JPS5824148A - Electrophotographic receptor - Google Patents

Electrophotographic receptor

Info

Publication number
JPS5824148A
JPS5824148A JP56123205A JP12320581A JPS5824148A JP S5824148 A JPS5824148 A JP S5824148A JP 56123205 A JP56123205 A JP 56123205A JP 12320581 A JP12320581 A JP 12320581A JP S5824148 A JPS5824148 A JP S5824148A
Authority
JP
Japan
Prior art keywords
amorphous silicon
film
glow discharge
electrophotographic
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56123205A
Other languages
Japanese (ja)
Inventor
Katsuhiro Teraishi
寺石 克弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Suwa Seikosha KK
Original Assignee
Seiko Epson Corp
Suwa Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Suwa Seikosha KK filed Critical Seiko Epson Corp
Priority to JP56123205A priority Critical patent/JPS5824148A/en
Publication of JPS5824148A publication Critical patent/JPS5824148A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To improve the environmental pollution resistance, heat resistance, surface hardness, wear resistance, etc. by providing a laminated structure composed of amorphous silicon and amorphous silicon nitride formed by a glow discharge decomposition method to the potoconductor layer. CONSTITUTION:An amorphous silicon nitride film contg. a doped element such as boron is formed on a substrate of glass or the like by a glow discharge decomposition method. On the film an amorphous silicon film contg. a doped elemet is formed by a similar method to obtain a potoconductor layer having a 2-layered structure. Thus, a thin electrophotographic receptor can be manufactured, the amorphous silicon nitride film is made dense to easily attain insulation, and the manufacturing yield of electrophotographic receptors is enhanced.

Description

【発明の詳細な説明】 重置明灯、グロー放電分解法により生成されるアモルフ
ァスシリコンを光導電体とする電子写真感光体に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrophotographic photoreceptor whose photoconductor is amorphous silicon produced by an overlapping light lamp and glow discharge decomposition method.

電子写真感光体としては既に様々な形態のもの・ が掃
察されているが、この中でも広く実用化されているもの
として導電性基板上にセレンま7?:ハセレン合金r真
空蒸着法により数10ミクロン厚に或いは酸化亜鉛や硫
化カドミウムを樹脂バインダーとともに数10ミクロン
厚に塗布により形成した所謂積層感光体と、例えば特公
昭45−5549号で4される如くセレンまたはセレン
合金光導電体層の厚さ紫1ミクロン以下としその士に透
光性有機半導体であるポリビニルカルバゾール會形成し
た所謂積層感光体とがある。
Various forms of electrophotographic photoreceptors have already been investigated, but one that has been widely put into practical use is one made of selenium or 7? on a conductive substrate. : A so-called laminated photoreceptor made of haselen alloy r to a thickness of several tens of microns by vacuum evaporation, or by coating zinc oxide or cadmium sulfide together with a resin binder to a thickness of several tens of microns, for example, as described in Japanese Patent Publication No. 45-5549 No. 4. There is a so-called laminated photoreceptor in which a selenium or selenium alloy photoconductor layer has a thickness of 1 micron or less and a polyvinyl carbazole layer, which is a translucent organic semiconductor, is formed between the layers.

