JPS6194054A - Photoconductive member - Google Patents

Photoconductive member

Info

Publication number
JPS6194054A
JPS6194054A JP59215707A JP21570784A JPS6194054A JP S6194054 A JPS6194054 A JP S6194054A JP 59215707 A JP59215707 A JP 59215707A JP 21570784 A JP21570784 A JP 21570784A JP S6194054 A JPS6194054 A JP S6194054A
Authority
JP
Japan
Prior art keywords
layer
photoconductive
amorphous silicon
silicon carbide
photoconductive member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59215707A
Other languages
Japanese (ja)
Inventor
Mutsuki Yamazaki
六月 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59215707A priority Critical patent/JPS6194054A/en
Publication of JPS6194054A publication Critical patent/JPS6194054A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Abstract

PURPOSE:To form a photoconductive member which has no residual potential and has excellent electrostatic chargeability by forming a charge implantation preventive layer on a conductive base body and forming the 1st photoconductive layer consisting of amorphous silicon and the 2nd photoconductive layer consisting of amorphous silicon carbide thereon. CONSTITUTION:The charge implantation preventive layer 12 consisting of the P or N type amorphous silicon carbide is formed on the conductive base body 11. The 1st photoconductive layer 13 consisting of the amorphous silicon having 0.1-5.0mum film thickness is formed thereon. The 2nd photoconductive 14 consisting of the amorphous silicon carbide is further formed thereon. A surface layer 15 is formed thereon, by which the photoconductive member 10 is obtd. The group IIIa or Va element of periodic table may be incorporated into the layer 12. Since the photoconductive member 1 has the 1st and 2nd photo conductive layers, said member has the excellent electrostatic chargeability and charge holding power and the life thereof is extended.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は1例えば固体撮像素子あるいは電子写真感光体
等に用いられる光(紫外線から可視光線、赤外線、X線
泣びα線等の電磁波をいう)に感受性を有する光導電部
材に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to 1) the use of light (electromagnetic waves such as ultraviolet rays, visible rays, infrared rays, ).

〔発明の技術的背景とその問題点] 一般に、光導電性層を構成する光導電性材料は、その使
用上の目的から暗所での比抵抗が通常1013Ω儂以上
と高く、光照射によって比抵抗が小さくなるような性質
を有するものでなくてはならない。
[Technical background of the invention and its problems] In general, the photoconductive material constituting the photoconductive layer has a high resistivity in the dark, usually 1013 Ω or more, due to the purpose of its use, and its resistivity is high when irradiated with light. It must have properties that reduce resistance.

例えば電子写真についてその原理及び感光体として必要
な条件を説明すると、コロナ放電により電荷を降らせて
帯電させた感光体の表面に光を照射したとき、電子と正
孔の対ができ、そのいずれか一方によって感光体表面の
電荷は中和され1例えば正に帯電させた場合には、電子
の対によって中和されて感光体表面に正電荷の潜像が形
成されることになシ、可視化するにあたっては、感光体
表面の電荷と異符号に帯電させたトナーと呼ばれる黒粉
体(現像剤)をクーロン力によって感光体の表面に吸引
させることにより行なわれるとともに、このとき、電荷
が無くとも現像剤の電荷によって現像剤が感光体表面に
引き付けられることを避けるために、感光体と現像器と
の間に電荷による電場と逆方向の電場が生じるように現
像器の電位を高くするという処理(以下、これを現像バ
イアという)がなされている。
For example, to explain the principle of electrophotography and the conditions necessary for a photoreceptor, when light is irradiated onto the surface of a photoreceptor that has been charged by raining charges due to corona discharge, pairs of electrons and holes are created, and either On the other hand, the charge on the surface of the photoreceptor is neutralized (1) For example, if it is positively charged, it is neutralized by pairs of electrons and a positively charged latent image is formed on the surface of the photoreceptor, which is visualized. This is done by attracting black powder (developer) called toner, which is charged with the opposite sign to the charge on the surface of the photoreceptor, to the surface of the photoreceptor using Coulomb force. In order to prevent the developer from being attracted to the surface of the photoreceptor due to the charge of the agent, a process of increasing the potential of the developer so that an electric field in the opposite direction to the electric field due to the charge is generated between the photoreceptor and the developer ( Hereinafter, this will be referred to as a developing via.

