying and heat aging (approximately 150°C, approximately 1 hour). According to the latter coating method, a photosensitive material dispersed in a solvent is applied using a coater, and then hot air drying is performed.

〔実施例〕〔Example〕

(例1) 第2図のグロー放電分解装置を用いてSiH4ガスを2
00secmの流量で、水素希釈B2H−ガスを90s
ecmの流量で、H2ガスを270secmの流量で、
そして、czt+zガスの流量を変化させ、また、ガス
圧を0.67orr、高周波電力を150W、基板温度
を250℃に設定し、グロー放電によってa−5iC膜
(膜要約1μm )を形成した。
(Example 1) Using the glow discharge decomposition device shown in Figure 2, SiH4 gas is
Hydrogen diluted B2H-gas for 90 s at a flow rate of 00 sec
H2 gas at a flow rate of ecm and a flow rate of 270sec,
Then, the flow rate of the czt+z gas was changed, the gas pressure was set to 0.67 orr, the high frequency power was set to 150 W, and the substrate temperature was set to 250° C., and an a-5iC film (film size: 1 μm) was formed by glow discharge.

このようにしてa−SiC膜のカーボン含有比率を変え
、そして、膜中のカーボン量をXMA法により測定し、
また、光導電率及び暗導電率を測定したところ、第3図
に示す通りの結果が得られた。尚、各々のa−5iC膜
に含有されたB元素含有量を二次イオン質量分析計によ
り測定したところ、いずれも約15ppmであった。
In this way, the carbon content ratio of the a-SiC film was changed, and the amount of carbon in the film was measured by the XMA method.
Further, when the photoconductivity and dark conductivity were measured, the results shown in FIG. 3 were obtained. In addition, when the B element content contained in each a-5iC film was measured using a secondary ion mass spectrometer, it was found to be approximately 15 ppm in each case.

第3図中横軸はカーボン含有比率、即ち5iI−。The horizontal axis in FIG. 3 is the carbon content ratio, ie, 5iI-.

C8のy値であり、縦軸は導電率を表わし、○印は露光
波長550nm (光量50μW/cmりの光に対する
光導電率のプロットであり、・印は暗導電率のプロット
であり、また、a、bはそれぞれの特性曲線である。
It is the y value of C8, the vertical axis represents the conductivity, the circle mark is a plot of photoconductivity for light with an exposure wavelength of 550 nm (light intensity of 50 μW/cm), the mark is a plot of dark conductivity, and , a, b are respective characteristic curves.

上記各a−SiC膜について、その水素含有量を赤外吸
収測定法により求めたところ、第4図に示す通りの結果
が得られた。
When the hydrogen content of each of the above a-SiC films was determined by infrared absorption measurement, the results shown in FIG. 4 were obtained.

同図中横軸は5il−1ICXの×値であり、縦軸は水
素含有量、即ち〔5iI−8CX) +−y Hyのy
値であり、O印はSi原子に結合した水素量のプロット
であり、・印はC原子に結合した水素量のプロットであ
り、また、c、dはそれぞれの特性曲線である。
In the figure, the horizontal axis is the x value of 5il-1ICX, and the vertical axis is the hydrogen content, that is, [5iI-8CX) +-y y of Hy
The O mark is a plot of the amount of hydrogen bonded to the Si atom, the * mark is the plot of the amount of hydrogen bonded to the C atom, and c and d are the respective characteristic curves.

第4図より明らかな通り本例のa−SiC膜はいずれも
y値が0.3〜0゜4の範囲内にあることが判る。
As is clear from FIG. 4, the a-SiC films of this example all have y values within the range of 0.3 to 0.4.

また、第3図より明らかな通りカーボン含有比率Xが0
 < x < 0.5の範囲内であれば、高い光導電率
が得られるとともに光導電率と暗導電率の比率が顕著に
大きくなり、優れた光感度が得られたことが判る。
Also, as is clear from Figure 3, the carbon content ratio X is 0.
It can be seen that within the range of < x < 0.5, high photoconductivity was obtained and the ratio of photoconductivity to dark conductivity became significantly large, indicating that excellent photosensitivity was obtained.