これら倒れの感光体も単層、積層を問わずその電子写真
物性heわめて優れているが、その反面環境汚染性、耐
熱性、表面襞間及び摩耗性等の点において問題があると
いう欠点t′*する。つまりセシン或いはセレン合金管
光導電体層とする感光体では複写機内の温麿が上昇する
と結晶化が促進しこの熱的不安定性に起因して使用不能
な状態にまで劣化するばかりか、セレンは人体への毒性
力強くセレンがその表面に露出した感光体では熱論のこ
と上述の如く積層構造とした感光体についても環境汚染
面からその取り扱いK[細心の注意を要する。tた酸化
亜鉛や硫化カドミウムt−樹脂と結合してなる光導電体
層を使用する感光体においても有害性が問題であり、し
かもこの種の感光体は製造工程がきわめて複雑であると
いう欠点に有する。更に加えてセレンや酸化亜鉛は表面
硬度、摩耗性の点において充分でなく残留トナー除去手
段としてファーブラシャ弾性ブレードr使用する書写機
では長期にわたる反復使用ができない。
These photoreceptors, regardless of whether they are single or laminated, have excellent electrophotographic properties, but on the other hand, they have drawbacks such as problems in environmental pollution, heat resistance, surface creases, and abrasion resistance. Do t'*. In other words, in a photoreceptor with a selenium or selenium alloy tube photoconductor layer, when the temperature inside the copying machine increases, crystallization is promoted, and due to this thermal instability, not only does it deteriorate to an unusable state, but the selenium Toxicity to the human body A photoreceptor with strong selenium exposed on its surface is heated.As mentioned above, a photoreceptor with a laminated structure must be handled with great care in view of environmental pollution. There is also a problem of toxicity in photoreceptors that use a photoconductor layer formed by bonding zinc oxide or cadmium sulfide resin, and this type of photoreceptor also has the disadvantage of an extremely complicated manufacturing process. have Furthermore, selenium and zinc oxide have insufficient surface hardness and abrasion resistance, and cannot be used repeatedly over a long period of time in a copying machine that uses a fur brusher elastic blade as a means for removing residual toner.

本発明は以上の事実に鑑みて成されたもので、環境汚染
性耐熱性、表面硬度、摩耗性等に優れ、且つ、電子写真
特性としては従来と同様あるいはそれ以上に優れた電子
写真感光体管提供すること7目的とし、具体的KHアモ
ルファスシリコン光導電体層r有する電子写真感光体を
提供することt目的とする。
The present invention has been made in view of the above facts, and provides an electrophotographic photoreceptor that is excellent in environmental pollution, heat resistance, surface hardness, abrasion resistance, etc., and has electrophotographic properties similar to or better than conventional ones. Specifically, it is an object of the present invention to provide an electrophotographic photoreceptor having a KH amorphous silicon photoconductor layer.

以下、本発明を説明すると、本願発明者は上記環境汚染
性、耐熱性罠優れた感光材料r探索した結果、半導体分
野でその研究開発が進められつつあるグロー放電分解法
で生成されるアモルファスシリコン(aymorpho
us 5ilicon以下a−si  と略す)K着目
し、電子写真感光体分野への応用を意図している。
The present invention will now be described. As a result of searching for a photosensitive material with excellent environmental pollution and heat resistance, the present inventor discovered amorphous silicon produced by a glow discharge decomposition method, which is currently being researched and developed in the semiconductor field. (aymorpho
(hereinafter abbreviated as a-si) K, and is intended to be applied to the field of electrophotographic photoreceptors.

グロー放電分解法で生成されるa−alはエネルギーギ
ャップ内の欠陥準位密度が低く、一般のアモルファスは
半導体としてはむしろ例外的な電気特性を示すことに加
えて、比較的低コストで大面積の膜が製作可能な製造面
での有用性をも合わせ有する為、従来結晶シリコン會主
体に進められてきた太陽電池、フォトセル等の半導体応
用技術分野では、このa−sit使用した技術開発が急
速に進められつつある。
A-AL produced by the glow discharge decomposition method has a low density of defect levels in the energy gap, and general amorphous exhibits rather exceptional electrical properties as a semiconductor, as well as being relatively low-cost and large-area. Because of its usefulness in terms of manufacturing, which allows the production of films such as Progress is being made rapidly.

このよう九半導体応用技術分野でその有用性が認められ
つつあるa−si金管電子写真感光材料、特に光導電体
としての応用を研究した結果、従来の感光体が欠如して
いた無公害性、耐熱性、表面硬度、摩耗性に対し理想的
な特性r有し且つ鮮明な画gIt形成するに充分な電子
写真特性管有することt見出した。
As a result of research into A-SI brass electrophotographic photosensitive materials, which are increasingly being recognized for their usefulness in the nine semiconductor application technology fields, and in particular their application as photoconductors, we have discovered that they are non-polluting, which conventional photoconductors lack. It has been found that the tube has ideal properties in terms of heat resistance, surface hardness and abrasion resistance, and electrophotographic properties sufficient to form clear images.

a−siijグロー放電分解法における基板温fr約5
0℃乃至250℃の範囲に設定することより不純物音−
切含有しない場合においても基板温f     ′の低
下に従ってその体積抵抗が約1010・譚から1011
Ωτ譚近くまで向上すること、純粋なa−81汀比視感
IHに近い分光特性含有し光導電体として優れているこ
と、硼索會約160 ppm程度まで含有することによ
り体積抵抗が10110・保以上まで向上し、%に硼累
含有量が約90乃至160 ppmでa−61は真性半
導体となり、電荷保持力、暗減衰率が一段と向上し単層
感光体としてカールソン方式に充分使用できること、更
に燐を約5 ppmまで含有した場合でも体積抵抗は低
下するものの積層構造の感光体として使用できること、
そして全体としてa−61感光体は無公害、耐熱性、表
面硬度、摩耗性に優れ、且つ電子写真特性としても従来
の感光体と比して何らひけのとらないものであることを
見出した〇 ここでグロー放電分解法について説明すると、第1図は
a −si ’に生成するためのグロー放電分解装置r
示し、図中の第1.第2.第3ポンプ(1)。
Substrate temperature fr approximately 5 in a-siij glow discharge decomposition method
Impurity sounds can be reduced by setting the temperature between 0℃ and 250℃.
Even when it is not contained, its volume resistivity decreases from about 1010 to 1011 as the substrate temperature f' decreases.
It has a spectral property close to that of pure A-81 IH and is excellent as a photoconductor, and its volume resistivity is 10110. When the boron content is about 90 to 160 ppm, A-61 becomes an intrinsic semiconductor, and its charge retention and dark decay rate are further improved, and it can be used as a single layer photoreceptor in the Carlson method; Furthermore, even when phosphorus is contained up to about 5 ppm, although the volume resistivity decreases, it can be used as a photoreceptor with a laminated structure;
Overall, we found that the A-61 photoreceptor is pollution-free, has excellent heat resistance, surface hardness, and abrasion resistance, and its electrophotographic properties are comparable to those of conventional photoreceptors. To explain the glow discharge decomposition method here, Fig. 1 shows a glow discharge decomposition device r for generating a-si'.
1 in the figure. Second. Third pump (1).

+21 、 +31には夫々81H4、PH3@ Bt
)T6ガスが密封されている。これらガスは対応する第
1.第2.@3p整弁i41 I 15+ 、 +61
 ’j開放することにより放出され、その流量がメータ
リングバルブ+71 s +81 m (91により規
制され主管α@へと送られる。伺、Ql) 、 (13
81H4 and PH3@Bt for +21 and +31 respectively
) T6 gas is sealed. These gases correspond to the first. Second. @3p valve adjustment i41 I 15+, +61
'j is released by opening, and its flow rate is regulated by metering valve +71 s +81 m (91 and sent to main pipe α@.Ql), (13
.

(13は流量計、a4H止め弁である。主管011通じ
て流れ為ガスは反応管alへと送り込まれるが、この反
応管の周囲には共振振動コイルαQが巻回されておりそ
れ自体の共振振動パワーは例えば100〜300 Wa
ttsが適当である。反応管C19内部にはその上にa
−81膜が形成される。例えばアルミニウムやNKSA
ガラスのような基板aηがモータαIIKより回動可能
であるターンテーブル翰上に載貧されており、該基板卸
自体は適当な加熱手段により約50乃至2.50℃の温
度に加熱されている。まt反応管a扉内部はa−si膜
形成時に高度の真空状態(ガス圧:α5乃至2. OT
orr) k必要とすることにより回動ポンプ(2)と
拡散ポンプt2υに連結されている。
(13 is a flow meter and an a4H stop valve. The gas flowing through the main pipe 011 is sent to the reaction tube al, but a resonant vibration coil αQ is wound around this reaction tube and its own resonance The vibration power is, for example, 100 to 300 Wa.
tts is appropriate. Inside the reaction tube C19, there is a
-81 film is formed. For example, aluminum or NKSA
A glass-like substrate aη is mounted on a turntable that can be rotated by a motor αIIK, and the substrate itself is heated to a temperature of about 50 to 2.50°C by a suitable heating means. . The inside of the door of the reaction tube is in a highly vacuum state (gas pressure: α5 to 2.
orr) k is connected to the rotary pump (2) and the diffusion pump t2υ by necessity.