このような電子写真の原理において、感光体と1〜で必
要な条件は、第1にコロナ放電により帯電し、た電荷が
光照射の時点まで保持されること、第2に光照射によっ
て生成される電子と正孔の対が再結合することなく、一
方が感光体表面の電荷を中和1,1 もう一方は感光体
の支持体まで瞬時に到達することなどが挙げられる。
In the principles of electrophotography, the photoreceptor and the following conditions are required: first, the charge must be charged by corona discharge and maintained until the time of light irradiation; For example, one electron and hole pair neutralizes the charge on the surface of the photoreceptor 1,1 without recombining, and the other one instantly reaches the support of the photoreceptor.

従来、この種の感光体材料としては、非晶質カルコゲナ
イド系のものが使用されている。
Conventionally, amorphous chalcogenide-based materials have been used as this type of photoreceptor material.

しかしながら、非晶質カルコゲナイドは、大面積化が容
易で、すぐれた光導電性を有する反面、光の吸収端が可
視から紫外に近いところにあることから、実用上、可視
域の光に対する感度が低く、しかも硬度が低いばかりで
なく、電子写真の感光体に応用した場合には寿命が短か
いなどの問題があった。
However, although amorphous chalcogenide can be easily made into a large area and has excellent photoconductivity, it has a light absorption edge from the visible to near the ultraviolet range, so it is practically not sensitive to light in the visible range. Not only does it have a low hardness, but it also has problems such as a short life when applied to electrophotographic photoreceptors.

そこで、最近注目されている光導電性材料としては、ア
モルファスシリコンC以下、こレヲa−8iと略記する
)がある。
Therefore, as a photoconductive material that has recently attracted attention, there is amorphous silicon C (hereinafter abbreviated as a-8i).

上記したa−8iは、光の吸収波長域が広く、整色性(
パンクロ)を有し、部間が高く、硬度も高いばかりでな
く1人体にも無害で、しかも単結晶シリコンと比較し、
た場合、安価で大面積のものが得られ、従来のような非
晶質カルコゲナイド系のものより10倍以上の寿命を持
たせることが期待されるなど、多くの利点を有する。
The above-mentioned a-8i has a wide light absorption wavelength range and has an orthochromic property (
Panchromatic), not only has a high gap and high hardness, it is also harmless to the human body, and compared to single crystal silicon,
In this case, it has many advantages, such as being able to obtain a large-area product at low cost and expected to have a lifespan of 10 times longer than conventional amorphous chalcogenide-based products.

ところが、a−8iの欠点は、暗所での比抵抗(以下、
暗抵抗という)が通常108〜10100傭程度で低く
、電子写真感光体のような静電潜像を形成するものでは
、感光体表面に帯電させた′電荷を保持することができ
ないという問題がある。
However, the drawback of a-8i is that the specific resistance in the dark (hereinafter referred to as
(referred to as dark resistance) is usually low, around 108 to 10,100m, and in devices that form electrostatic latent images, such as electrophotographic photoreceptors, there is a problem in that the photoreceptor surface cannot retain the electric charge. .

このよりなa−8iの欠点を解決する手段と1〜ては、
感光層と支持体との間にN(窒素)、C(炭素)、0(
酸素)などを添加した比抵抗の高いa−8i層を介在1
−、、支持体からのキャリアの注入を阻【卜し得るよう
にしたり、またこの層をP型あるいはn型の半導体膜で
形成すること(但し、正帯電の場合には磁子をブロック
1〜。
The means to solve this shortcoming of the a-8i are as follows:
Between the photosensitive layer and the support, N (nitrogen), C (carbon), 0 (
A-8i layer with high resistivity added with oxygen) etc. is interposed 1
-, , make it possible to block the injection of carriers from the support, or form this layer with a P-type or n-type semiconductor film (however, in the case of positive charging, the magnetons should be blocked by blocking 1). ~.

