JPH0293655A - Electrophotographic sensitive body - Google Patents

Electrophotographic sensitive body

Info

Publication number
JPH0293655A
JPH0293655A JP24772888A JP24772888A JPH0293655A JP H0293655 A JPH0293655 A JP H0293655A JP 24772888 A JP24772888 A JP 24772888A JP 24772888 A JP24772888 A JP 24772888A JP H0293655 A JPH0293655 A JP H0293655A
Authority
JP
Japan
Prior art keywords
layer
photoconductive layer
amorphous silicon
photosensitivity
electrophotographic photoreceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24772888A
Other languages
Japanese (ja)
Other versions
JP2761734B2 (en
Inventor
Takao Kawamura
河村 孝夫
Naooki Miyamoto
宮本 直興
Hiroshi Ito
浩 伊藤
Hitoshi Takemura
仁志 竹村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP24772888A priority Critical patent/JP2761734B2/en
Publication of JPH0293655A publication Critical patent/JPH0293655A/en
Application granted granted Critical
Publication of JP2761734B2 publication Critical patent/JP2761734B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
    • G03G5/082Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
    • G03G5/08214Silicon-based
    • G03G5/08235Silicon-based comprising three or four silicon-based layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Abstract

PURPOSE:To enhance photosensitivity and to lower residual potential by successively laminating an a-SiGe photoconductive layer, a-Si photoconductive layer and a-SiC photoconductive layer. CONSTITUTION:The photoconductive layer 2 consisting of amorphous silicon germanium (a-SiGe), the photoconductive layer 3 consisting of amorphous silicon (a-Si), the photoconductive layer 4 consisting of amorphous silicon carbide (a-SiC), and an org. photosemiconductor layer 5 are successively laminated on a conductive substrate 1. The atomic compsn. ratio of the silicon (Si) element and carbon (C) element of the amorphous silicon germanium are in a 0.05<x<0.5 range in the X value of Si1-xGe and the atomic compsn. ratio of the silicon (Si) element and carbon (C) of the amorphous silicon carbide layer is in a 0.05<y<0.5 range in the y value of Si1-yCy. The high photosensitivity is obtd. in this way and the residual potential is lowered.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はアモルファス無機光導電層と有機光半導体層を
積層して成る電子写真感光体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an electrophotographic photoreceptor comprising a laminated layer of an amorphous inorganic photoconductive layer and an organic photoconductor layer.

〔従来技術及びその問題点〕[Prior art and its problems]

電子写真感光体の光導電材料には、Se、 5e−Te
Photoconductive materials for electrophotographic photoreceptors include Se, 5e-Te,
.

ASzS*3+ZnO+CdS+ アモルファスシリコ
ンなどの無機材料と各種有機材料がある。そのなかで最
初に実用化されたものはSeであり、そして、ZnO,
CdS。
ASzS*3+ZnO+CdS+ There are inorganic materials such as amorphous silicon and various organic materials. Among them, Se was the first to be put into practical use, and then ZnO,
CdS.

アモルファスシリコンも実用化された。他方、有機材料
ではPVK−TNPが最初に実用化され、その後、電荷
の発生並びに電荷の輸送という機能を別々の有機材料に
分担させる機能分離型感光体が提亥され、この機能分離
型感光体によって有機材料の開発が飛躍的に発展してい
る。
Amorphous silicon has also been put into practical use. On the other hand, among organic materials, PVK-TNP was first put into practical use, and later, a functionally separated photoreceptor was proposed in which the functions of charge generation and charge transport were shared between separate organic materials, and this functionally separated photoreceptor The development of organic materials is progressing dramatically.

一方、上記無機光導電層の上に有機光半導体層を積層し
た電子写真感光体も提案された。
On the other hand, an electrophotographic photoreceptor in which an organic photoconductive layer is laminated on the inorganic photoconductive layer has also been proposed.

例えばSe層と有機光半導体層の積層型感光体があり、
既に実用化されたが、この感光体においては、Se自体
有害であり、しかも、長波長側の感度に劣るという欠点
もあった。
For example, there is a laminated photoreceptor with a Se layer and an organic optical semiconductor layer.
Although it has already been put into practical use, this photoreceptor has the disadvantage that Se itself is harmful and has poor sensitivity on the long wavelength side.

そこで、特開昭56−14241号公報にはアモルファ
スシリコンカーバイド光導電層と有機光半導体層から成
る積層型感光体が提案されており、この感光体によれば
、上記問題点を解決して無公害性並びに高光感度な特性
が得られた。
Therefore, JP-A-56-14241 proposes a laminated photoconductor consisting of an amorphous silicon carbide photoconductive layer and an organic photoconductor layer, and this photoconductor solves the above-mentioned problems. The properties of pollution resistance and high light sensitivity were obtained.

しかし乍ら、本発明者等がこのような電子写真感光体を
製作し、その光感度と残留電位を測定したところ、両者
とも未だ満足し得るような特性が得られず、更に改善を
要することが判明した。
However, when the present inventors manufactured such an electrophotographic photoreceptor and measured its photosensitivity and residual potential, it was found that both characteristics were still unsatisfactory, and further improvements were needed. There was found.

従って、本発明は叙上に鑑みて完成されたものであり、
その目的は高い光感度が得られ、しかも、残留電位を低
減させた電子写真感光体を提供することにある。
Therefore, the present invention has been completed in view of the above,
The purpose is to provide an electrophotographic photoreceptor that has high photosensitivity and reduced residual potential.