以上の構成のグロー放電分解装置において、純粋なa−
si膜を基板収η上に形成するときは第1調整弁(4)
r開放して第1ボンプロ)よりSiH,ガスr1また燐
あるいは硼累會含有するときは第2またけm5vI4整
、弁+5+ 、 161 Y 4開放シテ第2.第3ポ
ンプ+21 、 +31よりPH,ガス、B鵞H・ガス
會放出する0放出量はメータリングパルプCフl 、 
(81、191により規制され、81H,ガスあるい#
′j81H,ガスとPH,またH B、E−ガスとの混
合ガス反応管a!9へと送られる。
In the glow discharge decomposition apparatus with the above configuration, pure a-
When forming the Si film on the substrate, the first regulating valve (4)
When SiH, gas r1, or phosphorus or borium is present, the second straddle m5vI4 is adjusted, valve +5+, 161 Y 4 is opened. The amount of 0 discharged from the third pump +21, +31 is the metering pulp Cfl,
(regulated by 81, 191, 81H, gas or #
'j81H, mixed gas reaction tube a with gas, PH, and H B, E-gas! Sent to 9.

そして反応管a!9内部がα5乃至2. OTorr 
 程度のガス圧、基板温[50乃至250℃、iた共振
振動コイルのパワーが100乃至300 Watts+
と設定されていることく相俟ってグロー放電が起こり、
送り込まれたガスが81H4のみのときは81H4→8
1 + 2 H,の反応により純粋なa−81膜が、混
合ガスのときは2 (81H4+ PH1)→281+
2F+7H。
And reaction tube a! 9 inside is α5 to 2. OTorr
gas pressure, substrate temperature [50 to 250°C, and power of resonant vibration coil 100 to 300 Watts+
Together with these settings, a glow discharge occurs,
When the fed gas is only 81H4, 81H4 → 8
A pure a-81 film is produced by the reaction of 1 + 2 H, but in the case of a mixed gas, 2 (81H4+ PH1) → 281+
2F+7H.

またに8^■番+B、H−→日1+B、+5H雪の反応
により燐まfeは硼素を含有したa−Si膜が約(lL
l乃至α5ミクロシ/分の早さで基板aη上に形成され
る。
In addition, due to the reaction of No. 8^■+B, H-→day 1+B, +5H snow, the a-Si film containing boron is approximately (lL
It is formed on the substrate aη at a rate of l to α5 microns/min.

ここて上記基板mfの設定は得られるa −BL膜の体
積抵抗に大きな影響を与え、基板温間の上昇に#1は比
例して体積抵抗が低下す返傾向を示す。このことにより
本発明においては基板温度は約50乃至250℃とする
のが望ましく最大103番Ω・国の抵抗のa−Si膜が
得られるものである。
Here, the setting of the substrate mf has a great effect on the volume resistance of the obtained a-BL film, and #1 shows a tendency for the volume resistance to decrease in proportion to the rise in substrate temperature. Accordingly, in the present invention, the substrate temperature is desirably about 50 to 250 DEG C., and an a-Si film having a maximum resistance of 103 Ω/mm can be obtained.

fた、本グロー故電分解法は、より広汎な物質に適用で
き、酸化ケイ素、窒化ケイ素、酸窒化ケイ素、炭化ケイ
素、その他の各種、酸化物、炭化物、窪化物が得られる
。しかも、アモルファス性状に形成することができる。
Furthermore, this glow waste electrolysis method can be applied to a wider range of substances, and silicon oxide, silicon nitride, silicon oxynitride, silicon carbide, and other various substances, oxides, carbides, and indentations can be obtained. Moreover, it can be formed into an amorphous state.

アモルファス窄化ケイ素(a−giNX)t”形成する
場合は、前述の方法と全く同様にして、N−ガス又’l
’xNtガスと5IH4との反応による。即ち、811
(、+NH,→B i N + 5 H。
When forming amorphous narrowed silicon (a-giNX), N-gas or
Due to the reaction between 'xNt gas and 5IH4. That is, 811
(, +NH, → B i N + 5 H.

又は、日1H,+ N!→SiN+NH,等の反応とみ
られる。但し、基板温Ifij約50乃至400℃が望
ましく、最大1011Ω・備の抵抗値が得られ、前述の
a−81膜よりも大きな抵抗値が得られる。
Or day 1H, +N! →It seems to be a reaction of SiN+NH, etc. However, it is desirable that the substrate temperature Ifij be approximately 50 to 400 DEG C., and a maximum resistance value of 10@11 .OMEGA..multidot., which is greater than that of the a-81 film described above, can be obtained.

以下、実施例について説明する。Examples will be described below.

実施例1 前述した、第1図に示すグロー放電分解装置により、S
iH番とNa1分解し、アルミニウム眉板上に、厚さα
1ミクロン(D a −13i N x膜を形成する。
Example 1 The glow discharge decomposition apparatus shown in FIG.
IH number and Na1 are decomposed and placed on an aluminum eyebrow board with a thickness of α
1 micron (D a -13i N x film is formed.

製作条件は、ガス組成f 154 SiH+含有のN、
ガス、ガス圧力f (L S Torr &アルミニウ
ム基板温度t350℃、共振−動パワーフ4Q口wat
ts、膜形成速度〒1分あたりα04ミクロンに設定し
た。引きつづいて、a−81膜の上に、a−81膜紫デ
ポジツトして、積層構造を形成する。基板温間120℃
の下で、a −BINx膜上に、厚さ50ミクロンのa
−日1膜管形成した。この感光体試料W (C)とする
。次いでこの感光体tコロナ帯電により約100ボルト
の表面電位に荷電し光照射した。照射光はフィルター會
使用して波長域4000乃至8000オングストロ一ム
間七順次可変していき光電流との関係音測定した。この
結果F1tm3図のカーブ(C)−によって示される通
りで、これより明らかな様にa−81は比視感度に近い
約6700オングストロームでビーク會持ち優れた分光
感度特性を有する。
The manufacturing conditions were: gas composition f 154 SiH + N containing;
Gas, gas pressure f (L S Torr & aluminum substrate temperature t350℃, resonance dynamic power 4Q outlet wat
ts, and the film formation rate was set at α04 microns per minute. Subsequently, a purple A-81 film is deposited on the A-81 film to form a laminated structure. Substrate warm 120℃
Under a -BINx film, a 50 micron thick a
- On day 1, membrane tubes were formed. This photoreceptor sample is referred to as W (C). The photoreceptor was then charged to a surface potential of about 100 volts by corona charging and irradiated with light. The irradiation light was varied in seven steps in the wavelength range of 4,000 to 8,000 angstroms using a filter, and the sound relationship with the photocurrent was measured. The results are as shown by curve (C)- in the F1tm3 diagram, and as is clear from this, a-81 has a spectral sensitivity characteristic of about 6700 angstroms, which is close to the relative luminous efficiency, and excellent peak stability.

次に同一の条件の下でアルミニウム基板J:vc20 
ppmの硼素を含有する厚さ30ミクロンのa−81膜
を形成し、同様の方法で分光感度音測定した・ その結果は第3図のカーブφ)Kよって示される通りで
、ピークは約6000オングストロームとこれも良好な
分光感度特性を有する。
Next, under the same conditions, aluminum substrate J: VC20
A 30 micron thick A-81 film containing ppm boron was formed and the spectral sensitivity was measured in the same manner.The results are as shown by the curve φ)K in Figure 3, with a peak of about 6000. angstrom, which also has good spectral sensitivity characteristics.

ここで、硼素r含有せしめるためにH,Sin。Here, H, Sin is used to contain boron r.

ガスにB、H−ガス會混合流入させてグロー放電を行な
う。この場合、B*’Hm/BIH+のモル比を制御す
ることが肝要である。この様子に、第2図に示しである
。ムは、周知のW、E、Elpearのデータであり、
BFi本実験における数値である。
Glow discharge is performed by causing a mixture of B and H gases to flow into the gas. In this case, it is important to control the molar ratio of B*'Hm/BIH+. This situation is shown in FIG. is the well-known data of W, E, Elpear,
BFi is a numerical value in this experiment.