正孔が通過し得るP型半導体な用い、負帯電の場合には
n型半導体を用いる)が試みられているが、これらの方
法では、感光体の帯電能は高くなるものの、前者の場合
には膜厚を厚くすると、感光層から支持体に流れるキャ
リアの通過もt!H,−+に、 L、てしまい、その結
果、残留電位が高く々るという問題が生じ、また膜厚が
薄い場合には、現像バイアスによる絶縁破壊を惹起する
慮れがある。一方、後者の方法では、半導体膜の厚さを
厚くしても前者のような問題が生じないが、通常の非晶
質シリコンは、比抵抗が小さく、充分な帯電能が得られ
ず、さらに露光により発生したキャリアの横方向への拡
散現象に起因して画像上のボケが生じ易い彦どの問題が
ある。
Attempts have been made to use a P-type semiconductor through which holes can pass, and to use an N-type semiconductor in the case of negative charging.However, although these methods increase the charging ability of the photoreceptor, in the former case, When the film thickness is increased, the passage of carrier flowing from the photosensitive layer to the support is also t! As a result, a problem arises in that the residual potential becomes high, and if the film is thin, dielectric breakdown may occur due to the developing bias. On the other hand, in the latter method, the problem like the former does not occur even if the thickness of the semiconductor film is increased, but ordinary amorphous silicon has a low resistivity and cannot obtain sufficient charging ability. There is a problem in that images tend to be blurred due to the lateral diffusion of carriers caused by exposure.

〔発明の目的〕[Purpose of the invention]

本発明は、上記の事情のもとになされたもので、残留電
位がなく、帯電能にすぐれた長寿命の光導電部材を提供
することを目的とするものである。
The present invention has been made under the above circumstances, and an object of the present invention is to provide a photoconductive member that has no residual potential, has excellent charging ability, and has a long life.

〔発明の概要〕[Summary of the invention]

上記した目的を達成させるために、本発明は、導体性基
体上に電荷注入防止層と光導電性層とを順次積層した光
導電部材において、前記電荷注入防止層を非晶質炭化シ
リコンで形成1−1その上に膜厚が0.1μm以上で5
.0μm以下の非晶質シリコンからなる第1の光導電性
層と、非晶質炭化シリコンからなる第2の光導電性層と
を順次積層したことを特徴とするものである。
In order to achieve the above object, the present invention provides a photoconductive member in which a charge injection prevention layer and a photoconductive layer are sequentially laminated on a conductive substrate, in which the charge injection prevention layer is formed of amorphous silicon carbide. 1-1 If the film thickness is 0.1 μm or more, 5
.. It is characterized in that a first photoconductive layer made of amorphous silicon of 0 μm or less and a second photoconductive layer made of amorphous silicon carbide are sequentially laminated.

〔発明の実絢例〕[Examples of successful inventions]

以下、本発明を図示の一実施例を参照1−ながら詳細に
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail below with reference to an embodiment shown in the drawings.

第1図に示すように、図中IOは後述する製造工程によ
り得られた光導電部材である。該光導電部4−4.Io
は、導電性基体II上に、B(ボロン)あるいはP(リ
ン)などを添加(−5たP型あるいはn型の非晶質炭化
シリコンからなる電荷注入防止層I2を積層し、その上
に膜厚が0.1〜5.0μm程変の非晶質シリコン(a
−8i)からなる第1の光導電性層I3を積層し、さら
にその上に非晶質炭化シリコンからなる第2の光導電性
層I4を順次積層j2てなる構成を有するもので、前記
第2の光導電性層I4の上には、非晶質酸化シリコンま
たは非晶質窒化シリコンあるいは非晶質酸化シリコンの
いずれかから選択される表面被覆@I 5が500A−
5μm の範囲の膜厚で好適に積層されているものであ
る。
As shown in FIG. 1, IO in the figure is a photoconductive member obtained by a manufacturing process described later. The photoconductive section 4-4. Io
A charge injection prevention layer I2 made of P-type or n-type amorphous silicon carbide doped with B (boron) or P (phosphorus) (-5) is laminated on a conductive substrate II, and then Amorphous silicon (a
-8i), and a second photoconductive layer I4 made of amorphous silicon carbide is sequentially laminated thereon. On top of the photoconductive layer I4 of 2 is a surface coating @I5 selected from either amorphous silicon oxide or amorphous silicon nitride or amorphous silicon oxide at 500A-
The layers are preferably laminated with a film thickness in the range of 5 μm.

すなわち、上記した光導電部材IOを製造するには、導
電性基体IIを図示しない真空反応室内に設置1〜、該
反応室内を図示しないメカニカルブースタポンプと油回
転ポンプにより10−1〜10−’Torrの真空にす
る。このとき、前記基体IIけ100〜400℃の湿質
範囲を保つように加熱されている。次いで、前記反応室
内にSi  (シリコン)原子を含むガス、例えば8i
H。
That is, in order to manufacture the photoconductive member IO described above, the conductive substrate II is placed in a vacuum reaction chamber (not shown) from 1 to 10-', and the reaction chamber is heated from 10-1 to 10-' by a mechanical booster pump and an oil rotary pump (not shown). Make a vacuum of Torr. At this time, the substrate II is heated to maintain a moist range of 100 to 400°C. Next, a gas containing Si (silicon) atoms, for example 8i, is introduced into the reaction chamber.
H.

8i、H6あるいはS i F、等のガスを導入し、0
.1〜l、QTorr程度の圧力になるように排気速度
を調節する。そして1反応室内が定常状態になったとき
、反応室内の′嬢極間に13.56 MHz  の高周
波電力を印加することによって基体II上にa−8+層
を成膜することにより得るもので、この場合、a−8i
は元素周期律表の第IIIa族、第Va族のドーピング
により価電子側a’+、比抵抗の制御がそれぞれ可能で
あり、さらにN(窒素)C(炭素)、0(酸素)の添加
により比抵抗は高くなる。また、不純物添加の方法は、
成膜時に反応室内に81原子を含むガスと添加【7たい
ガスを適合することで容易に成される。
Introduce a gas such as 8i, H6 or S i F, and
.. Adjust the pumping speed so that the pressure is about 1 to 1, Q Torr. When the inside of one reaction chamber is in a steady state, a high frequency power of 13.56 MHz is applied between the electrodes in the reaction chamber to form an a-8+ layer on the substrate II. In this case, a-8i
It is possible to control the valence electron side a'+ and specific resistance by doping with Group IIIa and Group Va of the periodic table of elements, and further by adding N (nitrogen), C (carbon), and 0 (oxygen). The resistivity becomes high. In addition, the method of adding impurities is
This can be easily achieved by matching the gas containing 81 atoms with the additional gas in the reaction chamber during film formation.

次に、上記l−たこの発明に係る光導電部材の作用を説
明すると、基体11上に積層された電荷注入防止I@1
2は、非晶質炭化シリコンからなるために、aS+層の
ように、BあるいはPの大量のドーピングにより膜中の
歪が大きくなって膜が剥れ易くなるといった欠点を解消
でき、第1の光導電性層130a−8+層は、第2の光
導電性層14に非晶質炭化シリコンを用いることによる
欠点、つまり非晶質炭化シリコンがa−8iと比較し7
て光学的バンドギャップが広く感光波長域が狭いという
欠点を補うもので、したがって、このa−8illは露
光に用いる光源に合せて0.1〜5.0μm程度の膜厚
があれば充分足りる。また、第2の光導電性層I4は、
第1の光導電性層I3の欠点、つまりa −8+が非晶
質炭化シリコンと比較し、7て比抵抗が低く、帯電能並
びに保持能が不充分であるという欠点を補っているもの
で、これによって、帯電能並びに保持能を20〜30%
程瞳に向上させることが可能になり、さらに、第1及び
第2の光導電性層13.14に少量のBをドーピングす
ることKより比抵抗はさらに高くなり、正孔の易動度も
ドーピングしない場合よりも高くなるという好ましい結
果が得られる。
Next, to explain the function of the photoconductive member according to the above-mentioned l-octopus invention, the charge injection prevention I@1 laminated on the base 11
Since the second layer is made of amorphous silicon carbide, it can overcome the disadvantage of the aS+ layer that doping with a large amount of B or P increases strain in the film and makes the film easy to peel off. The photoconductive layer 130a-8+ layer has disadvantages due to the use of amorphous silicon carbide in the second photoconductive layer 14, namely, amorphous silicon carbide compared to a-8i.
This is to compensate for the drawbacks of a wide optical bandgap and a narrow sensitive wavelength range. Therefore, it is sufficient for this A-8ill to have a film thickness of about 0.1 to 5.0 μm, depending on the light source used for exposure. Moreover, the second photoconductive layer I4 is
This compensates for the drawbacks of the first photoconductive layer I3, namely, that a -8+ has a low specific resistance and insufficient charging and holding ability compared to amorphous silicon carbide. , this increases the charging ability and retention ability by 20-30%.
Furthermore, by doping the first and second photoconductive layers 13 and 14 with a small amount of B, the resistivity becomes even higher than that of K, and the mobility of holes also increases. A favorable result is obtained in that it is higher than in the case without doping.

具体例 導電性基体上に、Bが1×10−3〜1.0原子%(a
tomic%)含む非晶質炭化シリコンを電荷注入防止
層として積1−シた(このときの成膜条件として、8i
H,に対1.. CH,を20〜100%程度混合し、
He べ−1のBtHe(@W20000ppm )を
S i H,に対し1〜10%程度混合する)。
Specific example: B is present on a conductive substrate in an amount of 1 x 10-3 to 1.0 at% (a
tomic%) was deposited as a charge injection prevention layer (the film forming conditions at this time were 8i
H, versus 1. .. Mix about 20 to 100% of CH,
Mix 1 to 10% of BtHe (@W20000ppm) to SiH).

次に、a−8+の第1の光導電性−を0.1−5μm積
層1〜だ(この層には、Bを少量ドーピングすることが
望ましく、その時には8iH,に対し、HeベースのB
2H6(9度20ppm)を1〜10%程闇混合して成
膜する)。次に、非晶質炭化シリコンの第2の光導電性
層を積層[7た(この層は、CH,を8iH,に対し 
5〜40%程度混合する以外は第1の光導電性層と同様
であり、これによって得られる膜の光学的バンドギャッ
プは1,7〜1,9 evとa−8iに比較してやや大
きく々る)。さらにその上に表面被覆層を積層した(こ
の層は% 8 i H,に対[%同量かそれ以上(1’
)CH,、C2H,、C,、H2,o、、N2.NH8
を混合して成膜し7.膜は500A〜5.0μIn程闇
が好ましく、これによって得られる++aの光学的ギャ
ップは20ev以上と大きくなる)。そして、このよう
な層をA/ (アルミニウム)からなる円筒状の基体に
積層して、電、子写真感光体として用いたところ、正帯
電用として充分使用可能な帯電能と電荷保持能を備え、
10万枚以上の複写にも画像の乱れが生じない長寿命の
結果が得られた。
Next, the first photoconductive layer of the a-8+ is deposited with a thickness of 0.1-5 μm (this layer is preferably doped with a small amount of B, then 8iH, whereas the He-based B
A film is formed by darkly mixing about 1 to 10% of 2H6 (9 degrees, 20 ppm). Next, a second photoconductive layer of amorphous silicon carbide was laminated [7 (this layer has CH, for 8iH,
It is the same as the first photoconductive layer except that the mixture is about 5 to 40%, and the optical band gap of the film obtained is 1.7 to 1.9 ev, which is slightly larger than that of a-8i. ). Furthermore, a surface coating layer was laminated on top of it (this layer had the same amount or more (1'
)CH,,C2H,,C,,H2,o,,N2. NH8
7. Mix and form a film. The film preferably has a darkness of about 500 A to 5.0 μIn, and the resulting optical gap of ++a becomes as large as 20 ev or more). When such a layer was laminated on a cylindrical substrate made of A/ (aluminum) and used as an electrophotographic photoreceptor, it had sufficient charging ability and charge retention ability to be used for positive charging. ,
A long lifespan was obtained with no image disturbance even after more than 100,000 copies were made.

