JP2562583B2 - Electrophotographic photoreceptor - Google Patents
Electrophotographic photoreceptorInfo
- Publication number
- JP2562583B2 JP2562583B2 JP61233042A JP23304286A JP2562583B2 JP 2562583 B2 JP2562583 B2 JP 2562583B2 JP 61233042 A JP61233042 A JP 61233042A JP 23304286 A JP23304286 A JP 23304286A JP 2562583 B2 JP2562583 B2 JP 2562583B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- carrier
- amorphous silicon
- gas
- periodic table
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
- G03G5/04—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
- G03G5/08—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic
- G03G5/082—Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic and not being incorporated in a bonding material, e.g. vacuum deposited
- G03G5/08214—Silicon-based
- G03G5/08235—Silicon-based comprising three or four silicon-based layers
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電子写真感光体に関し、より詳細には正極性
帯電能に優れるとともに光減衰、暗減衰等の電子写真特
性に優れた電子写真感光体及びその製造方法に関する。TECHNICAL FIELD The present invention relates to an electrophotographic photosensitive member, and more specifically to an electrophotographic photosensitive member which is excellent in positive polarity charging ability and is also excellent in electrophotographic characteristics such as light attenuation and dark attenuation. The present invention relates to a body and a manufacturing method thereof.
近年、超高速複写機やレーザービームプリンタなどの
開発が活発に進められており、これにともなってこの機
器に搭載される電子写真感光体ドラムに安定した動作特
性及び耐久性が要求されている。In recent years, development of ultra-high speed copying machines, laser beam printers, etc. has been actively promoted, and along with this development, stable operation characteristics and durability are required for electrophotographic photosensitive drums mounted in this equipment.
この要求に対して水素化アモルファスシリコンが耐摩
耗性、耐熱性、無公害性並びに光感度特性等に優れてい
るという理由から注目されている。In response to this demand, hydrogenated amorphous silicon is drawing attention because it is excellent in abrasion resistance, heat resistance, pollution-free property, photosensitivity and the like.
かかるアモルファスシリコン(以下、a−Siと略す)
から成る電子写真感光体には第2図に示す通りの積層型
感光体が提案されている。Such amorphous silicon (hereinafter abbreviated as a-Si)
As the electrophotographic photoreceptor composed of the above, a laminated photoreceptor as shown in FIG. 2 has been proposed.
即ち、第2図によれば、アルミニウムなどの導電性基
板(1)上にキャリア注入阻止層(2)、a−Si光導電
層(3)及び表面保護層(4)を順次積層しており、こ
のキャリア注入阻止層(2)は基板(1)からのキャリ
アの注入を阻止すると共に残留電位を低下させるために
形成されており、そして、表面保護層(4)には高硬度
な材料を用いて感光体の耐久性を高めている。That is, according to FIG. 2, a carrier injection blocking layer (2), an a-Si photoconductive layer (3) and a surface protective layer (4) are sequentially laminated on a conductive substrate (1) such as aluminum. The carrier injection blocking layer (2) is formed to block the injection of carriers from the substrate (1) and reduce the residual potential, and the surface protection layer (4) is made of a high hardness material. It is used to increase the durability of the photoconductor.
ところが、このa−Si感光体によれば、a−Si光導電
層(3)自体が有する暗抵抗律が1011Ω・cm以下であ
り、これにより、この感光体の暗減衰率が大きくなると
共にそれ自体の帯電能を高めることが難しくなり、その
結果、この感光体を高速複写用に用いた場合には光メモ
リ効果により先の画像が完全に除去されずに残留し、次
の画像形成に伴って先の画像が現れる(ゴースト現象)
と言う問題がある。However, according to this a-Si photoconductor, the dark resistance law of the a-Si photoconductive layer (3) itself is 10 11 Ω · cm or less, which increases the dark decay rate of the photoconductor. At the same time, it becomes difficult to increase the chargeability of itself, and as a result, when this photoconductor is used for high-speed copying, the previous image is not completely removed due to the optical memory effect and remains in the next image formation. Along with that, the previous image appears (ghost phenomenon)
There is a problem to say.
しかも、従来の第2図のa−Siから成る感光体では帯
電電位が+400〜+500Vと低く、帯電能が不十分なた
め、電子写真法のうえで、種々の制限を受けている。し
かも成膜速度が遅いために量産性が難しく、高価なもと
となっているのが現状である。In addition, the conventional photosensitive member made of a-Si shown in FIG. 2 has a low charging potential of +400 to +500 V and insufficient charging ability, so that it is subject to various restrictions in electrophotography. In addition, since the film forming speed is slow, mass productivity is difficult, and the cost is high.
従って、本発明の目的は、従来のa−Si感光体と同等
の耐久性を有し乍らも優れた正帯電能を有し、しかも優
れた感度を有する機能分離型電子写真感光体を提供する
にある。Therefore, an object of the present invention is to provide a function-separated type electrophotographic photoconductor that has durability equivalent to that of a conventional a-Si photoconductor, has excellent positive charging ability, and has excellent sensitivity. There is.