次に、全く同様にして、厚さ10.5,3.1ミクロン
のa −81膜r形成した。さらに帯電試験用として、
アルミニウム基板の代りに、ネサガラス上にも、同様に
各種属みのa−8iNx/a−Eliの膜を形成した。
Next, a-81 films r having thicknesses of 10.5 and 3.1 microns were formed in exactly the same manner. Furthermore, for charging tests,
Instead of the aluminum substrate, a-8iNx/a-Eli films of various types were similarly formed on Nesa glass.

これらの試料について、作儂実験、帯電特性。Concerning these samples, author experiments and charging characteristics.

暗減衰特性、光減衰特性の測定上行なった。作儂実験は
、同時靜電潜儂転写方式で行なっている。
The dark decay characteristics and light decay characteristics were measured. The writing experiments are conducted using the simultaneous electromagnetic transfer method.

まず厚さ30ミクロンのa−81膜を有する試料を導電
性基紙J:に誘電層を有する静電転写紙(クラウンゼロ
バック社製]と全面に渡って事実土接触させ、Nl!:
8Aガラス基板上菅負極性電圧源に接続する一方、転写
紙r接地した。この状態で電圧源より一5OOボルトの
電圧上試料と転写紙間に印加すると同時に基板側より画
像露光し九〇尚電圧印加時間は、1005秒とし、霧光
tけ80口lux/秒とした。(伺、この様に電圧印加
時間を短時間とし露光tt高輝闇としたのは試料Eの抵
抗が低いためで通常1010Ω・α以下の抵抗の感光体
には電圧印加時間H1n、ot乃至α001秒、露光量
に100乃至数10001uX/秒に設定する必要があ
る。)こうして靜電潜偉が形成された転写紙は次[2成
分現儂剤を使用して出猟ブラシ法により現像して画質w
Rぺたところ画偉濃fは幾分低いものの全体として良好
な画像であった。、同様の実験t、各厚み、$0.5,
3.1ミクロンt*する試料に対して、実施しt結果、
最後の1ミクロン厚みのものの他は、即ち1ミクロン以
上のものけ、全て、食好な画像が得られた。これは、従
前周知になっていた、20〜50ミクロンの厚みが必要
とされる事実と異なる現象である。
First, a sample having a 30 micron thick A-81 film was brought into contact with electrostatic transfer paper (manufactured by Crown Zeroback Co., Ltd.) having a dielectric layer on conductive base paper J: over the entire surface, and Nl!:
The upper part of the 8A glass substrate was connected to a negative polarity voltage source, while the transfer paper r was grounded. In this state, a voltage of 1500 volts was applied between the sample and the transfer paper from the voltage source, and at the same time image exposure was performed from the substrate side.The voltage application time was 1005 seconds, and the fog light was 80 lux/second. . (In this way, the reason why the voltage application time is short and the exposure time is high brightness darkness is because the resistance of sample E is low. Usually, for a photoreceptor with a resistance of 1010Ω・α or less, the voltage application time is H1n, ot to α001 seconds. (It is necessary to set the exposure amount to 100 to several tens of thousands of uX/sec.) The transfer paper on which the rays of light are formed is then developed by the shading brush method using a two-component developer to improve the image quality.
Although the image density f was somewhat low, the image was good overall. , similar experiment t, each thickness, $0.5,
Performed on a sample with 3.1 micron t*, t result,
With the exception of the last one with a thickness of 1 micron, ie, with a thickness of 1 micron or more, palatable images were obtained. This is a different phenomenon from the previously known fact that a thickness of 20 to 50 microns is required.

a−131NX層17a−E11膜と基板との間に積層
することにより、a−St膜の厚み21ミクロンまで低
減できることが明らかにされた。
It has been revealed that the thickness of the a-St film can be reduced to 21 microns by laminating the a-131NX layer 17a-E11 film and the substrate.