(例2) 次に本例においては、5il14ガスを200secm
の流量で、CtH2ガスを20secmの流量で、水素
希釈B2H6ガスを90secmの流量で、H2ガスを
θ〜1000sccIIlの流量で導入し、そして、高
周波電力を50〜300w。
(Example 2) Next, in this example, 5il14 gas is
CtH2 gas was introduced at a flow rate of 20 sec, hydrogen diluted B2H6 gas was introduced at a flow rate of 90 sec, H2 gas was introduced at a flow rate of θ~1000 sccIIl, and the high frequency power was 50~300 W.

ガス圧を0.3〜1.2Torrに設定し、グロー放電
によりa−5iC膜(膜要約1μm )を形成した。
The gas pressure was set at 0.3 to 1.2 Torr, and an a-5iC film (film size: 1 μm) was formed by glow discharge.

かくしてカーボン含有比率×を0.3に設定し、そして
、水素含有量yを変化させた種々のa−SiC膜を形成
し、各々の膜について光導電率及び暗導電率を測定した
ところ、第5図に示す通りの結果が得られた。尚、a−
3iC膜のB元素含有量を測定したところいずれも約1
5ppmであった。
In this way, carbon content ratio x was set to 0.3, and various a-SiC films with varying hydrogen content y were formed, and the photoconductivity and dark conductivity of each film were measured. The results shown in Figure 5 were obtained. Furthermore, a-
When the B element content of the 3iC film was measured, it was approximately 1
It was 5 ppm.

第5図中横軸は水素含有量、即ち(Si O,?CG、
 3) +−y Hyのy値であり、縦軸は導電率を表
わし、0印は露光波長550nm (光量50 p W
/cm”)の光に対する光導電率のプロットであり、・
印は暗導電率のプロットであり、また、e、fはそれぞ
れの特性曲線である。
The horizontal axis in Figure 5 is the hydrogen content, i.e. (SiO,?CG,
3) +-y is the y value of Hy, the vertical axis represents the conductivity, and the 0 mark is the exposure wavelength of 550 nm (light amount 50 p W
/cm”) is a plot of photoconductivity for light,
The marks are plots of dark conductivity, and e and f are respective characteristic curves.

第5図より明らかな通り、y値が0.2を超えた場合、
高い光導電率並びに低い暗導電率が得られることが判る
As is clear from Figure 5, when the y value exceeds 0.2,
It can be seen that high photoconductivity as well as low dark conductivity are obtained.

(例3) 本例においては、5i14ガスを200secmの流量
で、CzHzガスを20secmの流量で、水素希釈B
 Z II &ガス(濃度0.2χ 又は40ppm)
を5〜500secmの流量で、H2ガスを200se
cmの流量で導入し、そして、高周波電力を150−、
ガス圧を0.6Torrに設定し、グロー放電によりB
元素含有のa−3iC膜(膜要約1μm)を形成した。
(Example 3) In this example, hydrogen dilution B is performed using 5i14 gas at a flow rate of 200 seconds and CzHz gas at a flow rate of 20 seconds.
Z II & gas (concentration 0.2χ or 40ppm)
H2 gas at a flow rate of 5 to 500 sec for 200 sec
cm, and high frequency power was applied at 150 cm.
The gas pressure was set to 0.6 Torr, and B
An element-containing a-3iC film (film thickness: 1 μm) was formed.

かくしてカーボン含有比率Xを0.3に、そして、水素
含有量を0.35に設定し、B元素含有量を変化させた
種々のa−5iC膜を形成し、各々の膜について光導電
率及び暗導電率を測定したところ、第6図に示す通りの
結果が得られた。
In this way, various a-5iC films were formed with the carbon content ratio X set to 0.3 and the hydrogen content set to 0.35, and the B element content varied, and the photoconductivity and When the dark conductivity was measured, the results shown in FIG. 6 were obtained.

本例においては、上記B t 11 、ガスに代えてP
H2ガスを導入させ、これによってP元素含有量を変化
させた種々のa−5iC膜を形成し、これらの測定結果
も求めた。
In this example, in place of the above B t 11 and gas, P
Various a-5iC films with varying P element contents were formed by introducing H2 gas, and the measurement results were also obtained.