本発明の他の目的は、感光体の製造時の成膜速度を向
上させることによって、量産性、経済性に優れた電子写
真感光体に関する。Another object of the present invention relates to an electrophotographic photosensitive member which is excellent in mass productivity and economical efficiency by improving a film forming rate at the time of manufacturing the photosensitive member.
即ち、本発明によれば、導電性基板上に周期律表第II
I a族元素を含有量B1で含有するアモルファスシリコン
を主体としてなるキャリア注入阻止層と、周期律表第II
I a族元素を含有量B2で含有するアモルファスシリコン
を主体としてなるキャリア輸送層と、周期律表第III a
族元素を含有量B3で含有するアモルファスシリコンカー
バイドを主体として成るキャリア発生層(ただし、B1は
0.1乃至10000ppm、B2およびB3は10000ppm以下であっ
て、B1>B2>B3)および表面保護層を順次形成したこと
を特徴とする正極性に帯電可能な電子写真感光体が提供
される。That is, according to the present invention, the periodic table II
A carrier injection blocking layer mainly composed of amorphous silicon containing a group Ia element with a content B1 and a periodic table II.
A carrier transport layer mainly composed of amorphous silicon containing a group Ia element with a content B2, and a periodic table IIIa
A carrier generation layer mainly composed of amorphous silicon carbide containing a group B element in a content B3 (however, B1 is
0.1 to 10000 ppm, B2 and B3 are 10000 ppm or less, and a positively chargeable electrophotographic photosensitive member is provided which is characterized in that B1>B2> B3) and a surface protective layer are sequentially formed.
以下、本発明を詳述する。 Hereinafter, the present invention will be described in detail.
本発明の電子写真感光体は第1図に示す構造を基本と
する機能分離型積層感光体である。The electrophotographic photoreceptor of the present invention is a function-separated type laminated photoreceptor based on the structure shown in FIG.
第1図によれば、本発明の感光体は導電性基板(1)
上にキャリア注入阻止層(2)、キャリア輸送層(3
a)、キャリア発生層(3b)および表面保護層(4)を
順次設けて成るものであって、キャリア注入阻止層
(2)は導電性基板(1)からキャリア輸送層(3a)へ
のキャリア注入を阻止するために設けるものであって、
表面保護層(4)は感光体の耐久性、耐環境性を向上さ
せることを目的として設けられる。According to FIG. 1, the photoreceptor of the present invention has a conductive substrate (1).
A carrier injection blocking layer (2) and a carrier transport layer (3
a), a carrier generation layer (3b) and a surface protection layer (4) are sequentially provided, and the carrier injection blocking layer (2) is a carrier from the conductive substrate (1) to the carrier transport layer (3a). It is provided to prevent injection,
The surface protective layer (4) is provided for the purpose of improving the durability and environment resistance of the photoconductor.
これを第1図の構成の感光体を例にとってその電子写
真特性を第3図(a)及び(b)をもとに説明すると、
まずコロナ放電等の帯電手段により正帯電を施す(第3
図(a)参照)。次に露光を行うと、キャリア発生層
(3b)に電子と正孔が発生し、電子は感光体表面の正電
荷と中和し,正孔は輸送層を移行して基板側に注入接地
され、露光部の全体として電荷は零となる。(第3図
(b)参照)。This will be described with reference to FIGS. 3A and 3B for the electrophotographic characteristics of the photoconductor having the configuration of FIG. 1 as an example.
First, positive charging is performed by charging means such as corona discharge (3rd
(See FIG. (A)). Next, when exposure is performed, electrons and holes are generated in the carrier generation layer (3b), the electrons neutralize the positive charges on the surface of the photoconductor, and the holes migrate to the transport layer and are injected to the substrate side and grounded. , The electric charge becomes zero in the entire exposed portion. (See FIG. 3 (b)).
本発明によれば前述の層構成のうち、キャリア注入阻
止層(2)として周期律表第III a族元素を含有するア
モルファスシリコンを用い、キャリア輸送層(3a)とし
てアモルファスシリコン(以下、a−Siと略す)を用
い、キャリア発生層(3b)としてアモルファスカーバイ
ド(以下、a−SiCと略す)を用いることが重要であ
る。According to the present invention, among the above-mentioned layer structures, amorphous silicon containing an element of Group IIIa of the periodic table is used as the carrier injection blocking layer (2), and amorphous silicon (hereinafter a-) is used as the carrier transport layer (3a). It is important to use Si and to use amorphous carbide (hereinafter abbreviated as a-SiC) as the carrier generation layer (3b).
キャリア注入阻止層(2)は帯電極性に応じ整流作用
を成すことが必要である。本発明の正極性に帯電可能な
感光体では、このキャリア注入阻止層に周期律表第III
a族元素を添加することによって、P型半導体を形成す
る。The carrier injection blocking layer (2) is required to have a rectifying function depending on the charging polarity. In the positively chargeable photoreceptor of the present invention, the carrier injection blocking layer has a periodic table
A P-type semiconductor is formed by adding a group a element.
キャリア注入阻止層におけるa−Siは、ダングリング
ボンドを終端させる目的でHあるいはハロゲン元素を添
加されており、その量は全体量に対し5乃至50原子%、
特に10乃至40原子%の範囲で添加される。The a-Si in the carrier injection blocking layer is added with H or a halogen element for the purpose of terminating the dangling bond, and the amount thereof is 5 to 50 atomic% with respect to the total amount.
Particularly, it is added in the range of 10 to 40 atomic%.
一方、添加される周期律表第III a族元素としてはB,A
l,Ga,Inが挙げられBが望ましい。これらはキャリア注
入阻止層に0.1乃至10000ppm、特に0.5乃至1000ppmの範
囲で含有させることが望ましい。On the other hand, the added Group IIIa elements of the periodic table are B and A.
l, Ga, In are mentioned, and B is preferable. These are preferably contained in the carrier injection blocking layer in the range of 0.1 to 10,000 ppm, particularly 0.5 to 1000 ppm.
なお、キャリア注入阻止層には特に酸素及び/又は窒
素を0.01乃至30原子%の範囲で含有させることにより、
導電性基板(1)との密着性を向上させることができ
る。The carrier injection blocking layer contains oxygen and / or nitrogen in the range of 0.01 to 30 atom%,
The adhesion with the conductive substrate (1) can be improved.
キャリア輸送層におけるa−Siは下記式(1) Si(1-z)Az ……(1) 式中、AはH又はハロゲン元素 0.05≦z≦0.5特に、0.1≦z≦0.4 で表されるものが好ましい。なお、このキャリア輸送層
においても前述した周期律表第III a族元素を10000ppm
以下、特に1000ppm以下の量でドーピングすることがで
きる。この周期律表第III a族元素の添加によってキャ
リア輸送層は真性化されるとともにキャリア輸送層中で
のキャリア移動度を上げることができ、それにより表面
電位、感度を向上させるとともに残留電位を低減するこ
とができる。A-Si in the carrier transport layer is represented by the following formula (1) Si (1-z) A z (1) In the formula, A is represented by H or a halogen element 0.05 ≦ z ≦ 0.5, particularly 0.1 ≦ z ≦ 0.4. One is preferable. It should be noted that, also in this carrier transport layer, the above-mentioned Group IIIa element of the periodic table is added at 10000 ppm.
The following can be doped, especially in an amount of 1000 ppm or less. The addition of this group IIIa element of the periodic table can make the carrier transport layer intrinsic and increase the carrier mobility in the carrier transport layer, thereby improving the surface potential and sensitivity and reducing the residual potential. can do.
キャリア発生層において用いられるa−SiCは具体的
には下記式(2) {Si(1-x)Cx}(1-y)Ay ……(2) 式中、AはH又はハロゲン元素 0.01≦x≦0.9特に、0.05≦x≦0.5 0.05≦y≦0.5特に、0.1≦y≦0.4 で表される。Specifically, a-SiC used in the carrier generation layer is represented by the following formula (2) {Si (1-x) Cx } (1-y) Ay (2) where A is H or a halogen element. 0.01 ≦ x ≦ 0.9, particularly 0.05 ≦ x ≦ 0.5 0.05 ≦ y ≦ 0.5 Particularly, 0.1 ≦ y ≦ 0.4.
キャリア発生層においても前述した周期律表第III a
族元素を10000ppm以下、特に0.5乃至1000ppmの範囲で含
有させることにより、キャリア発生層はp型半導体とな
り、近赤外領域の光波長に対する分光感度を向上させる
とともに正帯電能を向上することができる。Also in the carrier generation layer, the periodic table IIIa described above is used.
By containing the group element in the range of 10,000 ppm or less, particularly in the range of 0.5 to 1000 ppm, the carrier generation layer becomes a p-type semiconductor, and the spectral sensitivity to the light wavelength in the near infrared region can be improved and the positive charging ability can be improved. .
本発明によれば、キャリア発生層、キャリア輸送層お
よびキャリア注入阻止層に添加する周期律表第III a族
元素は各層において前述した効果を奏するが、それとと
もに半導体としての特性上、エネルギーバンドをP型へ
シフトさせる作用を為す。According to the present invention, the group IIIa element of the periodic table added to the carrier generation layer, the carrier transport layer and the carrier injection blocking layer has the above-mentioned effects in each layer, but at the same time, in terms of the characteristics as a semiconductor, an energy band is formed. It works to shift to P type.
よってキャリア注入阻止層、キャリア輸送層、キャリ
ア発生層に対し、周期律表第III a族元素を添加する場
合、各層における添加量をB1,B2,B3としたとき、B1>B2
>B3の関係を満足することが重要である。この関係を満
足しない場合は、キャリアの移動において、各層間の界
面においてエネルギー的障壁が形成され、キャリアの注
入が困難となる。Therefore, when the Group IIIa element of the periodic table is added to the carrier injection blocking layer, the carrier transport layer, and the carrier generation layer, when the addition amount in each layer is B1, B2, and B3, B1> B2
It is important to satisfy the relationship of> B3. If this relationship is not satisfied, an energy barrier is formed at the interface between the layers during carrier movement, making carrier injection difficult.
また、表面保護層にはそれ自体高絶縁性、高耐蝕性及
び高硬度特性を有するものであれば種々の材料を用いる
ことができ、例えば、ポリイミド樹脂などの有機材料、
SiO2,SiO,Al2O3,SiC,Si3N4、非晶質カーボンを用いるこ
とができる。Further, various materials can be used for the surface protective layer as long as they have high insulation properties, high corrosion resistance and high hardness characteristics, for example, organic materials such as polyimide resin,
SiO 2 , SiO, Al 2 O 3 , SiC, Si 3 N 4 , and amorphous carbon can be used.
前述したこれらの4層の層厚は各々の機能を十分に果
たすように決定され、特にキャリア輸送層はキャリア発
生層よりも大きくなるように設定され、キャリア輸送層
の厚みが小さいと帯電の保持能力が低下し、優れた帯電
能が得られない。具体的にはキャリア注入阻止層が0.1
乃至10μm、キャリア輸送層が10乃至50μm、キャリア
発生層が0.1乃至10μm、表面保護層が0.1乃至10μmに
設定するのが望ましい。The layer thicknesses of these four layers described above are determined so as to sufficiently fulfill their respective functions, and in particular, the carrier transport layer is set to be larger than the carrier generation layer. The ability is reduced and excellent charging ability cannot be obtained. Specifically, the carrier injection blocking layer is 0.1
To 10 μm, the carrier transport layer is 10 to 50 μm, the carrier generation layer is 0.1 to 10 μm, and the surface protective layer is 0.1 to 10 μm.
本発明の感光体の製造方法によれば、無機質の感光体
の生成にはグロー放電分解法、イオンプレーティング
法、反応スパッタリング法、真空蒸着法、CVD法等の薄
膜形成技術を用いることができ、例えば本発明の感光体
のうち前述したようなキャリア発生層を形成する際は、
グロー放電分解法が望ましい。そこでグロー放電分解法
による製造方法をより詳細に説明すると、用いられる反
応ガスとしてはSiH4,Si2H6,Si3H8,SiF4,SiCl4,SiH2Cl2
などのSi含有ガス、CH4,C2H4,C2H2,C2H6,C3H8,CF4,CCl4
などのC含有ガス、所望によりH2,He,Ne,Arなどをキャ
リアーガスとして用いることができ、さらに周期律表第
III a族元素含有ガスを含有させる。According to the method for producing a photoreceptor of the present invention, a thin film forming technique such as glow discharge decomposition method, ion plating method, reactive sputtering method, vacuum deposition method, or CVD method can be used to generate an inorganic photoreceptor. For example, when forming the carrier generation layer as described above in the photoreceptor of the present invention,
The glow discharge decomposition method is preferred. Therefore, the production method by glow discharge decomposition method will be explained in more detail.SiH 4 , Si 2 H 6 , Si 3 H 8 , SiF 4 , SiCl 4 , and SiH 2 Cl 2 are used as the reaction gas.
Si-containing gas such as, CH 4, C 2 H 4 , C 2 H 2, C 2 H 6, C 3 H 8, CF 4, CCl 4
C-containing gas such as H 2 , He, Ne, Ar, etc. can be used as carrier gas if desired.
Group IIIa element-containing gas is included.
用いられる周期律表第III a族元素含有ガスとしてはB
2H6,BF3,Al(CH3)3,Ga(CH3)3,In(CH3)3,Ga(CH3)
3等が挙げられ、これらの中でもB2H6が取扱い、成膜速
度の点で好ましい。B used as a gas containing an element of Group IIIa of the periodic table used
2 H 6 ,, BF 3 , Al (CH 3 ) 3 , Ga (CH 3 ) 3 , In (CH 3 ) 3 , Ga (CH 3 )
3 and the like, and among these, B 2 H 6 is preferable because of its handling and film formation rate.
これらのガスは、各々の層の形成に応じて適宜調整さ
れる。まず、キャリア注入阻止層形成時は、Si含有ガス
および10-6乃至1モル%、特に10-5乃至0.1モル%の割
合で周期律表第III a族元素含有ガスを用いて、膜形成
を行う。キャリア輸送層形成時はSi含有ガスを用いてさ
らにキャリア発生層形成時にはSi含有ガス、C含有ガス
を用いて膜形成を行う。なお、キャリア発生層形成時、
C含有ガスとしてC2H2ガスを用いると成膜速度を向上さ
せることができる。特に(C2H2ガス:Si含有ガス)組成
比が0.05:1乃至3:1であることが望ましい。These gases are appropriately adjusted according to the formation of each layer. First, at the time of forming the carrier injection blocking layer, a film is formed by using a Si-containing gas and a Group IIIa element-containing gas of the periodic table at a ratio of 10 −6 to 1 mol%, particularly 10 −5 to 0.1 mol%. To do. When forming the carrier transport layer, Si-containing gas is used, and when forming the carrier generation layer, Si-containing gas and C-containing gas are used to form the film. When forming the carrier generation layer,
When C 2 H 2 gas is used as the C-containing gas, the film forming rate can be improved. In particular, the composition ratio of (C 2 H 2 gas: Si-containing gas) is preferably 0.05: 1 to 3: 1.
なお、これらの反応ガス組成に対しては前述したキャ
リアガスをさらに添加した方が膜質の安定化の点から望
ましい。さらに所望によりキャリア輸送層、キャリア発
生層形成時において、B含有ガスをキャリア注入阻止層
形成時と同様な範囲で添加することが望ましい。なお、
周期律表第III a族元素を各層に添加する場合は前述し
たように各層の添加量がB1>B2>B3の関係になるように
各々の層の形成時の周期律表第III a族元素含有ガスの
比率を調整することが必要である。It is preferable to add the above-mentioned carrier gas to the composition of these reaction gases from the viewpoint of stabilizing the film quality. Further, if desired, it is desirable to add the B-containing gas in the same range as in forming the carrier injection blocking layer when forming the carrier transport layer and the carrier generating layer. In addition,
When Group IIIa element of the Periodic Table is added to each layer, the addition amount of each layer should be B 1 > B 2 > B 3 as described above. It is necessary to adjust the ratio of the group a element-containing gas.
次に本発明の実施例に用いられる容量結合型グロー放
電分解装置を第4図により説明する。Next, the capacitively coupled glow discharge decomposition apparatus used in the embodiment of the present invention will be described with reference to FIG.
なお周期律表第III a族元素含有ガスとしてはB2H6ガ
スを用いて例示する。Note that B 2 H 6 gas is used as an example of the group IIIa element-containing gas of the periodic table.
図中、第1、第2、第3、第4、第5タンク(6)
(7)(8)(9a)(9b)にはそれぞれSiH4,C2H2,B2H6
(H2ガス中にB2H6が38ppm希釈されている。)、H2,NOガ
スが密封されており、H2はキャリアーガスとしても用い
られる。これらのガスは対応する第1、第2、第3、第
4、第5調節弁(10)(11)(12)(13a)(13b)を解
放することにより放出され、その流量がマスフローコン
トローラ(14)(15)(16)(17a)(17b)により制限
されてメインパイプ(18)へ送られる。In the figure, first, second, third, fourth and fifth tanks (6)
(7), (8), (9a), and (9b) have SiH 4 , C 2 H 2 , and B 2 H 6 respectively.
(B 2 H 6 is diluted to 38 ppm in H 2 gas), H 2 and NO gas are sealed, and H 2 is also used as a carrier gas. These gases are released by opening the corresponding 1st, 2nd, 3rd, 4th and 5th control valves (10) (11) (12) (13a) (13b), the flow rate of which is determined by the mass flow controller. (14) (15) (16) (17a) (17b) is restricted and sent to the main pipe (18).
尚、(19)は止め弁である。 Incidentally, (19) is a stop valve.
メインパイプ(18)を通じて流れるガスは反応管(2
0)へと送り込まれるが、この反応管内部には容量結合
型放電用電極(21)が設置されており、これに印加され
る電力は50W乃至3kWが、その周波数は1MHz乃至5MHzが適
当である。反応管(20)の内部には、アルミニウムから
成る筒状の成膜用導電性基板(22)が試料保持台(23)
の上に載置されており、この保持台(23)はモーター
(24)により回転駆動されるようになっており、そし
て、基板(22)は適当な加熱手段により約50乃至400
℃、好ましくは約150乃至300℃の温度に均一に加熱され
る。The gas flowing through the main pipe (18) is
0), the capacity coupling type discharge electrode (21) is installed inside the reaction tube, and the power applied to this is 50W to 3kW, and its frequency is 1MHz to 5MHz. is there. Inside the reaction tube (20), a cylindrical conductive substrate (22) for film formation made of aluminum is provided as a sample holder (23).
The holder (23) is rotatably driven by a motor (24), and the substrate (22) is about 50 to 400 by a suitable heating means.
C., preferably about 150 to 300.degree. C., with uniform heating.
更に、反応管(20)の内部はa−Si膜又はa−SiC膜
等の形成時に高度の真空状態(放電圧0.1乃至2.0Torr)
を必要とすることにより拡散ポンプ(25)と回転ポンプ
(26)に連結される。Furthermore, the inside of the reaction tube (20) is in a high vacuum state (discharge voltage 0.1 to 2.0 Torr) when forming an a-Si film or an a-SiC film.
Is connected to the diffusion pump (25) and the rotary pump (26).
以上のように構成されたグロー放電分解装置におい
て、例えばBがドーピングされたa−SiC膜を形成する
に当たって、第1,第2,第3,第4調整弁(10)(11)(1
2)(13a)を解放して第1,第2,第3,第4タンク(6)
(7)(8)(9a)よりそれぞれSiH4ガス、C2H2ガス、
B2H6ガス及びH2ガスを放出し、これらの放出量はマスフ
ローコントローラ(14)(15)(16)(17a)により規
制されてメインパンプ(18)を介して反応管(20)へと
送り込まれ、そして、反応管(20)の内部が0.1乃至2.0
Torrの真空状態、基板温度が50乃至400℃、容量型放電
用電極(21)に周波数1MHz乃至50MHzの高周波電力が50W
乃至3kW印加されるのに相まってグロー放電が起こり、
ガスが分解してホウ素含有のa−SiC膜が基板上に高速
で形成される。In the glow discharge decomposition apparatus configured as described above, for example, in forming a B-doped a-SiC film, the first, second, third and fourth regulating valves (10) (11) (1
2) (13a) is released to release the 1st, 2nd, 3rd, 4th tanks (6)
From (7), (8) and (9a), SiH 4 gas, C 2 H 2 gas,
B 2 H 6 gas and H 2 gas are released, and the amount of these released is regulated by the mass flow controllers (14) (15) (16) (17a) and is sent to the reaction tube (20) via the main pump (18). And the inside of the reaction tube (20) is 0.1 to 2.0.
Vacuum condition of Torr, substrate temperature of 50 to 400 ℃, high frequency power of 50W to the capacitive discharge electrode (21) with frequency of 1MHz to 50MHz
A glow discharge occurs in conjunction with the application of 3 to 3kW,
The gas is decomposed to form a boron-containing a-SiC film on the substrate at a high speed.
なお、本発明による感光体における層構成中、有機材
料を用いる場合はいずれも周知の手段によって形成する
ことができ、具体的には、高分子材料あるいは有機顔
料、有機染料等を揮発性溶媒中に溶解又は分散した塗布
液を用いて、浸漬法、ドクターブレード法等によって設
けることができる。In the layer structure of the photoreceptor according to the present invention, when an organic material is used, any of them can be formed by a well-known means. Specifically, a polymer material, an organic pigment, an organic dye or the like is used in a volatile solvent. It can be provided by a dipping method, a doctor blade method or the like using a coating solution dissolved or dispersed in.
以下、(製造例1)と(製造例2)とにより参考例
を、(製造例3)により本発明の実施例を説明する。Hereinafter, reference examples will be described with (manufacturing example 1) and (manufacturing example 2), and examples of the present invention will be described with (manufacturing example 3).
(感光体の製造例1) ダイヤモンドバイドを用いた超精密旋盤により鏡面に
仕上げた基板用のアルミニウム製ドラムを、有機溶剤を
用いた超音波洗浄及び蒸気洗浄、次いで乾燥を行って洗
浄し、第4図に示した容量結合型グロー放電分解装置の
反応管(20)内に設置した。(Manufacturing Example 1 of Photoreceptor) An aluminum drum for a substrate, which has been mirror-finished by an ultra-precision lathe using diamond vide, is cleaned by ultrasonic cleaning using an organic solvent and steam cleaning, and then by drying, It was installed in the reaction tube (20) of the capacitively coupled glow discharge decomposition apparatus shown in FIG.
そして、第1タンク(6)にSiH4ガス、第2タンク
(7)にC2H2ガス、第3タンク(8)にB2H6ガス、第4
タンク(9a)にH2ガス、第5タンク(9b)にNOガスを設
置して第1表に示す流量で反応ガスを流して、導電性基
板上にキャリア注入阻止層としてa−Si:H:B:O:N、キャ
リア輸送層としてa−Si:H(z≒0.2)、キャリア発生
層としてa−SiC:H、(x≒0.25、y≒0.3)表面保護層
としてSiCを設け、厚み32.6μmの感光体1を得た。Then, the first tank (6) has SiH 4 gas, the second tank (7) has C 2 H 2 gas, the third tank (8) has B 2 H 6 gas, and the fourth tank
H 2 gas was installed in the tank (9a), NO gas was installed in the fifth tank (9b), and the reaction gas was flowed at the flow rate shown in Table 1 to form a-Si: H as a carrier injection blocking layer on the conductive substrate. : B: O: N, a-Si: H (z≈0.2) as a carrier transport layer, a-SiC: H as a carrier generation layer, (x≈0.25, y≈0.3) SiC is provided as a surface protection layer, and the thickness is A photoconductor 1 of 32.6 μm was obtained.
(製造例2) 製造例1と同様にして、第2表に示す流量で反応ガス
を導入し、a−Si:H:B:O:Nのキャリア注入阻止層、a−
Si:H:B(z≒0.2,B:約3ppm)のキャリア輸送層、a−Si
C:H(x≒0.25,y≒0.3)のキャリア発生層、およびSiC
の表面保護層を順次設け、33.6μmの感光体2を得た。 (Production Example 2) In the same manner as in Production Example 1, a reaction gas was introduced at a flow rate shown in Table 2, and a-Si: H: B: O: N carrier injection blocking layer, a-
Si: H: B (z ≈ 0.2, B: about 3 ppm) carrier transport layer, a-Si
Carrier generation layer of C: H (x≈0.25, y≈0.3) and SiC
Then, the surface protective layer of 1 was sequentially provided to obtain a photoconductor 2 having a thickness of 33.6 μm.
(製造例3) 製造例1と同様にして第3表に示す流量で反応ガス導
入し、a−Si:H:B:N:O(B:約800ppm)のキャリア注入阻
止層、a−Si:H:B(z≒0.2,B:約3ppm)のキャリア輸送
層、a−SiC:H:B(x≒0.25、y≒0.3、B:約1ppm)のキ
ャリア発生層、およびSiCの表面保護層を順次設け、29.
6μmの感光体3を得た。 (Manufacturing Example 3) In the same manner as in Manufacturing Example 1, a reaction gas was introduced at a flow rate shown in Table 3, and a-Si: H: B: N: O (B: about 800 ppm) carrier injection blocking layer, a-Si. : H: B (z≈0.2, B: about 3 ppm) carrier transport layer, a-SiC: H: B (x≈0.25, y≈0.3, B: about 1 ppm) carrier generation layer, and SiC surface protection Layer sequentially, 29.
A 6 μm photosensitive member 3 was obtained.
得られた3種の感光体に対し、+5.6kVのコロナ放電
を行い表面電位、650nmの単色光(0.3μW/cm2)に対す
る光感度、残留電位を測定した。 A corona discharge of +5.6 kV was performed on the obtained three types of photoreceptors, and the surface potential, the photosensitivity to monochromatic light of 650 nm (0.3 μW / cm 2 ) and the residual potential were measured.
結果は第4表に示す。 The results are shown in Table 4.
表からも明らかなように、+700V以上の高い表面電位
が得られ、光感度0.50cm2/erg以上3、残留電位電位45V
以下の優れた特性を示した。特に例3の感光体では、表
面電位及び光感度が最も良好であった。 As is clear from the table, a high surface potential of + 700V or higher was obtained, photosensitivity of 0.50 cm 2 / erg or higher 3, residual potential potential of 45V.
The following excellent characteristics were shown. Particularly, the photoreceptor of Example 3 had the best surface potential and photosensitivity.
因に、Al製導電性基板にa−Si:H:B:N:Oのキャリア注
入阻止層(2.5μm)、a−Si:H:B(25μm)、SiC表面
保護層(0.5μm)の感光体を用い、同様な実験を行っ
たところ、表面電位+410V、光感度0.60cm2/erg、残留
電位20Vであって表面電位の低いものであった。By the way, on the Al conductive substrate, a-Si: H: B: N: O carrier injection blocking layer (2.5 μm), a-Si: H: B (25 μm), and SiC surface protection layer (0.5 μm) were formed. When a similar experiment was conducted using a photoconductor, the surface potential was +410 V, the photosensitivity was 0.60 cm 2 / erg, and the residual potential was 20 V, which was a low surface potential.
〔発明の効果〕 以上、詳述したように、本発明の感光体は機能分離型
積層感光体でなり、導電性基板上に周期律表第III a族
元素を含有するアモルファスシリコンを主体としてなる
キャリア注入阻止層と、アモルファスシリコンを主体と
してなるキャリア輸送層と、アモルファスシリコンカー
バイドを主体としてなるキャリア発生層および表面保護
層を順次形成することによって高い正極性帯電能を得る
ことができるとともに光感度、残留電位においても実用
上支障のない特性を得られ、しかも耐久性に優れた感光
体を得ることができる。[Effects of the Invention] As described above in detail, the photoreceptor of the present invention is a function-separated laminated photoreceptor, which is mainly composed of amorphous silicon containing a Group IIIa element of the periodic table on a conductive substrate. By forming the carrier injection blocking layer, the carrier transport layer mainly composed of amorphous silicon, the carrier generation layer mainly composed of amorphous silicon carbide, and the surface protective layer in order, it is possible to obtain high positive chargeability and photosensitivity. In addition, it is possible to obtain a photosensitive member that has characteristics that are practically unproblematic with respect to the residual potential and that has excellent durability.
第1図は本発明の実施例に用いられる感光体の層構成を
示す断面図、第2図は感光体の一般的な層構成を示す断
面図、第3図(a)および(b)は本発明の電子写真特
性を説明するための図、第4図は本発明の実施例に用い
られる容量結合型グロー放電分解装置の説明図である。 1……基板 2……キャリア注入阻止層 3……光導電層 3a……キャリア輸送層 3b……キャリア発生層 4……表面保護層FIG. 1 is a sectional view showing the layer structure of a photoconductor used in an embodiment of the present invention, FIG. 2 is a sectional view showing the general layer structure of the photoconductor, and FIGS. 3 (a) and 3 (b) are FIG. 4 is a diagram for explaining electrophotographic characteristics of the present invention, and FIG. 4 is an explanatory diagram of a capacitively coupled glow discharge decomposition apparatus used in an embodiment of the present invention. 1 ... Substrate 2 ... Carrier injection blocking layer 3 ... Photoconductive layer 3a ... Carrier transport layer 3b ... Carrier generation layer 4 ... Surface protection layer
───────────────────────────────────────────────────── フロントページの続き (72)発明者 竹村 仁志 八日市市蛇溝町長谷野1166番地の6 京 セラ株式会社滋賀八日市工場内 (72)発明者 石櫃 鴻吉 八日市市蛇溝町長谷野1166番地の6 京 セラ株式会社滋賀八日市工場内 (56)参考文献 特開 昭61−94054(JP,A) 特開 昭57−105745(JP,A) 特開 昭57−105744(JP,A) 特開 昭56−62255(JP,A) 特開 昭56−64346(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hitoshi Takemura Hitoshi 6-16, Haseno, Jamizo-cho, Yokaichi-shi 6 Kyocera Co., Ltd. Shiga Yokaichi factory (72) Inventor Kokichi Ishikura, 1166, Haseno, Hachimi-cho, Yokaichi-shi 6 Kyocera Corporation Shiga Yokaichi Factory (56) Reference JP 61-94054 (JP, A) JP 57-105745 (JP, A) JP 57-105744 (JP, A) JP 56-62255 (JP, A) JP-A-56-64346 (JP, A)
Claims (3)
含有量B1で含有するアモルファスシリコンを主体として
なるキャリア注入阻止層と、周期律表第III a族元素を
含有量B2で含有するアモルファスシリコンを主体として
なるキャリア輸送層と、周期律表第III a族元素を含有
量B3で含有するアモルファスシリコンカーバイドを主体
として成るキャリア発生層(ただし、B1は0.1乃至10000
ppm、B2およびB3は10000ppm以下であって、B1>B2>B
3)および表面保護層を順次形成したことを特徴とする
正極性に帯電可能な電子写真感光体。1. A carrier injection blocking layer composed mainly of amorphous silicon containing a group IIIa element of the periodic table at a content B1 on a conductive substrate, and a group IIIa element of the periodic table at a content B2. A carrier transport layer mainly containing amorphous silicon and a carrier generation layer mainly containing amorphous silicon carbide containing a Group IIIa element of the periodic table at a content B3 (where B1 is 0.1 to 10000).
ppm, B2 and B3 are less than 10000ppm, B1>B2> B
An electrophotographic photosensitive member capable of being positively charged, characterized in that 3) and a surface protective layer are sequentially formed.
記式 [Si(1-x)Cx](1-y)Ay 式中、AはH又はハロゲン元素 0.01≦x≦0.9 0.05≦y≦0.5 で表わされることを特徴とする特許請求の範囲第1項記
載の電子写真感光体。2. The amorphous silicon carbide is represented by the following formula [Si (1-x) C x ] (1-y) A y , where A is H or a halogen element 0.01 ≦ x ≦ 0.9 0.05 ≦ y ≦ 0.5. The electrophotographic photosensitive member according to claim 1, wherein the electrophotographic photosensitive member is provided.
とする特許請求の範囲第1項記載の電子写真感光体。3. The carrier transport layer according to claim 1, wherein A is H or an amorphous silicon represented by a halogen element 0.05 ≦ z ≦ 0.5 in the formula Si (1-z) A z. The electrophotographic photosensitive member according to item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61233042A JP2562583B2 (en) | 1986-09-29 | 1986-09-29 | Electrophotographic photoreceptor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61233042A JP2562583B2 (en) | 1986-09-29 | 1986-09-29 | Electrophotographic photoreceptor |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6385566A JPS6385566A (en) | 1988-04-16 |
JP2562583B2 true JP2562583B2 (en) | 1996-12-11 |
Family
ID=16948890
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61233042A Expired - Lifetime JP2562583B2 (en) | 1986-09-29 | 1986-09-29 | Electrophotographic photoreceptor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2562583B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4906546A (en) * | 1988-05-14 | 1990-03-06 | Kyocera Corporation | Electrophotographic sensitive member |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5662255A (en) * | 1979-10-26 | 1981-05-28 | Fuji Photo Film Co Ltd | Electrophotographic receptor |
JPS5664346A (en) * | 1979-10-30 | 1981-06-01 | Fuji Photo Film Co Ltd | Electrophotographic receptor and its preparation |
JPS57105745A (en) * | 1980-12-23 | 1982-07-01 | Canon Inc | Photoconductive member |
JPS57105744A (en) * | 1980-12-23 | 1982-07-01 | Canon Inc | Photoconductive member |
JPS6194054A (en) * | 1984-10-15 | 1986-05-12 | Toshiba Corp | Photoconductive member |
JPS61160751A (en) * | 1985-01-09 | 1986-07-21 | Fuji Electric Co Ltd | Electrophotographic sensitive body |
-
1986
- 1986-09-29 JP JP61233042A patent/JP2562583B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6385566A (en) | 1988-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4613556A (en) | Heterogeneous electrophotographic imaging members of amorphous silicon and silicon oxide | |
JP2562583B2 (en) | Electrophotographic photoreceptor | |
JP2566762B2 (en) | Electrophotographic photoreceptor | |
JP2565314B2 (en) | Electrophotographic photoreceptor | |
JPH0233148B2 (en) | ||
JP2566762C (en) | ||
JP2668242B2 (en) | Electrophotographic photoreceptor | |
JP2761734B2 (en) | Electrophotographic photoreceptor | |
JP2668241B2 (en) | Electrophotographic photoreceptor | |
JP2789100B2 (en) | Electrophotographic photoreceptor | |
JP2657491B2 (en) | Electrophotographic photoreceptor | |
JP2761741B2 (en) | Electrophotographic photoreceptor | |
JPS6381435A (en) | Production of electrophotographic sensitive body | |
JP2775259B2 (en) | Electrophotographic photoreceptor | |
JPH0233145B2 (en) | DENSHISHASHIN KANKOTAI | |
JP2722074B2 (en) | Electrophotographic photoreceptor | |
JP2668240B2 (en) | Electrophotographic photoreceptor | |
JP2657490B2 (en) | Electrophotographic photoreceptor | |
JPS58219561A (en) | Recording body | |
JP3113453B2 (en) | Manufacturing method of electrophotographic photoreceptor | |
JPS6381436A (en) | Production of electrophotographic sensitive body | |
JPS63187258A (en) | Electrophotographic sensitive body | |
JPH0795196B2 (en) | Electrophotographic photoreceptor | |
JPS63165857A (en) | Electrophotographic sensitive body | |
JPS635348A (en) | Electrophotographic sensitive body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |