JPH01232353A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH01232353A
JPH01232353A JP63059052A JP5905288A JPH01232353A JP H01232353 A JPH01232353 A JP H01232353A JP 63059052 A JP63059052 A JP 63059052A JP 5905288 A JP5905288 A JP 5905288A JP H01232353 A JPH01232353 A JP H01232353A
Authority
JP
Japan
Prior art keywords
layer
photoconductive layer
photosensitivity
photosensitive body
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63059052A
Other languages
Japanese (ja)
Inventor
Takao Kawamura
河村 孝夫
Yoshikazu Nakayama
中山 喜万
Yasuo Nishiguchi
泰夫 西口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP63059052A priority Critical patent/JPH01232353A/en
Priority to US07/392,936 priority patent/US5529866A/en
Publication of JPH01232353A publication Critical patent/JPH01232353A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08221Silicon-based comprising one or two silicon based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a photosensitive body having high photosensitivity, superior performance, and high quality by specifying a compsn. and proportion of elements of a photoconductive layer of a photosensitive body constituted of an a-SiC photoconductive layer and an org. semiconductor layer laminated on an electroconductive substrate. CONSTITUTION:A photosensitive body is formed by laminating an a-SiC photoconductive layer 2 and an org. semiconductor layer 3 on an electroconductive substrate 1. The layer 2 consists of Si element, C element, and H element or halogen element, and values of x and y are regulated to within a range: 0.05<x<0.5 and 0.2<y<0.5, when the compsn. of the layer 2 is expressed by [Si1-xCx]1-yAy (wherein A is H or halogen). If x is <=0.05, photosensitivity of a short wavelength side is not improved. If it is >=0.5, photoconductivity is decreased. If y is <=0.2, dark conductivity increases, and if it is >=0.5, deterioration of adhesion occurs due to increase of internal stress in the layer 2. Thus, a photosensitive body having superior photosensitivity, superior performance, and high quality is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファスシリコンカーバイド光導電層と有
機光半導体層を積層して成る電子写真感光体に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料には、Se、5e−Te。 Photoconductive materials for electrophotographic photoreceptors include Se and 5e-Te.

八szS ai、Zno、CdS、アモルファスシリコ
ンなどの無機材料と各種有機材料がある。そのなかで最
初に実用化されたものはSeであり、そして、ZnO,
CdS、アモルファスシリコンも実用化された。他方、
有機材料ではPVKが最初に実用化され、その後、電荷
の発生と電荷の輸送という機能を別々の材料に分担させ
るという機能分離型感光体が提案され、この機能分離型
感光体によって有機材料の開発が飛躍的に発展している
There are inorganic materials such as 8szS ai, Zno, CdS, and amorphous silicon, and various organic materials. Among them, Se was the first to be put into practical use, and then ZnO,
CdS and amorphous silicon have also been put into practical use. On the other hand,
Among organic materials, PVK was first put to practical use, and later, a functionally separated photoreceptor was proposed in which the functions of charge generation and charge transport were shared between separate materials, and this functionally separated photoreceptor led to the development of organic materials. is developing rapidly.

一方、上記の無機光導電層の上に有機光半導体層を積層
した電子写真感光体も提案された。
On the other hand, an electrophotographic photoreceptor in which an organic photoconductive layer is laminated on the above-mentioned inorganic photoconductive layer has also been proposed.

例えばSe層と有機光半導体層の積層型感光体があり、
既に実用化されたが、この感光体によれば、Se自体有
害であり、しかも、長波長側の感度に劣るという欠点も
あった。
For example, there is a laminated photoreceptor with a Se layer and an organic optical semiconductor layer.
Although this photoreceptor has already been put into practical use, it has the disadvantage that Se itself is harmful and that the sensitivity is poor on the long wavelength side.

そこで、特開昭56−14241号公報にはアモルファ
スシリコンカーバイド光導電層と有機光半導体層から成
る積層型感光体が提案されており、この感光体によれば
、上記問題点を解消して無公害性並びに高光感度な特性
が得られた。
Therefore, Japanese Unexamined Patent Application Publication No. 14241/1988 proposes a laminated photoreceptor consisting of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer. The properties of pollution resistance and high light sensitivity were obtained.

上記公報の電子写真感光体によれば、化学式Si1□ 
C,I+  、  ((旦し O<X<1 、0.05
≦y ≦0.2)で表わされるアモルファスシリコンカ
ーバイド層と、有機光半導体層が順次積層された構造か
ら成る。
According to the electrophotographic photoreceptor in the above publication, the chemical formula is Si1□
C, I+, ((tanshi O<X<1, 0.05
It has a structure in which an amorphous silicon carbide layer represented by y 0.2 and an organic optical semiconductor layer are sequentially laminated.

しかし乍ら、本発明者等がこのような電子写真感光体を
製作し、その光感度を測定したところ、未だ満足し得る
ような特性が得られず、更に改善を要することが判明し
た。
However, when the present inventors manufactured such an electrophotographic photoreceptor and measured its photosensitivity, it was found that satisfactory characteristics were not yet obtained and further improvement was required.

従って、本発明は叙上に鑑みて完成されたものであり、
その目的は高い光感度が得られた電子写真感光体を提供
することにある。
Therefore, the present invention has been completed in view of the above,
The purpose is to provide an electrophotographic photoreceptor with high photosensitivity.

〔問題点を解決するための手段〕 本発明によれば、導電性基板上にアモルファスシリコン
カーバイト光導電層(以下、アモルファスシリコンカー
バイドをa−3iCと略す)と有機光半導体層が順次積
層された電子写真感光体において、前記a−5iC光導
電層の構成元素がSi元素、C元素並びに水素又はハロ
ゲンであって、水素又はハロゲンをへ元素と表記し、核
層の元素比率が組成式(Si+−XCX) 、−9八、
として表わされた場合、X及びyをそれぞれ0.05 
< x <o、s 、0.2 <y < 0.5の範囲
内に設定したことを特徴とする電子写真感光体が提供さ
れる。
[Means for Solving the Problems] According to the present invention, an amorphous silicon carbide photoconductive layer (hereinafter amorphous silicon carbide is abbreviated as a-3iC) and an organic photoconductive layer are sequentially laminated on a conductive substrate. In the electrophotographic photoreceptor, the constituent elements of the a-5iC photoconductive layer are Si element, C element, and hydrogen or halogen, hydrogen or halogen is expressed as H element, and the element ratio of the core layer is according to the composition formula ( Si+-XCX), -98,
, X and y are each 0.05
An electrophotographic photoreceptor is provided, characterized in that the values are set within the ranges of < x < o, s , 0.2 < y < 0.5.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
同図によれば、導電性基板(1)の上にa〜SiC光導
電層(2)及び有機光半導体層(3)が順次積層されて
いる。そして、a−3iC光導電層(2)には電荷発生
という機能があり、他方の有機光半導体層(3)には電
荷輸送という機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
According to the figure, an a-SiC photoconductive layer (2) and an organic photo-semiconductor layer (3) are sequentially laminated on a conductive substrate (1). The a-3iC photoconductive layer (2) has a function of charge generation, and the other organic photoconductive layer (3) has a function of charge transport.

本発明は上記a−3iC光専電層(2)の元素比率が下
記の通りの範囲内に設定された場合、この層(2)自体
の光感度を顕著に高めることができたことが特徴である
The present invention is characterized in that when the element ratio of the a-3iC optically exclusive layer (2) is set within the following range, the photosensitivity of this layer (2) itself can be significantly increased. It is.