次に試料■■■■■■に対し帯電能、暗減衰速度、光減
衰速度の特性r調べる実験會行った。まず帯電能特性の
実験は50の高電圧源に接続されたコロナ帯電器でもっ
て夫々の試料を暗所で帯電しその表面電位を測定するこ
と罠より行った。そして暗減衰速饗の特性は帯電された
各試料管暗所に放置し表面電位の減衰を測定することに
より行った。これら結果は第4図に示される通りで体積
抵抗値に比例して帯電能が向上している。つまり層板温
度200℃の下に形成された1 50 ppmの硼素を
含有するIL−81膜(試料■)はその体積抵抗値が8
X1011Ω・国であることによりコロナ帯電により荷
電される表面電位は約400ボルトであったが、体積抵
抗が約9×10□0・傷である試料■は帯電表面電位が
約520ボルト、また体積抵抗がa x’t o□Ω・
個である試料(υ框約500ボルトと帯電能が向上して
いる。
Next, an experiment was conducted to investigate the charging ability, dark decay rate, and light decay rate characteristics of the sample ■■■■■■. First, an experiment on chargeability characteristics was carried out by charging each sample in the dark with a corona charger connected to 50 high voltage sources and measuring the surface potential. The characteristics of the dark decay rate were determined by leaving each charged sample tube in a dark place and measuring the decay of the surface potential. These results are as shown in FIG. 4, and the charging ability is improved in proportion to the volume resistance value. In other words, the IL-81 film (sample ■) containing 150 ppm boron formed at a plate temperature of 200°C has a volume resistivity of 8.
The surface potential charged by corona charging was approximately 400 volts due to the fact that the surface voltage was approximately 520 volts, and the surface potential of sample ■, which had a volume resistance of approximately 9×10□0 scratches, was approximately 520 volts. The resistance is a x't o□Ω・
The sample has an improved charging capacity of approximately 500 volts.

ここで、■は30.■と■は10.■は5.■Vise
■は1ミクロン厚みである。
Here, ■ is 30. ■ and ■ are 10. ■ is 5. ■Vise
■ is 1 micron thick.

次に、試料を上記と同様にコロナ帯電し2800γのタ
ングステンランプでもって全面露光し、各試料の光減衰
特性r測定した。この結果は第5図に示す如くに、■會
除いて、何れ本良好な特性を示している。
Next, the samples were corona-charged in the same manner as above, and the entire surface was exposed to light using a 2800 gamma tungsten lamp, and the light attenuation characteristics r of each sample were measured. As shown in FIG. 5, the results show good characteristics in all cases, with the exception of (2).

以上に説述Ll如くに、a −SiNx #lI’(a
−8i膜の下に積層して、a −S i / a −S
 i N X /基板の構成を有する電子写真感光体は
、従前のa−81膜単体の4のに比較して、薄く製造す
ることができ、従って、量産時のスループットが大きく
とれ、生産上、有効である。また、a−11111NX
が緻密に形成し易いため、絶縁の確保が容易で、従って
製造歩留も向上できる。
As explained above, a −SiNx #lI'(a
-S i / a -S by stacking under the -8i film
The electrophotographic photoreceptor having the i N It is valid. Also, a-11111NX
Since it is easy to form densely, it is easy to ensure insulation, and therefore manufacturing yield can also be improved.

また、a−81NKは、!#的に結晶パターンの確認で
きる膜でも、既述の効果は確認できており、組成的にも
、a−81NXOyCz の組成がイオンマイクロアナ
ライザーで確認できるものでも同様に効果は確認できて
いる。tたグロー放電分解の特質上、水素化されており
、Hf当然含んでいる膜である。
Also, a-81NK is! The above-mentioned effect has been confirmed even with a film whose crystal pattern can be confirmed as #, and the same effect has been confirmed even with a film whose composition of a-81NXOyCz can be confirmed with an ion microanalyzer. Due to the characteristics of glow discharge decomposition, the film is hydrogenated and naturally contains Hf.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図にアモルファスシリコンを生成するためのクロl
−放電分散装置の概略図、第2図はアモルファスシリコ
ンに硼素及び燐を含有し友場合の体積抵抗の変化r示す
図、第3図はアモルファスシリコン膜の分光感度特性管
示す図、第4図はアモルファスシリコンの帯電及び暗減
衰特性管示す図そして第5図はアモルファスシリコンの
光減衰特性を示す図である。 111 、 (21、+31・・・第1.第2.第5ポ
ンプOI・・・主管 al・・・反応管 αe・・・共振振動コイル (Lη・・・基板 以   上 出願人 株式会社諏訪精工舎 代理人 弁理士最上  務 第1図 逼1(A) 第3図 第2図 第5図
Figure 1 shows chromatography for producing amorphous silicon.
- Schematic diagram of the discharge dispersion device, Figure 2 shows the change in volume resistance when amorphous silicon contains boron and phosphorus, Figure 3 shows the spectral sensitivity characteristics of the amorphous silicon film, Figure 4 5 is a diagram showing the charging and dark decay characteristics of amorphous silicon, and FIG. 5 is a diagram showing the light attenuation characteristics of amorphous silicon. 111, (21, +31...1st, 2nd, 5th pump OI...main pipe al...reaction tube αe...resonant vibration coil (Lη...board and above) Applicant Suwa Seiko Co., Ltd. Agent Mogami Patent Attorney Figure 1 Figure 1 (A) Figure 3 Figure 2 Figure 5