〔問題点を解決するための手段〕[Means for solving problems]

本発明によれば、導電性基板上にアモルファスシリコン
ゲルマニウム層、アモルファスシリコン層、アモルファ
スシリコンカーバイド層及ヒ有機光半導体層を順次積層
した電子写真感光体であって、前記アモルファスシリコ
ンゲルマニウム層のシリコン(Si)元素とカーボン(
C)元素の原子組成比が5i1−1lGeXOX値で0
.05 < x < 0.5  の範囲内にアリ、前記
アモルファスシリコンカーバイド層のシリコン(Si)
元素とカーボン(C)元素の原子組成比がSt 1□C
yのy値で0.05 < V < 0.5の範囲内にあ
ることを特徴とする電子写真感光体が提供される。
According to the present invention, there is provided an electrophotographic photoreceptor in which an amorphous silicon germanium layer, an amorphous silicon layer, an amorphous silicon carbide layer, and an organic photoconductor layer are sequentially laminated on a conductive substrate, wherein the silicon ( Si) element and carbon (
C) The atomic composition ratio of the element is 0 with a 5i1-1lGeXOX value
.. 05 < x < 0.5, silicon (Si) of the amorphous silicon carbide layer
The atomic composition ratio of the element and carbon (C) element is St 1□C
An electrophotographic photoreceptor is provided, characterized in that the y value of y is within the range of 0.05 < V < 0.5.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

第1図は本発明電子写真感光体の層構成を示しており、
導電性基板(1)の上にアモルファスシリコンゲルマニ
ウム(以下、a−SiGeと略す)から成る光導電層(
2)、アモルファスシリコン(以下、a−5iと略す)
から成る光導電層(3)、アモルファスシリコンカーバ
イド(以下、a−3iCと略す)から成る光導電層(4
)及び有機光半導体層(5)が順次積層されている。そ
して、a−SiGe光導電N(2)、a−3i光導電層
(3)及びa−3iC光導電層(4)には電荷の発生と
いう機能があり、他方の有機光半導体層(5)には電荷
輸送という機能がある。
FIG. 1 shows the layer structure of the electrophotographic photoreceptor of the present invention.
A photoconductive layer (hereinafter abbreviated as a-SiGe) made of amorphous silicon germanium (hereinafter abbreviated as a-SiGe) is formed on a conductive substrate (1).
2) Amorphous silicon (hereinafter abbreviated as a-5i)
A photoconductive layer (3) made of amorphous silicon carbide (hereinafter abbreviated as a-3iC)
) and an organic optical semiconductor layer (5) are sequentially laminated. The a-SiGe photoconductive layer (2), the a-3i photoconductive layer (3), and the a-3iC photoconductive layer (4) have a function of generating charges, and the other organic photoconductive layer (5) has a function called charge transport.

本発明は電荷発生機能がある光感電層(2) (3) 
(4)を上記の通りの順序で積層し、これにより、有機
光半導体層(5)の表面側より入射した光はa−3iC
光導電層(4)により主に短波長側の光が吸収され、次
いで、残りの主に長波長側の光がa−SiGe光導電層
(2)で吸収され、その結果、光感度が全般に亘って高
められ、しかも、残留電位が低減したことが特徴である
The present invention is a photosensitive layer (2) (3) having a charge generation function.
(4) are stacked in the above order, so that the light incident from the surface side of the organic optical semiconductor layer (5) is a-3iC
The light on the short wavelength side is mainly absorbed by the photoconductive layer (4), and then the remaining light, mainly on the long wavelength side, is absorbed by the a-SiGe photoconductive layer (2), and as a result, the overall photosensitivity is reduced. It is characterized by the fact that the residual potential is increased over the period of time, and the residual potential is reduced.

先ず、a−3iC光導電層(4)については、その元素
比率を下記の通りの範囲内に設定した場合、この層(4
)自体の光感度を顕著に高めることができる。
First, regarding the a-3iC photoconductive layer (4), when the element ratio is set within the following range, this layer (4)
) can significantly increase its photosensitivity.

組成式:  (Si+−x Cx ) +−a^a(但
し八は水素又はハロゲン) 0.05 < x < 0.5、好適には0.1 < 
x < 0.40.2  < a < 0.5、好適に
は0.25< a < 0.45X値が0.05以下の
場合には短波長側の光感度が高められず、X値が0.5
以上の場合には光導電性が著しく低くなり、光キャリア
の励起機能が低下する。
Composition formula: (Si+-x Cx) +-a^a (where 8 is hydrogen or halogen) 0.05 < x < 0.5, preferably 0.1 <
x < 0.40.2 < a < 0.5, preferably 0.25 < a < 0.45 If the X value is 0.05 or less, the photosensitivity on the short wavelength side cannot be increased and the X value becomes 0.5
In the above cases, the photoconductivity becomes extremely low, and the excitation function of photocarriers deteriorates.

a値が0.2以下の場合には暗導電率が大きくなる傾向
にあり、しかも、光導電率が低下傾向にあり、そのため
に所望通りの光導電性が得られず、a値が0.5以上の
場合にはa−5iCiの内部応力が増大し、膜が剥離し
易くなる。
When the a value is 0.2 or less, the dark conductivity tends to increase, and the photoconductivity tends to decrease, so that the desired photoconductivity cannot be obtained and the a value is 0.2 or less. If it is 5 or more, the internal stress of a-5iCi increases and the film becomes easy to peel off.

また、a−3iC光導電層(4)には水素(H)元素や
ハロゲン元素がダングリングボンド終端用に含有されて
いるが、これらの元素のなかで■元素が終端部に取り込
まれ易く、これによってバンドギャップ中の局在準位密
度が低減化されるという点で望ましい。
In addition, the a-3iC photoconductive layer (4) contains hydrogen (H) elements and halogen elements for terminating dangling bonds, but among these elements, element (1) is easily incorporated into the terminating portion; This is desirable in that the local level density in the band gap is reduced.

a−SiC光導電層(4)の厚みは0.05〜2μm、
好適には0.1〜1μmの範囲内に設定すればよく、こ
の範囲内であれば高い光感度が得られ、残留電位が低く
なる。
The thickness of the a-SiC photoconductive layer (4) is 0.05 to 2 μm,
It is preferable to set it within the range of 0.1 to 1 μm, and within this range, high photosensitivity can be obtained and the residual potential will be low.

a−5iGe光導電層(2)については、その元素比率
を下記の通りの範囲内に設定した場合、長波長側の光感
度を顕著に高めることができる。
Regarding the a-5iGe photoconductive layer (2), when the element ratio is set within the following range, the photosensitivity on the long wavelength side can be significantly increased.

組成比:  (Sil−y Gey ) I−b B 
b (但しBは水素又はハロゲン) 0.05  <  V  <  0.5、 好適には0
.1  <  y  <  0.40.2  < b 
< 0.5、好適には0.25< b < 0.45y
値が0.05以下の場合には長波長光の吸収が小さいた
め、その光感度を高めることができず、y値が0.5以
上の場合には膜の内部欠陥が増大して光導電性が著しく
小さくなり、光キャリアの励起機能が低下する。
Composition ratio: (Sil-y Gey) I-b B
b (where B is hydrogen or halogen) 0.05 < V < 0.5, preferably 0
.. 1 < y < 0.40.2 < b
< 0.5, preferably 0.25 < b < 0.45y
If the value is 0.05 or less, the absorption of long wavelength light is small, so the photosensitivity cannot be increased, and if the y value is 0.5 or more, internal defects in the film will increase and the photoconductivity will decrease. As a result, the excitation function of photocarriers decreases.

b値が0.2以下の場合には所望通りの十分な光導電性
が得られず、b値が0.5以上の場合にはaSiGe光
導電層(2)自体の内部応力などが原因となって膜が剥
離し易くなる。
If the b value is 0.2 or less, sufficient photoconductivity as desired cannot be obtained, and if the b value is 0.5 or more, internal stress of the aSiGe photoconductive layer (2) itself is the cause. This makes the film easy to peel off.

このa−SiGe光導電層(2)についても、ダングリ
ングボンド終端用元素としてH元素が局在準位密度が低
減化されるという点で望ましい。
Also in this a-SiGe photoconductive layer (2), H element is desirable as a dangling bond termination element in that the localized level density is reduced.

a−5iGe光導電層(2)の厚みは0.05〜2μm
、好適には0.1〜1μmの範囲内に設定すればよく、
この範囲内であれば高い光感度が得られ、残留電位が低
くなる。
The thickness of the a-5iGe photoconductive layer (2) is 0.05 to 2 μm
, preferably set within the range of 0.1 to 1 μm,
Within this range, high photosensitivity can be obtained and the residual potential will be low.

更に本発明の電子写真感光体については、上記のa−S
iGe光導電層(2)とa−SiC光導電層(4)の間
にa−Si光導電層(3)を形成し、これによって光感
度を一層高めている。そのために、この層(3)の厚み
を0.05〜2μm、好適には0.1〜1μmの範囲内
に設定すればよい。
Furthermore, regarding the electrophotographic photoreceptor of the present invention, the above a-S
An a-Si photoconductive layer (3) is formed between the iGe photoconductive layer (2) and the a-SiC photoconductive layer (4), thereby further increasing photosensitivity. For this purpose, the thickness of this layer (3) may be set within the range of 0.05 to 2 μm, preferably 0.1 to 1 μm.

本発明の電子写真感光体は有機光半導体層(5)の材料
選択により負帯電型又は正帯電型に設定することができ
る。即ち、負帯電型電子写真感光体の場合、有機光半導
体層(5)に電子供与性化合物が選ばれ、一方、正帯電
型電子写真感光体の場合には有機光半導体層(5)に電
子吸引性化合物が選ばれる。
The electrophotographic photoreceptor of the present invention can be set to be a negatively charged type or a positively charged type by selecting the material for the organic photosemiconductor layer (5). That is, in the case of a negatively charged electrophotographic photoreceptor, an electron donating compound is selected for the organic photosemiconductor layer (5), while in the case of a positively charged electrophotographic photoreceptor, an electron donating compound is selected for the organic photosemiconductor layer (5). An inhalable compound is chosen.

前記電子供与性化合物には例えば高分子量のものとして
、ポリ−N−ビニルカルバゾール、ポリビニルピレン、
ポリビニルアントラセン、ピレン−ホルムアルデヒド縮
重合体などがあり、また、低分子量のものとしてオキサ
ジアゾール、オキサゾール、ピラゾリン、トリフヱニル
メタン、ヒドラゾン、トリアリールアミン、N−フェニ
ルカルバゾール、スチルベンなどがあり、この低分子物
質は、ポリカーボネート、ポリエステル、メタアクリル
樹脂、ポリアミド、アクリルエポキシ、ポリエチレン、
フェノール、ポリウレタン、ブチラール樹脂、ポリ酢酸
ビニル、ユリア樹脂などのバインダに分散されて用いら
れる。
Examples of the electron-donating compounds include those having high molecular weight, such as poly-N-vinylcarbazole, polyvinylpyrene,
There are polyvinyl anthracene, pyrene-formaldehyde condensation polymer, etc., and low molecular weight ones include oxadiazole, oxazole, pyrazoline, triphenylmethane, hydrazone, triarylamine, N-phenylcarbazole, and stilbene. Low molecular weight substances include polycarbonate, polyester, methacrylic resin, polyamide, acrylic epoxy, polyethylene,
It is used after being dispersed in a binder such as phenol, polyurethane, butyral resin, polyvinyl acetate, or urea resin.