組成式: C5++−x CX ] l−y  Ay 
(但しAは水素又はハロゲン) 0.05  <  x  <  0.5 、 好適には
0.1  <  x  <  0.40.2 < V 
< 0.5 、好適には0.25< y < 0.45
上記X値が0.05以下の場合には短波長側あ光感度が
高められず、X値が0.5以上の場合には光導電性が著
しく低くなり、光キャリアの励起機能が低下する。
Compositional formula: C5++-x CX ] ly Ay
(However, A is hydrogen or halogen) 0.05 < x < 0.5, preferably 0.1 < x < 0.40.2 < V
< 0.5, preferably 0.25 < y < 0.45
When the above X value is 0.05 or less, the photosensitivity on the short wavelength side cannot be increased, and when the X value is 0.5 or more, the photoconductivity decreases significantly and the excitation function of photocarriers decreases. .

また、y値が0.2以下の場合には暗導電率が大きくな
る傾向にあり、しかも、光導電率が低下傾向にあり、そ
のために所望通りの光導電性が得られず、y値が0.5
以上の場合にはa−SiC層の内部応力が増大し、基板
との密着性が劣化して剥離し易(なる。
Furthermore, when the y value is 0.2 or less, the dark conductivity tends to increase, and the photoconductivity tends to decrease, so that the desired photoconductivity cannot be obtained and the y value decreases. 0.5
In the above case, the internal stress of the a-SiC layer increases, and the adhesion with the substrate deteriorates, making it easy to peel off.

また、上記a−5iC光導電層(2)には水素(旧元素
やハロゲン元素がダングリングボンド終端用に含有され
ているが、これらの元素のなかでH元素が終端部に取り
込まれ易く、これによってハンドギヤツブ中の局在準位
密度が低減化されるという点で望ましい。
Further, the a-5iC photoconductive layer (2) contains hydrogen (previous element and halogen element for dangling bond termination), but among these elements, H element is easily incorporated into the termination portion, This is desirable in that the localized level density in the hand gear is reduced.

a−5iC光導電層(2)の厚みは0.05〜5 μm
 、好適には0.1〜3μmの範囲内に設定すればよく
、この範囲内であれば、高い光感度が得られ、残留電位
が低くなる。
The thickness of the a-5iC photoconductive layer (2) is 0.05 to 5 μm
, is preferably set within the range of 0.1 to 3 μm; within this range, high photosensitivity can be obtained and the residual potential will be low.

前記基板(1)には銅、黄銅、S[IS 、、AI等の
金属導電体、或いはガラス、セラミックス等の絶縁体の
表面に導電体薄膜をコーティングしたものがあり、就中
、AIがコスト面並びにa−5iC層との密着性という
点で有利である。
The substrate (1) includes a metal conductor such as copper, brass, S[IS, AI, etc., or an insulator such as glass or ceramics coated with a conductive thin film on the surface. This is advantageous in terms of adhesion to the surface and the a-5iC layer.

また、本発明の電子写真感光体は有機光半導体層(3)
の材料選択により負帯電型又は正帯電型に設定すること
ができる。即ち、負帯電型電子写真感光体の場合、有機
光半導体層(3)に電子供与性化合物が選ばれ、一方、
正帯電型電子写真感光体の場合には有機光半導体層(3
)に電子吸引性化合物が選ばれる。
Further, the electrophotographic photoreceptor of the present invention has an organic photoconductor layer (3).
It can be set to a negatively charged type or a positively charged type by selecting the material. That is, in the case of a negatively charged electrophotographic photoreceptor, an electron-donating compound is selected for the organic optical semiconductor layer (3);
In the case of a positively charged electrophotographic photoreceptor, an organic optical semiconductor layer (3
) is selected as an electron-withdrawing compound.