Claims (1)

【特許請求の範囲】[Claims] グロー放電分解法により生成されるアモルファスシリコ
ン(ドーピングされた元素を含む)及びアモルファス9
化シリコン(ドーピングされた元素を含む)の2層積層
構造會有する光導電体層より成ることをIP#1とする
電子写真感光体。
Amorphous silicon (containing doped elements) and amorphous 9 produced by glow discharge decomposition method
An electrophotographic photosensitive member designated as IP#1, which is composed of a photoconductor layer having a two-layer laminated structure of silicon oxide (containing doped elements).
JP56123205A 1981-08-06 1981-08-06 Electrophotographic receptor Pending JPS5824148A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56123205A JPS5824148A (en) 1981-08-06 1981-08-06 Electrophotographic receptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56123205A JPS5824148A (en) 1981-08-06 1981-08-06 Electrophotographic receptor

Publications (1)

Publication Number Publication Date
JPS5824148A true JPS5824148A (en) 1983-02-14

Family

ID=14854794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56123205A Pending JPS5824148A (en) 1981-08-06 1981-08-06 Electrophotographic receptor

Country Status (1)

Country Link
JP (1) JPS5824148A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883855A (en) * 1981-11-13 1983-05-19 Canon Inc Photoconductive member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758160A (en) * 1980-09-25 1982-04-07 Canon Inc Photoconductive member

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5758160A (en) * 1980-09-25 1982-04-07 Canon Inc Photoconductive member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5883855A (en) * 1981-11-13 1983-05-19 Canon Inc Photoconductive member
JPS6261270B2 (en) * 1981-11-13 1987-12-21 Canon Kk

Similar Documents

Publication Publication Date Title
USRE35198E (en) Image forming member for electrophotography
US4518670A (en) Recording material for electrophotography comprising amorphous silicon containing nitrogen
JPS58189643A (en) Photoreceptor
US4683186A (en) Doped amorphous silicon photoconductive device having a protective coating
US4613556A (en) Heterogeneous electrophotographic imaging members of amorphous silicon and silicon oxide
JPS649623B2 (en)
JPS5824148A (en) Electrophotographic receptor
JPS58171053A (en) Photoreceptor
JP2508654B2 (en) Electrophotographic photoreceptor
JPS6159451A (en) Manufacture of photoconductive insulation element
JPH01315765A (en) Electrophotographic sensitive body
JP2742583B2 (en) Electrophotographic photoreceptor
JP2761741B2 (en) Electrophotographic photoreceptor
JP3058522B2 (en) Electrophotographic photoreceptor and manufacturing method thereof
JP2789100B2 (en) Electrophotographic photoreceptor
JPS58219561A (en) Recording body
JPS5952251A (en) Manufacture of electrophotographic image forming material
JPH0334060B2 (en)
JPH01144058A (en) Electrophotographic sensitive body
JPH01315760A (en) Electrophotographic sensitive body
JPS60213021A (en) Formation of amorphous film
JPS58159325A (en) Photosensitizer
JPH01271759A (en) Electrophotographic sensitive body
JPH01302359A (en) Electrophotographic sensitive body
JPH01295268A (en) Electrophotographic sensitive body