また、一方、1紀lまた電荷注入防止層に、Bの替りP
をドーピングすると、角帯重用となり、上述1.たもの
と同様の結果が得られた。
On the other hand, P instead of B is used in the charge injection prevention layer.
When doped with , it becomes a square band heavy use, and the above-mentioned 1. Similar results were obtained.

r発明の効果〕 以上説明j〜たよりに1本発明によれば、導電性基体上
に、非晶質炭化シリコンからなる電荷注入防止層、非晶
質シリコン(a−8i)からなる極薄の第1の光導電性
層及び非晶質炭化シリコンからなる第2の光導電性層を
それぞれ順次積1−シて々る構成を有することから、従
来構造のものと比較1−て帯電能並びに電荷保持能にす
ぐれ、長寿命の光導電部材を提供することができ5゛電
子写真感光体等に用いた際には、多大なる効果を奏する
ものである。
rEffects of the Invention] Above Explanation J ~ According to the present invention, a charge injection prevention layer made of amorphous silicon carbide and an ultrathin layer made of amorphous silicon (a-8i) are formed on a conductive substrate. Since it has a structure in which the first photoconductive layer and the second photoconductive layer made of amorphous silicon carbide are laminated in sequence, the charging ability and It is possible to provide a photoconductive member with excellent charge retention ability and long life, and when used in an electrophotographic photoreceptor or the like, it exhibits great effects.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る光導電部材の一実施例を示す概略的
説明図である。 10・・・光導電部材、II・・・導電性基体、12・
・・電荷注入防止層、I3・・・第1の光導電性層、I
4・・・第2の光導電性層、15・・・表面被覆層。
The drawings are schematic explanatory diagrams showing one embodiment of a photoconductive member according to the present invention. 10... Photoconductive member, II... Conductive substrate, 12.
...Charge injection prevention layer, I3...First photoconductive layer, I
4... Second photoconductive layer, 15... Surface coating layer.

Claims (4)

【特許請求の範囲】[Claims] (1)導体性基体上に電荷注入防止層と光導電性層とを
順次積層した光導電部材において、前記電荷注入防止層
を非晶質炭化シリコンで形成し、その上に膜厚が0.1
μm以上で5.0μm以下の非晶質シリコンからなる光
導電性層と、非晶質炭化シリコンからなる第2の光導電
性層とを順次積層したことを特徴とする光導電部材。
(1) In a photoconductive member in which a charge injection prevention layer and a photoconductive layer are sequentially laminated on a conductive substrate, the charge injection prevention layer is formed of amorphous silicon carbide, and a film thickness of 0.000 mm is formed on the charge injection prevention layer. 1
A photoconductive member characterized in that a photoconductive layer made of amorphous silicon with a size of 1 μm or more and 5.0 μm or less and a second photoconductive layer made of amorphous silicon carbide are sequentially laminated.
(2)電荷注入防止層並びに第1及び第2の光導電性層
に元素周期律表の第IIIa族または第Va族の元素を含
ませたことを特徴とする特許請求の範囲第1項に記載の
光導電部材。
(2) Claim 1 characterized in that the charge injection prevention layer and the first and second photoconductive layers contain an element from Group IIIa or Group Va of the Periodic Table of Elements. The photoconductive member described.
(3)第2の光導電性層の上に、この層よりも光学的バ
ンドキャップが大きい表面被覆層を積層したことを特徴
とする特許請求の範囲第1項もしくは第2項のいずれか
に記載の光導電部材。
(3) A surface coating layer having a larger optical bandgap than that of the second photoconductive layer is laminated on the second photoconductive layer. The photoconductive member described.
(4)表面被覆層は、非晶質炭化シリコンまたは非晶質
窒化シリコンあるいは非晶質酸化シリコンのいずれかの
層からなることを特徴とする特許請求の範囲第3項に記
載の光導電部材。
(4) The photoconductive member according to claim 3, wherein the surface coating layer is made of any one of amorphous silicon carbide, amorphous silicon nitride, or amorphous silicon oxide. .
JP59215707A 1984-10-15 1984-10-15 Photoconductive member Pending JPS6194054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59215707A JPS6194054A (en) 1984-10-15 1984-10-15 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59215707A JPS6194054A (en) 1984-10-15 1984-10-15 Photoconductive member

Publications (1)

Publication Number Publication Date
JPS6194054A true JPS6194054A (en) 1986-05-12

Family

ID=16676825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59215707A Pending JPS6194054A (en) 1984-10-15 1984-10-15 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS6194054A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138958A (en) * 1984-12-12 1986-06-26 Toshiba Corp Photoconductive material
JPS6385566A (en) * 1986-09-29 1988-04-16 Kyocera Corp Electrophotographic sensitive body
JPH01144058A (en) * 1987-11-30 1989-06-06 Kyocera Corp Electrophotographic sensitive body
JPH01161251A (en) * 1987-12-18 1989-06-23 Fujitsu Ltd Electrophotographic sensitive body
JPH01287574A (en) * 1987-12-28 1989-11-20 Kyocera Corp Electrophotographic sensitive body

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61138958A (en) * 1984-12-12 1986-06-26 Toshiba Corp Photoconductive material
JPS6385566A (en) * 1986-09-29 1988-04-16 Kyocera Corp Electrophotographic sensitive body
JPH01144058A (en) * 1987-11-30 1989-06-06 Kyocera Corp Electrophotographic sensitive body
JPH01161251A (en) * 1987-12-18 1989-06-23 Fujitsu Ltd Electrophotographic sensitive body
JPH01287574A (en) * 1987-12-28 1989-11-20 Kyocera Corp Electrophotographic sensitive body

Similar Documents

Publication Publication Date Title
US4656110A (en) Electrophotographic photosensitive member having a photoconductive layer of an amorphous material
JPS59185346A (en) Photoconductive member
GB2145530A (en) Amorphous silicon photoreceptor
JPS6194054A (en) Photoconductive member
JPS61126559A (en) Photoconductive material
US4724193A (en) Photoconductive membrane for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
JPH0535425B2 (en)
JPS61126557A (en) Photoconductive material
JPH058420B2 (en)
JPS61138958A (en) Photoconductive material
JPS61126558A (en) Photoconductive material
JPS61177465A (en) Photoconductive member
JPS61126560A (en) Photoconductive material
JPH0760272B2 (en) Photoconductive member
JPS61177466A (en) Photoconductive member
JPS61177464A (en) Photoconductive member
JPS61177467A (en) Photoconductive member
JPS61134768A (en) Photoconductive element
JPS6183543A (en) Photoconductive material
JPH0554673B2 (en)
JPS59185343A (en) Photoconductive member
JPS59185345A (en) Photoconductive member
JPS59185344A (en) Photoconductive member
JPS60153051A (en) Photoconductive member
JPH0616178B2 (en) Photoconductive member