前記電子供与性化合物には高分子量のものとして、ポリ
ーN−ビニル力ルハヅール、ポリビニルピレン、ポリビ
ニルアントラセン、ピレンへホルムアルデヒド縮重合体
などがあり、また、低分子量のものとしてオキサジアゾ
ール、オキサゾール、ビラプリン、トリフェニルメタン
、ヒドラゾン、トリアリールアミン、N−フェニルカル
バゾール、スチルヘンなどがあり、この低分子物質は、
ポリカーボネート、ポリエステル、メタアクリル樹脂、
ポリアミド、アクリルエポキシ、ポリエチレン、フェノ
ール、ポリウレタン、ブチラール樹脂、ポリ酢酸ビニル
、ユリア樹脂などのバインダに分散されて用いられる。
Examples of the electron-donating compounds include high molecular weight compounds such as poly-N-vinyl trihydrazur, polyvinylpyrene, polyvinylanthracene, and formaldehyde condensation polymers of pyrene, and low molecular weight compounds such as oxadiazole, oxazole, and birapurin. , triphenylmethane, hydrazone, triarylamine, N-phenylcarbazole, and stilhen.
polycarbonate, polyester, methacrylic resin,
It is used dispersed in a binder such as polyamide, acrylic epoxy, polyethylene, phenol, polyurethane, butyral resin, polyvinyl acetate, or urea resin.

前記電子吸引性化合物には2.4.7− )リニトロフ
ルオレンなどがある。
Examples of the electron-withdrawing compound include 2.4.7-)linitrofluorene.

次に本発明電子写真感光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−5iC層を形成するにはグロー放電分解法、イオン
ブレーティング法、反応性スパッタリング法、真空蒸着
法、CVO法などの薄膜形成方法がある。
To form the a-5iC layer, there are thin film forming methods such as glow discharge decomposition method, ion blating method, reactive sputtering method, vacuum evaporation method, and CVO method.

グロー放電分解法を用いる場合、Si元素含有ガスとC
元素含有ガスを組合せ、この混合ガスをプラズマ分解し
て成膜形成する。このSi元素含有ガスには5i114
+5i2t16,5j3He+SiF4,5iC14,
5iHC13等々があり、また、C元素含有ガスにはC
lI4.Czt14.Cz)I2、C3118等々があ
り、就中、Czllzは高速成膜性が得られるという点
で望ましい。
When using the glow discharge decomposition method, Si element-containing gas and C
A film is formed by combining element-containing gases and plasma decomposing the mixed gas. This Si element-containing gas has 5i114
+5i2t16,5j3He+SiF4,5iC14,
5iHC13, etc., and C element-containing gases include C
lI4. Czt14. Cz) I2, C3118, etc., and Czllz is particularly desirable in that it can provide high-speed film formation.

本実施例に用いられるグロー放電分解装置を第2図によ
り説明する。
The glow discharge decomposition device used in this example will be explained with reference to FIG.

図中、第1タンク(4)、第2タンク(5)、第3タン
ク(6)にはそれぞれ5i)Ia、CzHz及びH2が
密封され、これらのガスは各々対応する第1調整弁(7
)、第2調整弁(8)及び第3調整弁(9)を開放する
ことにより放出される。その放出ガスの流量はそれぞれ
マスフローコントローラ(10) (11) (12)
により制御され、各々のガスは混合されて主管(13)
へ送られる。尚、(14) (15)は止め弁である。
In the figure, the first tank (4), the second tank (5), and the third tank (6) are each sealed with 5i) Ia, CzHz, and H2, and these gases are supplied to the corresponding first regulating valve (7).
), the second regulating valve (8) and the third regulating valve (9) are opened. The flow rate of the released gas is determined by the mass flow controller (10) (11) (12).
controlled by the main pipe (13), each gas is mixed
sent to. Note that (14) and (15) are stop valves.

主管(13)を通じて流れるガスは反応管(16)へ流
入されるが、この反応管(I6)の内部には容量結合型
放電用電極(17)が設置され、また、筒状の成膜用基
板(18)が基板支持体(19)の上に載置され、基板
支持体(19)がモータ(20)により回転駆動され、
これに伴って基板(18)が回転される。そして、電極
(17)に電力50W 〜3Kw 、周波数1〜50M
l1zの高周波電力が印加され、しかも、基板(1日)
が適当な加熱手段により約200〜400℃、好適には
約200〜350℃の温度に加熱される。また、反応管
(16)は回転ポンプ(21)と拡散ポンプ(22)に
連結されており、これによってグロー放電による成膜形
成時に所要な真空状G(放電時のガス圧0,1〜2.0
Torr)が維持される。
The gas flowing through the main pipe (13) flows into the reaction tube (16), and a capacitively coupled discharge electrode (17) is installed inside this reaction tube (I6). A substrate (18) is placed on a substrate support (19), and the substrate support (19) is rotationally driven by a motor (20).
Along with this, the substrate (18) is rotated. Then, the electrode (17) has a power of 50W to 3Kw and a frequency of 1 to 50M.
High frequency power of l1z is applied, and the substrate (1 day)
is heated by suitable heating means to a temperature of about 200-400°C, preferably about 200-350°C. In addition, the reaction tube (16) is connected to a rotary pump (21) and a diffusion pump (22), which provide the required vacuum G (gas pressure during discharge 0.1 to 2.0 .0
Torr) is maintained.

このような構成のグロー放電分解装置を用いて基vi、
(1B)の上にa−5iC層を形成する場合、第1調整
弁(7)、第2調整弁(8)、第3調整弁(9)を開い
てSiH,、Czll□+H2の各々のガスを放出し、
その放出量をマスフローコントローラ(10) (11
) (12)により制御し、各々のガスは混合されて主
管(13)を介して反応管(16)へ流入される。そし
て、反応管内部の真空状態、基板温度、電極印加用高周
波電力をそれぞれ所定の条件に設定するとグロー放電が
発生し、ガスの分解に伴ってa−5iC膜が基板上に高
速に形成される。
Using a glow discharge decomposition device with such a configuration, groups vi,
When forming an a-5iC layer on (1B), open the first regulating valve (7), the second regulating valve (8), and the third regulating valve (9) to form each of SiH, Czll□+H2. release gas,
Mass flow controller (10) (11)
) (12), each gas is mixed and flows into the reaction tube (16) via the main pipe (13). Then, by setting the vacuum inside the reaction tube, the substrate temperature, and the high-frequency power applied to the electrodes to predetermined conditions, a glow discharge occurs, and an a-5iC film is rapidly formed on the substrate as the gas decomposes. .

上述した通りに薄膜形成方法によりa−SiC層が形成
されると、次に有機光半導体層を形成する。
After the a-SiC layer is formed by the thin film forming method as described above, an organic optical semiconductor layer is then formed.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成され、前者は感光材が溶媒中に分散された塗工液
の中に浸漬し、次いで、一定な速度で引上げ、そして、
自然乾燥及び熱エージング(約150°C1約1時間)
を行うという方法であり、また、後者のコーティング法
によれば、コーター(塗機)を用いて、溶媒に分散され
た感光材を塗布し、次いで熱風乾燥を行う。
The organic photosemiconductor layer is formed by a dip coating method or a coating method, in which the photosensitive material is immersed in a coating solution in which it is dispersed in a solvent, and then pulled up at a constant speed;
Natural drying and heat aging (about 150°C for about 1 hour)
According to the latter coating method, a photosensitive material dispersed in a solvent is applied using a coater, and then hot air drying is performed.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 第2図のグロー放電分解装置を用いて、SiH,ガスを
200secmの流量で、I(、ガスを270secm
の流量で、そして、CZ11□ガスの流量を変化させ、
また、ガス圧を0.6Torr 、高周波電力を150
W、基板温度を250℃に設定し、グロー放電によって
a−SiC膜(膜厚約1μ1m)を形成した。
(Example 1) Using the glow discharge decomposition apparatus shown in Fig. 2, SiH, gas was supplied at a flow rate of 200 sec, and I(, gas was supplied at 270 sec).
At a flow rate of , and by changing the flow rate of CZ11□ gas,
In addition, the gas pressure was set to 0.6 Torr, and the high frequency power was set to 150 Torr.
W, the substrate temperature was set at 250° C., and an a-SiC film (film thickness of about 1 μ1 m) was formed by glow discharge.

このようにしてa−3iC膜のカーボン含有比率を変え
、そして、膜中のカーボン量をXMA法により測定し、
また、光導電率及び暗導電率を測定したところ、第3図
に示す通りの結果が得られた。
In this way, the carbon content ratio of the a-3iC film was changed, and the amount of carbon in the film was measured by the XMA method.
Further, when the photoconductivity and dark conductivity were measured, the results shown in FIG. 3 were obtained.

第3図中、横軸はカーボン含有比率、即ちSi。In FIG. 3, the horizontal axis represents the carbon content ratio, that is, Si.

xCxOX値であり、縦軸は導電率を表わし、○印は発
光波長550nm (光量50μW/cmz)に対する
光導電率のプロットであり、・印は暗導電率のプロット
であり、また、a、bはそれぞれの特性曲線である。
xCxOX value, the vertical axis represents conductivity, ○ mark is a plot of photoconductivity for emission wavelength 550 nm (light intensity 50 μW/cmz), * mark is a plot of dark conductivity, and a, b are their respective characteristic curves.

更に上記各a−SiCWJ、について、その水素含有量
を赤外吸収測定法により求めたところ、第4図に示す通
りの結果が得られた。
Furthermore, when the hydrogen content of each of the above a-SiCWJs was determined by infrared absorption measurement, the results shown in FIG. 4 were obtained.

第4図中、横軸はSi+−x CxのX値であり、縦軸
は水素含有量、即ちC3i1−CX] +−y  Hy
のy値であり、○印はSi原子に結合した水素量のプロ
ットであり、・印はC原子に結合した水素量のプロット
であり、また、c、dはそれぞれの特性曲線である。
In Fig. 4, the horizontal axis is the X value of Si+-xCx, and the vertical axis is the hydrogen content, that is, C3i1-CX] +-y Hy
The symbol ◯ is a plot of the amount of hydrogen bonded to the Si atom, the symbol • is the plot of the amount of hydrogen bonded to the C atom, and c and d are the respective characteristic curves.

第4図より明らかな通り、本例のa−5iC膜はいずれ
もy値が0.3〜0.4の範囲内にあることが判る。
As is clear from FIG. 4, it can be seen that the a-5iC films of this example all have y values within the range of 0.3 to 0.4.

また、第3図より明らかな通り、カーボン含有比率yが
0.2 < y< 0.5の範囲内であれば、光導電率
と暗導電率の比率が顕著に大きくなり、優れた光感度が
得られていることが判る。
Furthermore, as is clear from Fig. 3, if the carbon content ratio y is within the range of 0.2 < y < 0.5, the ratio of photoconductivity to dark conductivity becomes significantly large, resulting in excellent photosensitivity. It can be seen that is obtained.

(例2) 次に本例においては、S i II 、ガスを200s
ccmO流量で、Cz It zガスを20secmの
流星で、11゜ガスを0〜101000scの流量で導
入し、そして、高周波電力を50〜300W 、ガス圧
を0.3〜]、、2Torrに設定し、グロー放電によ
りa−5iC膜(膜厚約1μm )を形成した。
(Example 2) Next, in this example, S i II and gas are
At a flow rate of ccmO, CzItz gas was introduced at a rate of 20 sec, and 11° gas was introduced at a flow rate of 0 to 101,000 sc, and the high frequency power was set to 50 to 300 W, and the gas pressure was set to 0.3 to 2 Torr. Then, an a-5iC film (film thickness of about 1 μm) was formed by glow discharge.

かくして、カーボン含有比率Xを0.3に設定し、そし
て、水素含有FJ、yを変化させた種々のa−5iC膜
を形成し、各々の膜について光導電率及び暗導電率を測
定したところ、第5図に示す通りの結果が得られた。
In this way, various a-5iC films were formed with the carbon content ratio X set to 0.3 and the hydrogen content FJ, y varied, and the photoconductivity and dark conductivity of each film were measured. , the results shown in FIG. 5 were obtained.

第5図中、横軸は水素含有量、即ち(Si6.7 C0
−3〕+−y  It、のy値であり、縦軸は導電率を
表わし、○印は発光波長550nm (光量50μW/
cm”)に対する光導電率のプロットであり、・印は暗
導電率のプロットであり、また、e、fはそれぞれの特
性曲線である。
In Figure 5, the horizontal axis is the hydrogen content, that is (Si6.7 C0
-3] +-y It, the vertical axis represents the conductivity, and the circle mark indicates the emission wavelength of 550 nm (light intensity: 50 μW/
Fig. 3 is a plot of photoconductivity versus cm''), the * mark is a plot of dark conductivity, and e and f are respective characteristic curves.

第5図より明らかな通り、y値が0.2を超えた場合、
高い光導電率並びに低い暗導電率が得られることが判る
As is clear from Figure 5, when the y value exceeds 0.2,
It can be seen that high photoconductivity as well as low dark conductivity are obtained.

また、本発明者等は(Sio、 7 Co、 :+) 
o、 i、5llo、 35の組成から成るa−3iC
光導電層並びにポリカーボネートにヒドラゾン系化合物
を分散させた有機光半導体層が順次積層された電子写真
感光体を製作し、その特性評価を行ったところ、高い表
面電位、優れた光感度が得られ、しかも、低い残留電位
となった。
In addition, the present inventors (Sio, 7 Co, :+)
a-3iC consisting of the compositions o, i, 5llo, 35
An electrophotographic photoreceptor was fabricated in which a photoconductive layer and an organic photoconductor layer in which a hydrazone compound was dispersed in polycarbonate were sequentially laminated, and its characteristics were evaluated. As a result, a high surface potential and excellent photosensitivity were obtained. Moreover, the residual potential was low.

〔発明の効果] 以上の通り、本発明の電子写真感光体によれば、a−5
iC光導電層のカーボン量とダングリングボンド終端用
元素の量をそれぞれ所定の範囲内に設定した場合、優れ
た光感度が得られ、そのため、このa−SiC光遅光層
電層機光半導体層を知名せたことにより高性能且つ高品
質な電子写真感光体が提供できる。
[Effect of the invention] As described above, according to the electrophotographic photoreceptor of the present invention, a-5
When the amount of carbon in the iC photoconductive layer and the amount of the element for dangling bond termination are set within predetermined ranges, excellent photosensitivity can be obtained, and therefore, this a-SiC photo-slow layer photoconductor By making the layers well-known, a high-performance and high-quality electrophotographic photoreceptor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明電子写真感光体の層構成を表わす断面図
、第2図は実施例に用いられるグロー放電分解装置の概
略図、第3図はカーボン含有比率と導電率の関係を示す
線図、第4図はカーボン含有比率と水素含有量の関係を
示す線図、第5図は水素含有量と導電率の関係を示す線
図である。 1・・・導電性基板 2・・・アモルファスシリコンカーバイド光導電層 3・・・有機光半導体層 特許出願人 (663)京セラ株式会社代表者  安城
飲方 同   河村孝夫
FIG. 1 is a cross-sectional view showing the layer structure of the electrophotographic photoreceptor of the present invention, FIG. 2 is a schematic diagram of a glow discharge decomposition device used in Examples, and FIG. 3 is a line showing the relationship between carbon content ratio and electrical conductivity. 4 is a diagram showing the relationship between carbon content ratio and hydrogen content, and FIG. 5 is a diagram showing the relationship between hydrogen content and electrical conductivity. 1... Conductive substrate 2... Amorphous silicon carbide photoconductive layer 3... Organic optical semiconductor layer Patent applicant (663) Kyocera Corporation Representative Norikata Anjo Takao Kawamura

Claims (1)

【特許請求の範囲】[Claims]  導電性基板上にアモルファスシリコンカーバイド光導
電層と有機光半導体層が順次積層された電子写真感光体
において、前記アモルファスシリコンカーバイド光導電
層の構成元素がSi元素、C元素並びに水素又はハロゲ
ンであって、水素又はハロゲンをA元素と表記し、該層
の元素比率が組成式{Si_1_−_xC_x}_1_
−yA_yとして表わされた場合、x及びyをそれぞれ
0.05<xく0.5、0.2くy<0.5の範囲内に
設定したことを特徴とする電子写真感光体。
In an electrophotographic photoreceptor in which an amorphous silicon carbide photoconductive layer and an organic photoconductive layer are sequentially laminated on a conductive substrate, the constituent elements of the amorphous silicon carbide photoconductive layer are Si element, C element, and hydrogen or halogen; , hydrogen or halogen is expressed as element A, and the element ratio of the layer is the composition formula {Si_1_-_xC_x}_1_
An electrophotographic photoreceptor characterized in that, when expressed as -yA_y, x and y are set within the range of 0.05<x0.5 and 0.2<x0.5, respectively.
JP63059052A 1988-03-11 1988-03-11 Electrophotographic sensitive body Pending JPH01232353A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63059052A JPH01232353A (en) 1988-03-11 1988-03-11 Electrophotographic sensitive body
US07/392,936 US5529866A (en) 1988-03-11 1989-03-10 Electrophotographic sensitive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63059052A JPH01232353A (en) 1988-03-11 1988-03-11 Electrophotographic sensitive body

Publications (1)

Publication Number Publication Date
JPH01232353A true JPH01232353A (en) 1989-09-18

Family

ID=13102170

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63059052A Pending JPH01232353A (en) 1988-03-11 1988-03-11 Electrophotographic sensitive body

Country Status (1)

Country Link
JP (1) JPH01232353A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554040A (en) * 1978-06-26 1980-01-12 Hitachi Ltd Photoconductive material
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS554040A (en) * 1978-06-26 1980-01-12 Hitachi Ltd Photoconductive material
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor

Similar Documents

Publication Publication Date Title
JPS59121050A (en) Electrophotographic sensitive body
JPH01232353A (en) Electrophotographic sensitive body
JPS639217B2 (en)
JP2668241B2 (en) Electrophotographic photoreceptor
JPS5915940A (en) Photoreceptor
JP2668240B2 (en) Electrophotographic photoreceptor
JP2668242B2 (en) Electrophotographic photoreceptor
JPH0293655A (en) Electrophotographic sensitive body
JP2775259B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JPH01315761A (en) Electrophotographic sensitive body
JP2761741B2 (en) Electrophotographic photoreceptor
JP2789100B2 (en) Electrophotographic photoreceptor
JPH02167555A (en) Electrophotographic sensitive body
JPH02140754A (en) Electrophotographic sensitive body
JPH01315759A (en) Electrophotographic sensitive body
JPH01315764A (en) Electrophotographic sensitive body
JPH01315765A (en) Electrophotographic sensitive body
JPH02144548A (en) Electrophotographic sensitive body
JPH03126040A (en) Electrophotographic sensitive body
JPH02181155A (en) Electrophotographic sensitive body
JPH03231254A (en) Electrophotographic sensitive body
JPH02154275A (en) Electrophotographic sensitive body
JPS58219561A (en) Recording body
JPH02213853A (en) Electrophotographic sensitive body