前記電子吸引性化合物には2.4.7− トリニトロフ
ルオレンなどがある。
Examples of the electron-withdrawing compound include 2,4,7-trinitrofluorene.

また、前記基板(1)には、銅、黄銅、SOS 、 A
I等の金属導電体、あるいはガラス、セラミックス等の
絶縁体の表面に導電体薄膜をコーティングしたものがあ
り、就中、^lがコスト面並びにa−SiGe層との密
着性という点で有利である。
Further, the substrate (1) is made of copper, brass, SOS, A
There are metal conductors such as I, or insulators such as glass and ceramics coated with a conductor thin film.Among these, ^l is advantageous in terms of cost and adhesion to the a-SiGe layer. be.

かくして本発明によれば、a−3iGc光導電層、a−
Si光導電層及びa−SiC光導電層を順次積層したこ
とにより、全波長領域に亘って光感度が高めることがで
きた。
Thus, according to the invention, a-3iGc photoconductive layer, a-
By sequentially laminating the Si photoconductive layer and the a-SiC photoconductive layer, the photosensitivity could be increased over the entire wavelength range.

また、本発明の電子写真感光体については第2図に示す
通り、a−SiC光導電層(4)と有機光半導体層(5
)の間にC元素を多く含有する層領域を形成してもよく
、このカーボン(C)元素高含有N領域(4a)が形成
された場合、a−3iC光導電N(4)と有機光半導体
層(5)の間の暗導電率の差が小さくなり、これにより
、両層(4) (5)の界面でキャリアがトラップされ
なくなる。
Further, as shown in FIG. 2, the electrophotographic photoreceptor of the present invention has an a-SiC photoconductive layer (4) and an organic photoconductor layer (5).
) may be formed between the carbon (C) element-rich N region (4a) and the organic photoconductive N (4). The difference in dark conductivity between the semiconductor layers (5) is reduced, so that carriers are no longer trapped at the interface between both layers (4) and (5).

即ち、a−SiC光導電層(4)の暗導電率は約10−
1〜10” ’ ” (Ω・cm)−’であり、他方の
有機光半導体層(5)の暗導電率は約10− ”〜10
す5(Ω・cm)−’であり、そのために光導電層(2
) (3) (4)で発生したキャリアは暗導電率の大
きな差により有機光半導体層(5)へスムーズに流れな
くなる。従って、本発明者等はC元素高含有Ji?fI
域(4a)を形成し、これにより、その層領域(4a)
の暗導電率を小さくし、両層(4) (5)の間で暗導
電率の差を小さくすることができ、その結果、光感度及
び残留電位の両特性が改善されることを見い出した。
That is, the dark conductivity of the a-SiC photoconductive layer (4) is approximately 10-
The dark conductivity of the other organic optical semiconductor layer (5) is approximately 10-10"-10" (Ωcm).
Therefore, the photoconductive layer (2
) (3) The carriers generated in (4) do not flow smoothly to the organic optical semiconductor layer (5) due to the large difference in dark conductivity. Therefore, the inventors of the present invention found that Ji? fI
forming a layer region (4a), thereby forming a layer region (4a)
It was found that the difference in dark conductivity between the two layers (4) and (5) could be reduced, and as a result, both the characteristics of photosensitivity and residual potential were improved. .

このようなC元素高含有層領域(4a)は下記の通りC
元素含有比率と厚みにより表わされる。
Such C element high content layer region (4a) is composed of C as described below.
It is expressed by element content ratio and thickness.

C元素含有比率はSi層−xc XのX値で0.2 <
 x<0.5、好適には0.3 < X < 0.5の
範囲内に設定するとよく、x値が0.2以下の場合には
両層(4)(5)の間で暗導電率の差を所要通りに小さ
くできず、これによって光感度及び残留電位のそれぞれ
の特性を改善することができず、また、X値が0.5以
上の場合には、a−5iC光導電層でキャリアがトラッ
プされ易くなり、光感度特性が低下する。
The C element content ratio is 0.2 < X value of Si layer-xc
x < 0.5, preferably within the range of 0.3 < If the difference in ratio cannot be made as small as required, thereby making it impossible to improve the respective characteristics of photosensitivity and residual potential, and if the X value is 0.5 or more, the a-5iC photoconductive layer carriers become more likely to be trapped, and the photosensitivity characteristics deteriorate.

また、厚みは10〜2000人、好適には500〜10
00人の範囲内に設定するとよ<、10人未満の場合に
は光感度及び残留電位のそれぞれの特性を改善すること
ができず、2000人を超えた場合には残留電位が大き
くなる傾向にある。
Also, the thickness is 10 to 2000, preferably 500 to 10
If the number of people is less than 10, the characteristics of photosensitivity and residual potential cannot be improved, and if the number of people is more than 2,000, the residual potential tends to increase. be.

このようなa−5iC光導電層(4)並びにC元素高含
有層領域(4a)のそれぞれのC元素含有量は層厚方向
に亘って変化させてもよい。例えば第3図〜第8図に示
す例があり、これらの図において横軸は層厚方向であり
、aはa−3i光導電N(3)とa−5iC光導電N(
4)の界面、bはa−5iC光導電層(4)とC元素高
含有N領域(4a)の界面、そして、CはC元素高含有
層領域(4a)と有機光半導体層(5)の界面を表わし
、また、縦軸はC元素含有量を表わす。
The C element content of each of the a-5iC photoconductive layer (4) and the C element high content layer region (4a) may be varied in the layer thickness direction. For example, there are examples shown in FIGS. 3 to 8, in which the horizontal axis is the layer thickness direction, and a is the a-3i photoconductive N(3) and the a-5iC photoconductive N(
4), b is the interface between the a-5iC photoconductive layer (4) and the C element high content N region (4a), and C is the interface between the C element high content layer region (4a) and the organic optical semiconductor layer (5). The vertical axis represents the C element content.