同図中横軸はB元素含有量(又はP元素含有量)であり
、縦軸は導電率を表わし、○印は露光波長550nm 
(光量50μW/cm”)の光に対する光導電率のプロ
ットであり、・印は暗導電率のプロットであり、またg
、hはそれぞれ特性曲線である。
In the figure, the horizontal axis represents the B element content (or P element content), the vertical axis represents the conductivity, and the circle indicates the exposure wavelength of 550 nm.
This is a plot of photoconductivity for light with a light intensity of 50 μW/cm”, and the symbol ・ is a plot of dark conductivity, and g
, h are characteristic curves.

第6図より明らかな通り、B元素が1−1.00011
111m含有させた場合、光導電率と暗導電率の比が著
しく大きくなることが判る。また、P元素については光
導電率及び暗導電率の増大がより一層顕著であった。
As is clear from Figure 6, element B is 1-1.00011
It can be seen that when 111m is contained, the ratio of photoconductivity to dark conductivity becomes significantly large. Furthermore, for P element, the increase in photoconductivity and dark conductivity was even more remarkable.

かくして上記a−5iC膜はB元素及びP元素により価
電子制御されており、これにより、半導体として優れた
膜質であることが確認できた。
Thus, it was confirmed that the a-5iC film had valence electrons controlled by the B element and the P element, and thus had excellent film quality as a semiconductor.

(例4) 本例においては、第1表に示す成膜条件により各種a−
5iC光導電層(試料NaA−1−A−5)を形成した
。そして、各々のカーボン元素含有比率X及びB元素含
有量を測定したところ、第1表に示す通りの結果が得ら
れた。
(Example 4) In this example, various a-
A 5iC photoconductive layer (sample NaA-1-A-5) was formed. Then, when the carbon element content ratio X and B element content of each were measured, the results shown in Table 1 were obtained.

〔以下余白〕[Margin below]

次に試料NaA−1,A−2,A−4,A−5の分光感
度特性を測定したところ、第7図に示す通りの結果が得
られた。また、各試料の水素含有量(y値)を測定した
ところ、いずれも0.2 < y< 0.4の範囲内で
あった。
Next, when the spectral sensitivity characteristics of samples NaA-1, A-2, A-4, and A-5 were measured, the results shown in FIG. 7 were obtained. Furthermore, when the hydrogen content (y value) of each sample was measured, all were within the range of 0.2 < y < 0.4.

第7図において、横軸は波長であり、縦軸は導電率であ
り、O印、△印、V印及びX印はそれぞれ試料l1kL
A−1,A−2,^−4,A−5の測定プロットである
In Fig. 7, the horizontal axis is the wavelength, the vertical axis is the conductivity, and the O mark, △ mark, V mark, and X mark are the sample l1kL, respectively.
These are measurement plots of A-1, A-2, ^-4, and A-5.

同図より明らかな通り、本発明に係る試料患^−1、A
−2,A−4は高い光導電性が得られたことが判る。
As is clear from the figure, sample disease ^-1, A according to the present invention
It can be seen that high photoconductivity was obtained for Samples -2 and A-4.

(例5) 本例においては、第2表に示す成膜条件により各種のa
−3iC光導電層(試料NIILB−1−B−5’)を
形成した。そして、各々のC元素含有比率(X4M)及
びB元素含有量を測定したところ、第2表に示す通りの
結果が得られた。
(Example 5) In this example, various a
A -3iC photoconductive layer (sample NIILB-1-B-5') was formed. Then, when the C element content ratio (X4M) and B element content of each were measured, the results shown in Table 2 were obtained.

〔以下余白〕[Margin below]

次に試料NIIB−1,B−2,B−4,B−5の分光
感度特性を測定したところ、第8図に示す通りの結果が
得られた。また、各試料の水素含有量(y値)を測定し
たところ、0.2 < V < 0.4の範囲内であっ
た。
Next, when the spectral sensitivity characteristics of samples NIIB-1, B-2, B-4, and B-5 were measured, the results shown in FIG. 8 were obtained. Furthermore, when the hydrogen content (y value) of each sample was measured, it was within the range of 0.2 < V < 0.4.

第8図において、横軸は波長であり、縦軸は導電率であ
り、O印、Δ印、印及びX印はそれぞれ試料NctB−
1,B−2,B−4,B−5の測定プロットである。
In FIG. 8, the horizontal axis is the wavelength, the vertical axis is the conductivity, and the O, Δ, and X marks are for the sample NctB-
1, B-2, B-4, and B-5 measurement plots.

同図より明らかな通り、本発明に係る試料は高い光導電
性が得られたことが判る。
As is clear from the figure, it can be seen that the sample according to the present invention had high photoconductivity.

(例6) 次に本発明者等はC,H2ガスに代えて0114ガスを
用い、第3表に示す成膜条件により各種a−5iC光導
電層(試料kc−1〜C−5)を形成した。そして、各
試料のC元素含有比率(X値)、水素含有量(y値)及
びB元素含有量を測定したところ、第3表に示す通りの
結果が得られた。
(Example 6) Next, the present inventors used 0114 gas instead of C and H2 gas, and formed various a-5iC photoconductive layers (samples KC-1 to C-5) under the film forming conditions shown in Table 3. Formed. Then, the C element content ratio (X value), hydrogen content (y value), and B element content of each sample were measured, and the results shown in Table 3 were obtained.

〔以下余白〕[Margin below]

試料!1hc−1,C−2,C−3の分光感度特性を測
定したところ、第9図に示す通りの結果が得られた。
sample! When the spectral sensitivity characteristics of 1hc-1, C-2, and C-3 were measured, the results shown in FIG. 9 were obtained.

同図中横軸は波長であり、縦軸は導電率であり、そして
、○印、Δ印、印はそれぞれ試料11hC−1、C〜2
.C−3の測定プロットである。
In the figure, the horizontal axis is the wavelength, the vertical axis is the conductivity, and the marks ○, Δ, and samples 11hC-1 and C~2, respectively.
.. It is a measurement plot of C-3.

同図より明らかな通り、いずれの試料も高い導電率が得
られなかったことが判る。
As is clear from the figure, high conductivity was not obtained in any of the samples.

(例7) 次に本発明者等はAI製製電電性基板上に第4表に示す
ように2種類のa−SiC光導電層を形成し、各々の層
の上に下記の通りに有機光半導体層(厚み15μm )
をコーティング法により積層した。
(Example 7) Next, the present inventors formed two types of a-SiC photoconductive layers as shown in Table 4 on an AI-made electrically conductive substrate, and added an organic layer on each layer as shown below. Optical semiconductor layer (thickness 15μm)
were laminated using a coating method.

〔有機光半導体層の塗布方法〕[Method for applying organic optical semiconductor layer]

ヒドラゾンを1.4−ジオキサンの溶剤に溶かし、更に
ポリエステル樹脂〔レフサン−LS2−11)をヒドラ
ゾンと同重量加え、超音波分散を4δ分行なった。そし
て、バー・コーターを用いて両者のa−SiC光導電層
の上に塗布し、次いで熱風乾燥を行なった。
Hydrazone was dissolved in a 1,4-dioxane solvent, and polyester resin (Refsan-LS2-11) was added in the same weight as the hydrazone, followed by ultrasonic dispersion for 4δ minutes. Then, it was coated on both a-SiC photoconductive layers using a bar coater, and then dried with hot air.

かくして2種類の負帯電型電子写真感光体を作製した(
感光体A、B )。
In this way, two types of negatively charged electrophotographic photoreceptors were manufactured (
photoreceptor A, B).

〔以下余白〕[Margin below]

感光体Aについて、暗及び光減衰特性を測定したところ
、第10図に示す通りの結果が得られ、また、分光感度
特性を測定したところ、第11図に示  :す通りの結
果が得られた。
When the dark and light attenuation characteristics of photoreceptor A were measured, the results as shown in Figure 10 were obtained, and when the spectral sensitivity characteristics were measured, the results as shown in Figure 11 were obtained. Ta.

第10図によれば、横軸は減衰時間(秒)であり、縦軸
は表面電位(ボルト)であり、そして、iは暗減衰曲線
、i−1,i−2,i−3はそれぞれ露光波長が400
nm、 450nm、 550nmの場合の光減衰曲線
を表わす。
According to FIG. 10, the horizontal axis is the decay time (seconds), the vertical axis is the surface potential (volts), and i is the dark decay curve, and i-1, i-2, and i-3 are respectively Exposure wavelength is 400
The optical attenuation curves are shown for 450 nm, 450 nm, and 550 nm.

また、第11図において、横軸は波長であり、縦 。In addition, in FIG. 11, the horizontal axis is the wavelength, and the vertical axis is the wavelength.

軸は光感度であり、そして、○印は感光体^の測  4
定プロツトである。また、比較例として試料隘C−1@
 a −S i C光導電層とし、この層の上に本例と
同じ方法により有機光半導体層を形成し、電子写真感光
体を作製した。この感光体の測定プロットをΔ印にて示
す。
The axis is the photosensitivity, and the circle mark is the measurement of the photoreceptor 4
This is a fixed plot. In addition, as a comparative example, sample C-1@
An a-SiC photoconductive layer was used, and an organic photoconductor layer was formed on this layer by the same method as in this example, to produce an electrophotographic photoreceptor. The measurement plot of this photoreceptor is indicated by Δ.

測定条件は+6KVの電圧を印加したコロナ帯電器によ
り帯電を行ない、露光は各波長での光量を0.15μ一
/cm”とし、それらに対する表面電位の変化は光透過
型測定プローブを有する表面電位計を用いて測定した。
The measurement conditions were as follows: Charging was carried out using a corona charger applying a voltage of +6 KV, and the light intensity at each wavelength was 0.15 μl/cm'' for exposure. Measured using a meter.

第11図に示す結果より明らかな通り、本発明の感光体
Aは比較例に比べて優れた光感度が得られたことが判る
As is clear from the results shown in FIG. 11, it can be seen that the photoreceptor A of the present invention had superior photosensitivity compared to the comparative example.

(例8) 本発明者等は更に比較例としてAI製製電電性基板上に
第5表に示すようにa−SiC光導電眉を形成し、その
層の上に(例7)と同様に有機光半導体層(厚み15μ
m )をコーティング法により積石し、かくして負帯電
型電子写真感光体を作製した(感光体C)。
(Example 8) As a comparative example, the present inventors formed an a-SiC photoconductive layer as shown in Table 5 on an electrically conductive substrate made of AI, and on top of that layer, in the same manner as in (Example 7). Organic optical semiconductor layer (thickness 15μ
m) was laminated by a coating method, thus producing a negatively charged electrophotographic photoreceptor (photoreceptor C).

〔以下余白〕[Margin below]

この感光体Cについて、暗及び光減衰特性を測定したと
ころ、その表面電位が感光体へに比べて若干上昇傾向に
あることを確認した。また、分光感度特性を測定したと
ころ、第12図に示す通りの結果が得られた。
When the dark and light attenuation characteristics of this photoreceptor C were measured, it was confirmed that its surface potential tended to rise slightly compared to that of the photoreceptor. Further, when the spectral sensitivity characteristics were measured, the results shown in FIG. 12 were obtained.

第11図及び第12図より明らかな通り、感光体Aは感
光体Cに比べて光感度が改善したことが判る。
As is clear from FIGS. 11 and 12, it can be seen that photoreceptor A has improved photosensitivity compared to photoreceptor C.

また、本発明者等は感光体Bについても暗及び光減衰特
性並びに分光感度特性を測定したところ、いずれも感光
体へと同じように優れた光感度特性が得られたことを確
認した。
The present inventors also measured the dark and light attenuation characteristics and spectral sensitivity characteristics of photoreceptor B, and confirmed that similarly excellent photosensitivity characteristics were obtained for both photoreceptors.

(例9) 次に本発明者等は第6表に示す成膜条件により5種類の
a−3iC光導電層を形成し、次いで各層の上に(例7
)に示す方法により厚み15μmの有機光半導体層を塗
布形成し、負帯電型感光体D −11を作製した。尚、
いずれの感光体もカーボン元素含有比率Xが0.25で
あり、水素含有量yが0.2〜0.4の範囲内であった
(Example 9) Next, the present inventors formed five types of a-3iC photoconductive layers according to the film formation conditions shown in Table 6, and then on each layer (Example 7
) An organic photoconductor layer having a thickness of 15 μm was coated and formed by the method shown in (a) to prepare a negatively charged photoreceptor D-11. still,
In each photoreceptor, the carbon element content ratio X was 0.25, and the hydrogen content y was within the range of 0.2 to 0.4.