更にまた、本発明の電子写真感光体においては、光導電
層(2) (3) (4)にma族元素を1〜500p
pn+、好適には2〜200ppm含有させるとよい。
Furthermore, in the electrophotographic photoreceptor of the present invention, the photoconductive layer (2) (3) (4) contains 1 to 500 p of a Ma group element.
pn+, preferably 2 to 200 ppm.

このma族元素含有量については、層(2) (3) 
(4)層全体光たりの平均値によって表わされ、その平
均含有量がippm以下の場合には暗導電率が大きくな
る傾向にあり、しかも、光感度の低下が認められ、一方
、500ppm以上の場合には暗導電率が著しく大きく
なり、更に光導電率の暗導電率に対する比率が小さくな
り、所望通りの光感度が得られない。
Regarding this ma group element content, layer (2) (3)
(4) It is expressed by the average value of light per layer as a whole, and when the average content is less than ippm, the dark conductivity tends to increase, and moreover, a decrease in photosensitivity is observed; In this case, the dark conductivity becomes significantly large, and the ratio of the photoconductivity to the dark conductivity becomes small, making it impossible to obtain the desired photosensitivity.

光導電層(2) (3) (4)にma族元素を含有さ
せるに当たり、そのドーピング分布は層厚方向に亘って
均−又は不均一のいずれでもよい。不均一にドーピング
させた場合、この層(2) (3) (4)の一部にm
a族元素が含有されない層領域があってもよく、その場
合には([Ia族元素含有のIEJ Si域並びにma
族元素が含有されていない層領域の両者から成る(2)
 (3) (4)層全体に対するl1la族元素平均含
有量が1〜500pρmでなくてはならない。
When the photoconductive layer (2) (3) (4) contains the Ma group element, the doping distribution may be either uniform or non-uniform over the layer thickness direction. When doped non-uniformly, part of this layer (2) (3) (4) is
There may be a layer region that does not contain group a elements, in which case ([IEJ Si region containing group Ia elements and ma
Consists of both layer regions that do not contain group elements (2)
(3) (4) The average content of the l1la group elements in the entire layer must be 1 to 500 ppm.

このma族元素にはB、AI、Ga、 In等があるが
、Bが共有結合性に優れて半導体特性を敏感に変え得る
点で、その上、優れた帯電能並びに光感度が得られると
いう点で望ましい。
The MA group elements include B, AI, Ga, In, etc., but B has excellent covalent bonding properties and can sensitively change semiconductor properties, and is said to have excellent charging ability and photosensitivity. desirable in that respect.

次に本発明電子写真怒光体の製法を述べる。Next, a method for manufacturing the electrophotographic photoreceptor of the present invention will be described.

a−Si層、a−5iC層又はa−5iGe層を形成す
るにはグロー放電分解法、イオンブレーティング法、反
応性スパッタリング法、真空蒸着法、CVD法などの薄
膜形成方法がある。
To form the a-Si layer, the a-5iC layer, or the a-5iGe layer, there are thin film forming methods such as a glow discharge decomposition method, an ion blating method, a reactive sputtering method, a vacuum evaporation method, and a CVD method.

グロー放電分解法を用いてa−SiC層又はa−SiG
e層を形成する場合、Si元素含有ガスとC元素含有ガ
スあるいはSi元素含有ガスとGe元素含有ガスを組合
せ、それぞれの混合ガスをプラズマ分解して成膜形成す
る。このSi元素含有ガスには5illa、5i211
い5i311e、SiF4.5iC14,5iHC1:
+等々があり、C元素含有ガスにはCH4,Czt14
.Cztlz、Czlls等々があり、また、Ge元素
含有ガスには例えばGetla、GeHCl3.GeH
2C1z、GetlCIs、GeCl4.GeF41G
i3ztlb、GeJsがある。
a-SiC layer or a-SiG using glow discharge decomposition method
When forming the e-layer, a film is formed by combining a Si element-containing gas and a C element-containing gas or a Si element-containing gas and a Ge element-containing gas, and plasma decomposing the respective mixed gases. This Si element-containing gas contains 5illa, 5i211
5i311e, SiF4.5iC14, 5iHC1:
+ etc., and C element-containing gases include CH4, Czt14
.. Cztlz, Czlls, etc., and Ge element-containing gases include, for example, Getla, GeHCl3. GeH
2C1z, GetlCIs, GeCl4. GeF41G
There are i3ztlb and GeJs.

本実施例に用いられるグロー放電分解装置を第9図によ
り説明する。
The glow discharge decomposition device used in this example will be explained with reference to FIG.

図中、第1タンク(6)、第2タンク(7)、第3タン
ク(8)、第4タンク(9)にはそれぞれSiJ、CJ
2.Gel+4及び11□が密封され、これらのガスは
各々対応する第1調整弁(10)、第2調整弁(11)
、第3調整弁(12)及び第4調整弁(13)を開放す
ることにより放出され、その放出ガスの流量はそれぞれ
マスフローコントローラ(14) (15) (16)
 (17)により制御される。そして、S i Ha、
C2H21G e Ha、Hzの各々のガスは混合され
て主管(18)へ送られる。尚、(19)は止め弁であ
る。
In the figure, the first tank (6), second tank (7), third tank (8), and fourth tank (9) are SiJ and CJ, respectively.
2. Gel+4 and 11□ are sealed, and these gases are passed through the corresponding first regulating valve (10) and second regulating valve (11), respectively.
, by opening the third regulating valve (12) and the fourth regulating valve (13), and the flow rate of the released gas is controlled by the mass flow controllers (14), (15), and (16), respectively.
(17). And S i Ha,
The gases C2H21G e Ha and Hz are mixed and sent to the main pipe (18). Note that (19) is a stop valve.

主管(18)を通じて流れるガスは反応管(20)へ流
入されるが、この反応管(21)の内部には容量結合型
放電用電極(21)が設置され、また、筒状の成膜用基
板(22)が基板支持体(23)の上に@置され、基板
支持体(23)がモータ(24)により回転駆動され、
これに伴って基板(22)が回転される。そして、電極
(21)に電力50w 〜3Kw 、周波数1〜50M
Hzの高周波電力が印加され、しかも、基板(22)が
適当な加熱手段により約200〜400℃、好適には約
200〜350℃の温度に加熱される。また、反応管(
20)は回転ポンプ(25)と拡散ポンプ(26)に連
結されており、これによってグロー放電による成膜形成
時に所要な真空状態(放電時のガス圧0.1〜2.0T
orr)が維持される。
Gas flowing through the main pipe (18) flows into the reaction tube (20), and a capacitively coupled discharge electrode (21) is installed inside this reaction tube (21), and a cylindrical film-forming electrode (21) is installed inside the reaction tube (21). A substrate (22) is placed on a substrate support (23), and the substrate support (23) is rotationally driven by a motor (24).
Along with this, the substrate (22) is rotated. Then, the electrode (21) has a power of 50w to 3Kw and a frequency of 1 to 50M.
Hz high frequency power is applied and the substrate (22) is heated by suitable heating means to a temperature of about 200-400°C, preferably about 200-350°C. In addition, the reaction tube (
20) is connected to a rotary pump (25) and a diffusion pump (26), which maintain the necessary vacuum state (gas pressure during discharge of 0.1 to 2.0 T) during film formation by glow discharge.
orr) is maintained.

このような構成のグロー放電分解装置を用いて基板(2
2)の上にa−5iC層を形成する場合、第1調整弁(
10)、第2調整弁(11)及び第4調整弁(13)を
放出し、その放出量をマスフローコントローラ(14)
 (15) (17)により制御し、各々のガスは混合
されて主管(18)を介して反応管(20)へ流入され
る。そして、反応管内部の真空状態、基板温度、電極印
加用高周波電力をそれぞれ所定の条件に設定するとグロ
ー放電が発生し、ガスの分解に伴ってa−SiC膜が基
板上に高速に形成される。
The substrate (2
When forming the a-5iC layer on 2), the first regulating valve (
10), the second regulating valve (11) and the fourth regulating valve (13) are discharged, and the discharge amount is controlled by the mass flow controller (14).
(15) Controlled by (17), each gas is mixed and flows into the reaction tube (20) via the main pipe (18). When the vacuum inside the reaction tube, substrate temperature, and high-frequency power applied to the electrodes are set to predetermined conditions, glow discharge occurs, and an a-SiC film is rapidly formed on the substrate as the gas decomposes. .

有機光半導体層は下記の通りに形成する。The organic optical semiconductor layer is formed as follows.

有機光半導体層は浸漬塗工方法又はコーティング法によ
り形成し、前者は感光材が溶媒中に分散された塗工液の
中に浸漬し、次いで、一定な速度で引上げ、そして、自
然乾燥及び熱エージング(約150℃、約1時間)を行
うという方法であり、また、後者のコーティング法によ
れば、コーター(塗膜)を用いて、溶媒に分散された感
光材を塗布し、次いで熱風乾燥を行う。
The organic photosemiconductor layer is formed by a dip coating method or a coating method, in which the photosensitive material is immersed in a coating solution in which it is dispersed in a solvent, then pulled up at a constant speed, and then air-dried and heated. According to the latter coating method, a photosensitive material dispersed in a solvent is applied using a coater, and then dried with hot air. I do.

〔実施例〕〔Example〕

次に本発明の実施例を述べる。 Next, examples of the present invention will be described.

(例1) 本発明者等は第9図のグロー放電分解装置を用いて第1
表に示す成膜条件によりa−SiGe光導電層、a−S
t光導電層及びa−5iC光導電層をアルミニウム基板
上に順次積層し、次いで、ポリカーボネートにヒドラゾ
ン系化合物を分散させた有機光半導体層(膜厚約15μ
l11)を形成し、電子写真感光体とした。
(Example 1) The present inventors used the glow discharge decomposition apparatus shown in FIG.
The a-SiGe photoconductive layer, a-S
The t photoconductive layer and the a-5iC photoconductive layer were sequentially laminated on an aluminum substrate, and then an organic photoconductive layer (film thickness approximately 15 μm) made of polycarbonate in which a hydrazone compound was dispersed
11) was formed and used as an electrophotographic photoreceptor.

〔以下余白〕[Margin below]

また、上記a−SiGe光導電1 (2)及びa−Si
C光導電層(4)のそれぞれのGe量及びC量をX−r
ay Micro Analyzerにより、また、各
層のH量を赤外吸収法により測定したところ、下記に示
す通りの結果が得られた。
In addition, the above a-SiGe photoconductor 1 (2) and a-Si
The amount of Ge and the amount of C in each C photoconductive layer (4) are expressed as
When the amount of H in each layer was measured using an ay Micro Analyzer and an infrared absorption method, the results shown below were obtained.

a−SiGe光 電層(2) (Sio、 aJll!a、3+)  o、 t Ho
、 3かくして得られた電子写真感光体の特許評価を電
子写真特性測定装置により測定したところ、優れた光感
度が得られた。
a-SiGe photoelectric layer (2) (Sio, aJll!a, 3+) o, t Ho
, 3 The patent evaluation of the thus obtained electrophotographic photoreceptor was measured using an electrophotographic property measuring device, and it was found that excellent photosensitivity was obtained.