〔以下余白〕[Margin below]

これらの電子写真感光体のB元素含有量並びに光感度、
表面電位及び残留電位を測定したところ、第7表に示す
通りの結果が得られた。
The B element content and photosensitivity of these electrophotographic photoreceptors,
When the surface potential and residual potential were measured, the results shown in Table 7 were obtained.

同表中光感度は相対評価により◎印、○印及びΔ印の三
段階に区分し、■印は最も優れた光感度が得られた場合
であり、O印は幾分価れた光感度が得られた場合であり
、Δ印は他に比べて光感度がわずかに劣った場合である
The photosensitivity in the same table is classified into three levels, ◎, ○, and Δ, based on relative evaluation.■ marks indicate the best photosensitivity, and O marks indicate slightly higher photosensitivity. is obtained, and the mark Δ is a case where the photosensitivity is slightly inferior to the others.

表面電位の特性評価も◎印、○印及びΔ印の三段階に区
分し、◎印は最も高い表面電位が得られた場合であり、
○印は幾分高い表面電位が得られた場合であり、Δ印は
他に比べて高い表面電位が認められなかった場合である
Characteristic evaluation of surface potential is also divided into three stages: ◎ mark, ○ mark, and Δ mark. ◎ mark is the case where the highest surface potential is obtained;
The ○ mark indicates a case where a somewhat high surface potential was obtained, and the Δ mark indicates a case where a higher surface potential was not observed compared to others.

また、残留電位についても三段階に相対評価しており、
■印は残留電位が最も小さくなった場合であり、○印は
残留電位の低下が幾分圧められた場合であり、Δ印は他
に比べて残留電位の低減が認められなかった場合である
In addition, the residual potential is also evaluated relative to three levels.
The ■ mark is the case where the residual potential is the smallest, the ○ mark is the case where the decrease in the residual potential is somewhat suppressed, and the Δ mark is the case where the reduction in the residual potential is not observed compared to the others. be.

〔以下余白〕[Margin below]

第7表 第7表より明らかな通り、感光体D−Gは優れた光感度
が得られ、しかも、残留電位の低減が認められ、就中、
感光体E、P、Gについては更に高い光感度が認められ
た。然るに感光体11は光感度、表面電位並びに残留電
位のいずれの特性も改善されていないことが判る。
Table 7 As is clear from Table 7, photoreceptor D-G has excellent photosensitivity and a reduction in residual potential.
Even higher photosensitivity was observed for photoreceptors E, P, and G. However, it can be seen that the photoreceptor 11 has not been improved in any of the characteristics of photosensitivity, surface potential, and residual potential.

〔発明の効果〕〔Effect of the invention〕

以上の通り、本発明によれば、a−SiC光導電層のカ
ーボン量及びダングリングボンド終端用元素の量並びに
IIIa族元素含有量をそれぞれ所定の範囲内に設定し
、このa−3iC光導電層と有機光半導体層を組合せた
ことにより優れた光感度の電子写真感光体が提供できた
As described above, according to the present invention, the amount of carbon, the amount of the dangling bond terminating element, and the group IIIa element content of the a-SiC photoconductive layer are set within predetermined ranges, and the a-3iC photoconductive layer is By combining the organic photoconductor layer and the organic photosemiconductor layer, an electrophotographic photoreceptor with excellent photosensitivity could be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の層構成を表わす断面図
、第2図は実施例に用いられるグロー放電分解装置の概
略図、第3図はカーボン含有比率と導電率の関係を示す
線図、第4図はカーボン含有比率と水素含有量の関係を
示す線図、第5図は水素含有量と導電率の関係を示す線
図、第6図は周期律表第IIIa族元素含有量又は第V
a族元素含有量と導電率の関係を示す線図である。また
、第7図、第8図及び第9図は導電率を表わす線図、第
10図は表面電位を表わす線図、第11図及び第12図
は光感度を表わす線図である。 1・・・導電性基板 2・・・アモルファスシリコンカーバイド光導電層 3・・・有機光半導体層 ○         0.51 カーポ゛〉奢盾此半(、¥I値9 第4図 力−ホ゛ン摩屑比」≠(X議) Q   O,+   0.2  0.3  0.4  
0.5水東/?屑+(び自2 第7図 う良畏Cnr−) 」こ畏 (わyy+) ジ友長 (ハリ
FIG. 1 is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is a schematic diagram of a glow discharge decomposition device used in Examples, and FIG. 3 is a line showing the relationship between carbon content ratio and electrical conductivity. Figure 4 is a diagram showing the relationship between carbon content ratio and hydrogen content, Figure 5 is a diagram showing the relationship between hydrogen content and electrical conductivity, and Figure 6 is a diagram showing the relationship between group IIIa elements of the periodic table. or Chapter V
FIG. 2 is a diagram showing the relationship between group a element content and electrical conductivity. Further, FIGS. 7, 8, and 9 are diagrams representing conductivity, FIG. 10 is a diagram representing surface potential, and FIGS. 11 and 12 are diagrams representing photosensitivity. 1... Conductive substrate 2... Amorphous silicon carbide photoconductive layer 3... Organic optical semiconductor layer Ratio”≠(X discussion) Q O, + 0.2 0.3 0.4
0.5 Suito/? Waste + (Biji 2 Figure 7 U Ryo A Cnr-) "Ko Awe (Wayy +) Ji Tomonaga (Hari

Claims (1)

【特許請求の範囲】 導電性基板上にアモルファスシリコンカーバイド光導電
層と有機光半導体層を順次積層した電子写真感光体にお
いて、前記アモルファスシリコンカーバイド光導電層の
構成元素がSi元素、C元素並びに水素又はハロゲンで
あって、水素又はハロゲンをA元素と表記し、該層の元
素比率を組成式〔Si_1_−_xC_x〕_1_−_
yA_yと表わした場合、x及びyをそれぞれ0<x<
0.5、0.2<y<0.5の範囲内に設定し、更に該
層に周期律表第IIIa族元素を1〜1,000ppmの
範囲内で含有させたことを特徴とする電子写真感光体。
[Scope of Claims] An electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer and an organic photoconductive layer are sequentially laminated on a conductive substrate, wherein the constituent elements of the amorphous silicon carbide photoconductive layer are Si element, C element, and hydrogen. or halogen, hydrogen or halogen is expressed as element A, and the element ratio of the layer is represented by the composition formula [Si_1_-_xC_x]_1_-_
When expressed as yA_y, x and y are each 0<x<
0.5, 0.2<y<0.5, and the layer further contains a Group IIIa element of the periodic table in a range of 1 to 1,000 ppm. Photographic photoreceptor.
JP6723089A 1988-03-17 1989-03-17 Electrophotographic sensitive body Pending JPH01315765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6723089A JPH01315765A (en) 1988-03-17 1989-03-17 Electrophotographic sensitive body

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP6433788 1988-03-17
JP63-64337 1988-03-17
JP6723089A JPH01315765A (en) 1988-03-17 1989-03-17 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01315765A true JPH01315765A (en) 1989-12-20

Family

ID=26405460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6723089A Pending JPH01315765A (en) 1988-03-17 1989-03-17 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01315765A (en)

Similar Documents

Publication Publication Date Title
JPS58189643A (en) Photoreceptor
US4613556A (en) Heterogeneous electrophotographic imaging members of amorphous silicon and silicon oxide
JPH01315765A (en) Electrophotographic sensitive body
JPS5915940A (en) Photoreceptor
JP2668241B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JP2668242B2 (en) Electrophotographic photoreceptor
JP2761734B2 (en) Electrophotographic photoreceptor
JP2775259B2 (en) Electrophotographic photoreceptor
JP2668240B2 (en) Electrophotographic photoreceptor
JP2761741B2 (en) Electrophotographic photoreceptor
JPH01315761A (en) Electrophotographic sensitive body
JP2789100B2 (en) Electrophotographic photoreceptor
JP2742583B2 (en) Electrophotographic photoreceptor
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JPH02140754A (en) Electrophotographic sensitive body
JPS5824148A (en) Electrophotographic receptor
JP2678449B2 (en) Electrophotographic photoreceptor
JPH01315759A (en) Electrophotographic sensitive body
JPH01315764A (en) Electrophotographic sensitive body
JPH01315760A (en) Electrophotographic sensitive body
JPH01232353A (en) Electrophotographic sensitive body
JPH02181155A (en) Electrophotographic sensitive body
JPH02144548A (en) Electrophotographic sensitive body
JPH02167555A (en) Electrophotographic sensitive body