(例2) 上記(例1)の電子写真感光体を製作するに当たって、
a−S+光導電N(3)を形成せず、a−3iGe光導
電層(2)及びa−SiC光導電層(4)を形成し、そ
して、a−SiGe光導電層(2)及びa−3iC光導
電層(4)を全く同じ成膜条件に設定するとともにそれ
ぞれの厚みを0.6μm及び0.8μmに設定し、これ
によって電子写真感光体を製作した。この電子写真感光
体の光感度を測定したところ、(例1)の電子写真感光
体に比べて約10χ低下した。
(Example 2) In manufacturing the electrophotographic photoreceptor of the above (Example 1),
a-3iGe photoconductive layer (2) and a-SiC photoconductive layer (4) are formed without forming a-S+ photoconductive layer (3); The -3iC photoconductive layer (4) was formed under exactly the same film forming conditions, and the respective thicknesses were set to 0.6 μm and 0.8 μm, thereby producing an electrophotographic photoreceptor. When the photosensitivity of this electrophotographic photoreceptor was measured, it was found to be about 10x lower than that of the electrophotographic photoreceptor of (Example 1).

(例3) また本発明者等は(例1)の電子写真感光体を製作する
に当たって、CH,ガスやGet(4ガスなどのガス流
量を変化させ、これにより、第2表に示す通りa−3i
C光導電層のC景及びa−5iGe光導電層のGe量を
変えた12種類の電子写真感光体(感光体へ〜L)を製
作した。
(Example 3) Furthermore, in manufacturing the electrophotographic photoreceptor of (Example 1), the present inventors changed the gas flow rate of CH, gas, Get (4 gas, etc.), and as a result, as shown in Table 2, a -3i
Twelve types of electrophotographic photoreceptors (from photoreceptor to L) were manufactured in which the C pattern of the C photoconductive layer and the amount of Ge in the a-5iGe photoconductive layer were changed.

これらの電子写真感光体の光感度及び残留電位を測定し
たところ、第2表に示す通りの結果が得られた。
When the photosensitivity and residual potential of these electrophotographic photoreceptors were measured, the results shown in Table 2 were obtained.

同表中、光感度は相対評価により◎印、○印及び△印の
3段階に区分し、◎印は最も優れた光感度が得られた場
合であり、○印は幾分価れた光感度が得られた場合であ
り、△印は他に比べてわずかに劣る光感度になった場合
である。
In the same table, photosensitivity is classified into three levels based on relative evaluation: ◎, ○, and △. ◎ indicates the best photosensitivity, and ○ indicates slightly more expensive light This is a case where sensitivity was obtained, and the mark △ indicates a case where photosensitivity was slightly inferior to the others.

また、残留電位についても三段階に相対評価しており、
○印は残留電位が最も小さくなった場合であり、Δ印は
残留電位の上昇が幾分性められた場合であり、X印は他
に比べて残留電位の上昇が認められ、実用上問題がある
場合である。
In addition, the residual potential is also evaluated relative to three levels.
The ○ mark indicates the case where the residual potential is the smallest, the Δ mark indicates the case where the increase in the residual potential has been slowed down somewhat, and the X mark indicates the case where the residual potential has increased more than the others and is a practical problem. This is the case when there is.

*印の感光体は本発明の範囲外のものである。Photoreceptors marked with * are outside the scope of the present invention.

第2表より明らかな通り、本発明の感光体C〜Jは高い
光感度が得られ、しかも、残留電位が顕著に小さくなっ
た。
As is clear from Table 2, the photoreceptors C to J of the present invention had high photosensitivity and a significantly reduced residual potential.

然るに感光体^、Bは光感度に劣り、また、感光体に、
Lは光感度と残留電位のいずれの特性も顕著に劣化して
いた。
However, the photoreceptor ^, B has poor photosensitivity, and the photoreceptor has
In L, both the photosensitivity and residual potential were significantly deteriorated.

(例4) 次に本発明者等は(例1)の電子写真感光体を製作する
に当たって、a−5iGe層、a−3i層及びa−5i
C層のそれぞれの厚みを変化させ、これにより、第3表
に示す10種類の電子写真感光体(感光体門〜V)を製
作した。
(Example 4) Next, in manufacturing the electrophotographic photoreceptor of (Example 1), the present inventors created an a-5iGe layer, an a-3i layer, and an a-5i
By varying the thickness of each C layer, ten types of electrophotographic photoreceptors (photoreceptors to V) shown in Table 3 were manufactured.

そして、各々の感光体の光感度及び残留電位を測定した
ところ、第3表に示す通りの結果が得られた。
When the photosensitivity and residual potential of each photoreceptor were measured, the results shown in Table 3 were obtained.

〔以下余白〕[Margin below]

第3表 第3表より明らかな通り、感光体0−Tは優れた光感度
が得られ、しかも、残留電位が著しく小さくなったこと
が判る。
Table 3 As is clear from Table 3, the photoreceptor 0-T has excellent photosensitivity and has a significantly reduced residual potential.

〔発明の効果〕〔Effect of the invention〕

以上の通り本発明の電子写真感光体によれば、a−Si
Ge光ぶ電層、a−3i光導電層及びa−SiC光導電
層を順次積層したことにより光感度が高くなり、しかも
、残留電位が顕著に小さくできた。
As described above, according to the electrophotographic photoreceptor of the present invention, a-Si
By sequentially laminating the Ge photoconductive layer, the a-3i photoconductive layer, and the a-SiC photoconductive layer, the photosensitivity was increased and the residual potential was significantly reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本発明電子写真感光体の層構成を示
す断面図、また、第3図、第4図、第5図、第6図、第
7図及び第8図はカーボン元素含有量を示す線図、第9
図はグロー放電分解装置の説明図である。 (1)・・・導電性基板 (2)・・・アモルファスシリコンゲルマニウム光導電
層 (3)・・・アモルファスシリコン光導電層(4)・・
・アモルファスシリコンカーバイド光導電層 (5)・・・有機光半導体層 特許出願人 (663)京セラ株式会社代表者安城欽寿 同   河村孝夫
1 and 2 are cross-sectional views showing the layer structure of the electrophotographic photoreceptor of the present invention, and FIGS. 3, 4, 5, 6, 7, and 8 show carbon elements. Diagram showing content, No. 9
The figure is an explanatory diagram of a glow discharge decomposition device. (1)... Conductive substrate (2)... Amorphous silicon germanium photoconductive layer (3)... Amorphous silicon photoconductive layer (4)...
・Amorphous silicon carbide photoconductive layer (5)...Organic optical semiconductor layer Patent applicant (663) Kyocera Corporation Representative Kinjudo Anjo Takao Kawamura

Claims (4)

【特許請求の範囲】[Claims] (1)導電性基板上にアモルファスシリコンゲルマニウ
ム層、アモルファスシリコン層、アモルファスシリコン
カーバイド層及び有機光半導電体層を順次積層した電子
写真感光体であって、前記アモルファスシリコンゲルマ
ニウム層のシリコン元素とカーボン元素の原子組成比が
Si_1_−_XGe_XのX値で0.05<x<0.
5の範囲内にあり、前記アモルファスシリコンカーバイ
ド層のシリコン元素とカーボン元素の原子組成比がSi
_1_−_yC_yのy値で0.05<y<0.5の範
囲内にあることを特徴とする電子写真感光体。
(1) An electrophotographic photoreceptor in which an amorphous silicon germanium layer, an amorphous silicon layer, an amorphous silicon carbide layer, and an organic photoconductor layer are sequentially laminated on a conductive substrate, the silicon element and carbon of the amorphous silicon germanium layer The atomic composition ratio of the elements is 0.05<x<0.
5, and the atomic composition ratio of silicon element and carbon element in the amorphous silicon carbide layer is within the range of Si
An electrophotographic photoreceptor characterized in that the y value of _1_-_yC_y is in the range of 0.05<y<0.5.
(2)前記アモルファスシリコンゲルマニウム層の厚み
が0.05〜2μmの範囲内にある請求項(1)記載の
電子写真感光体。
(2) The electrophotographic photoreceptor according to claim 1, wherein the thickness of the amorphous silicon germanium layer is within the range of 0.05 to 2 μm.
(3)前記アモルファスシリコン層の厚みが0.05〜
2μmの範囲内にある請求項(1)記載の電子写真感光
体。
(3) The thickness of the amorphous silicon layer is 0.05~
The electrophotographic photoreceptor according to claim 1, wherein the thickness is within the range of 2 μm.
(4)前記アモルファスシリコンカーバイド層の厚みが
0.05〜2μmの範囲内にある請求項(1)記載の電
子写真感光体。
(4) The electrophotographic photoreceptor according to claim 1, wherein the thickness of the amorphous silicon carbide layer is within the range of 0.05 to 2 μm.
JP24772888A 1988-09-30 1988-09-30 Electrophotographic photoreceptor Expired - Fee Related JP2761734B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24772888A JP2761734B2 (en) 1988-09-30 1988-09-30 Electrophotographic photoreceptor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24772888A JP2761734B2 (en) 1988-09-30 1988-09-30 Electrophotographic photoreceptor

Publications (2)

Publication Number Publication Date
JPH0293655A true JPH0293655A (en) 1990-04-04
JP2761734B2 JP2761734B2 (en) 1998-06-04

Family

ID=17167790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24772888A Expired - Fee Related JP2761734B2 (en) 1988-09-30 1988-09-30 Electrophotographic photoreceptor

Country Status (1)

Country Link
JP (1) JP2761734B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421858A (en) * 1990-05-17 1992-01-24 Fuji Xerox Co Ltd Electrophotographic sensitive body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0421858A (en) * 1990-05-17 1992-01-24 Fuji Xerox Co Ltd Electrophotographic sensitive body

Also Published As

Publication number Publication date
JP2761734B2 (en) 1998-06-04

Similar Documents

Publication Publication Date Title
JPH0293655A (en) Electrophotographic sensitive body
JP2668241B2 (en) Electrophotographic photoreceptor
JPS5915940A (en) Photoreceptor
JP2668242B2 (en) Electrophotographic photoreceptor
US5945241A (en) Light receiving member for electrophotography and fabrication process thereof
JP2668240B2 (en) Electrophotographic photoreceptor
JPS639218B2 (en)
JP2789100B2 (en) Electrophotographic photoreceptor
JP2722074B2 (en) Electrophotographic photoreceptor
JP2775259B2 (en) Electrophotographic photoreceptor
JPS6161387B2 (en)
JP2761741B2 (en) Electrophotographic photoreceptor
JPH02181155A (en) Electrophotographic sensitive body
JP2562583B2 (en) Electrophotographic photoreceptor
JPH01315764A (en) Electrophotographic sensitive body
JPH01232353A (en) Electrophotographic sensitive body
US5529866A (en) Electrophotographic sensitive member
JP2678449B2 (en) Electrophotographic photoreceptor
JPH01315761A (en) Electrophotographic sensitive body
JPS6161386B2 (en)
JPH01315765A (en) Electrophotographic sensitive body
JP3113453B2 (en) Manufacturing method of electrophotographic photoreceptor
JPH02167555A (en) Electrophotographic sensitive body
JPH01315759A (en) Electrophotographic sensitive body
JP2742583B2 (en) Electrophotographic photoreceptor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees