JPH0535425B2 - - Google Patents

Info

Publication number
JPH0535425B2
JPH0535425B2 JP58182636A JP18263683A JPH0535425B2 JP H0535425 B2 JPH0535425 B2 JP H0535425B2 JP 58182636 A JP58182636 A JP 58182636A JP 18263683 A JP18263683 A JP 18263683A JP H0535425 B2 JPH0535425 B2 JP H0535425B2
Authority
JP
Japan
Prior art keywords
layer
photoconductive
group
blocking layer
sih
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58182636A
Other languages
Japanese (ja)
Other versions
JPS6073628A (en
Inventor
Mutsuki Yamazaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP18263683A priority Critical patent/JPS6073628A/en
Publication of JPS6073628A publication Critical patent/JPS6073628A/en
Publication of JPH0535425B2 publication Critical patent/JPH0535425B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/08Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being inorganic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photoreceptors In Electrophotography (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔発明の技術分野〕 本発明は光(紫外から可視、赤外、X線、γ線
などの電磁波)に感受性をもつ光導電性部材に関
する。 〔発明の技術的背景とその問題点〕 固体撮像素子、電子写真感光体等の光導電性層
を構成する光導電性材料は、その使用上の目的か
ら暗所での比抵抗が高く(通常1013Ωcm以上)、
かつ光照射により比抵抗が小さくなる性質を有す
ることが必要である。 電子写真を例にしてその原理を説明すると、ま
ず感光体表面にコロナ放電により電荷を付与して
帯電させる。つづいて、感光体に光を照射すると
電子と正孔の対ができ、そのいずれか一方により
表面の電荷が中和されている。例えば、正に帯電
させた場合は光照射により生じた対のうち電子に
よつて中和され、感光体表面に正電荷の潜像が形
成される。次いで、感光体表面の電荷と逆極性に
帯電したトナーを感光体表面にクーロン力によつ
て吸引させることにより可視化がなされる。この
時、電荷がなくとも、トナーの電荷で感光体に引
きつけられるのを回避するために、感光体と現像
器の間に電荷による電場と逆方向の電場が生じる
ように現像器の電位を高くする、いわゆる現像バ
イアスの処理がなされる。 上述した電子写真においては、その感光体とし
て次のような条件を満足することが要求される。
即ち、第1のコロナ放電により帯電した電荷が光
照射まで保持されること、第2に光照射により生
成した電子と正孔の対が再結合することなく、一
方が表面の電荷を中和し、更に他方が感光体の支
持体まで瞬時に達すること、等が要求される。 ところで、従来、光導電性材料としては非晶質
カルコゲナイド系のものが用いられている。非晶
質カルコゲナイドは大面積化が容易であり、かつ
光導電性が優れる等の特徴を有する。しかしなが
ら、かかる非晶質カルコゲナイドは光の吸収帯が
可視から紫外に近い所にあり、実用上、可視域の
光に対する感度が低く、しかも硬度が低く、電子
写真に応用した場合、寿命が短い等の種々の問題
があつた。 このようなことから、最近、光導電性材料とし
てアモルフアスシリコン(以下、a−Siと称す)
を用いることが注目されている。a−Siは吸収波
長域が広く、パンクロマテイツクであり、感度も
高い。また、硬度も高く、電子写真感光体に応用
した場合は従来のものより10倍以上の寿命をもつ
ことが期待されている。更に、人体に無害であ
り、単結晶シリコンと比較した場合、安価で容易
に大面積のものが得られる等多くの利点を有す
る。しかしながら、a−Siは暗所での比抵抗(以
下、暗抵抗と称す)が低く、通常108Ωcm〜1010Ω
cm程度で、電子写真感光体のような静電潜像を形
成するものでは、表面に帯電させた電荷を保持す
ることができない。 そこで、a−Siを電子写真に応用した例では、
感光層と支持体との間にN,C,Oなどを添加し
た比抵抗の高いa−Si層或いはp型、n型のa−
Si層を設け、支持体からのキヤリアの注入を阻止
することが試みられている。但し、後者のa−Si
層を用いる際は、正帯電の場合には電子をブロツ
クし、正孔を通過させうるp型のa−Si層を、負
帯電の場合にはn型のa−Si層を、使用する。こ
うした構造の感光体では帯電能力を高くすること
が可能である。しかしながら、前者の構造では
N,C,Oを添加したa−Si層を厚くすると、感
光層から支持体へ流れるキヤリアの通過をも阻止
し、その結果、残留電位が高くなるという問題が
生じる。一方、該a−Si層を薄くすると、現像バ
イアスによる絶縁破壊を招く。後者の構造ではp
型、n型のa−Si層を厚くしても前者のような問
題は生じない。しかしながら、a−Si層は第A
族元素の添加によりp型に、第A族元素の添加
によりn型に、夫々なるが、これらの不純物の添
加によつて層中に歪が生じる。こうしたa−Si層
をブロツキング層として用い、この上に光導電性
層を積層した場合、各層の歪が異なるため、層間
剥離の原因になる等の不都合さが生じる。また、
光導電性層に積層される表面被覆層に関しても同
様な問題が生じる。 更に、上述したa−Si層の両方を組合せた構造
の光導電性部材も提案されている(特開昭57−
177156号)。即ち、この光導電性部材は支持体上
にp型又はn型のa−Si層及びN,C,Oなどを
添加したa−Si層を順次積し、更にこの上に感光
層を積層したものである。しかしながら、かかる
光導電性部材にあつては、N,C,Oなどを添加
したa−Si層を厚くすると、当然、残留電位が高
くなり、かといつて残留電位が高くならないよう
にa−Si層を薄くすると、絶縁破壊等を招く。 〔発明の目的〕 本発明は上記事情に鑑みなされたもので、帯電
能及び保持能を従来と同等乃至それ以上向上でき
ると共に、層間の剥離を防止した長寿命の光導電
性部材を提供しようとするものである。 〔発明の概要〕 本発明は、支持体上にブロツキング層と、光導
電層と、表面層とが順次積層されてなる光導電部
材において、ブロツキング層、光導電層及び表面
層のすべての層が、Cと、第A族又は第A族
と、H又はハロゲンとを添加したアモルフアスシ
リコン層からなり、これら各層間について前記ブ
ロツキング層と光導電層との界面近傍では前記C
及び第A族又は第族の濃度が前記ブロツキン
グ層から光導電層に向つて連続的に減少し、前記
光導電層と表面層との界面近傍では前記C及び第
A族又は第A族の濃度が前記光導電層から表
面層に向つて連続的に増加していることを特徴と
する。 上記ブロツキング層は単層でもよいが、より好
ましくは2層にすることが望ましい。この場合、
第1ブロツキング層(支持体側)と第2ブロツキ
ング層の中の第A族又は第A族元素の濃度は
第2ブロツキング層を第1ブロツキング層に比べ
て光学的バンドギヤツプを少し広くすることが帯
電能、保持能を向上させる点で有利であることか
ら、第2ブロツキング層より第1ブロツキング層
の方が高くなるように設定することが好ましい。 次に、本発明の光導電性部材の一製造方法を説
明する。 まず、導電性の支持体を真空反応容器に入れ、
反応容器内をメカニカルブースターポンプと油拡
散ポンプにより10-3〜10-4torrの真空にする。こ
の時、支持体は100〜400℃の温度に保持する。つ
づいて、反応容器内にSi原子を含むガス、例えば
SiH4、Si2H6、SiF4等と第A族元素又は第A
族元素を含むドーピングガス、及び必要に応じて
CH4などのC原子を含むガス等を目的とする混合
比率で導入し、0.1〜1torr程度の圧力になるよう
に排気系の排気速度を調整し、定常状態になるま
で待つ。次いで、反応容器内の電極間に
13.56MHzの高周波電力を印加して支持体上にブ
ロツキング層、光導電性層及び表面被覆層を順次
成膜する。この際、ドーピングガスの比率、或い
は必要に応じてC原子を含むガスの比率を逐次調
整することにより、各層の界面近傍で構成元素の
比を連続的に変化させることができる。なお、ド
ーピングガスをマイクロ波等の電磁波で予め励起
することにより、ドーピング効率の向上、成膜速
度の向上を達成できる。 しかして、本発明に係る光導電性部材は支持体
上に少なくともSiと第A族、第A族の共通の
構成元素を含むブロツキング層、光導電性層及び
表面被覆層を順次積層し、かつ各層の界面近傍で
前記構成元素の比が連続的に変化している部分が
存在する構造であるため、各層間の歪差を減少で
き、層間剥離を防止して高寿命化を達成できる。
また、層構成を支持体側よりSiと第A族、第
A族を少なくとも共通に含むブロツキング層、光
導電性層及び表面被覆層とすることによつて、従
来と同等の帯電能並びに保持能を有する光導電性
部材を得ることができる。 なお、ブロツキング層を2層に分け、かつ第2
ブロツキング層を第1ブロツキングよりも光学的
バンドギツプが少しなるように導電性不純物の含
有割合を調整すると共に、それら第1、第2のブ
ロツキング層をCを含むアモルフアス炭化シリコ
ンとすることによつて、従来に比べて帯電能並び
に保持能が著しく高い光導電性部材を得ることが
できる。また、光導電性層を、第A族又は第
A族とCを含むp型又はn型のアモルフアス炭化
シリコンとすることによつて、比抵抗が1011
1013Ωcmと高く、かつ移動度も通常のアモルフア
スシリコンと比較して同程度の優れた特性をもつ
ものとなる。つまり、アモルフアス炭化シリコン
をアンドープの真性半導体にすると、比抵抗が低
い場合が多く、ブロツキング層を設けても、露光
により生成したキヤリアが厚さ方向だけでなく、
横方向にも走り易く、画像のぼやけの原因とな
る。なお、アモルフアス炭化シリコンはSiとCの
結合がSiとSi或いはSiとHの結合に比べて極めて
少ないような材料である。 〔発明の実施例〕 次に、本発明の実施例を図面を参照して説明す
る。 まず、Al製の導電性支持体1を真空反応容器
に入れ、反応容器内をメカニカルブースターポン
プと油回転ポンプにより10-3〜10-4torrの真空に
した。この時、支持体1を100〜400℃の温度に保
持した。つづいて、反応容器内にB2H6/SiH4
流量割合が1×10-3、CH4/SiH4の流量割合が
8%となるようにSiH4、B2H6及びCH4の混合ガ
スを導入し、反応圧が0.5torrとなるように排気
系の排気速度を調整した。ひきつづき、反応圧が
定常状態になつたら、反応容器の電極間に
13.56MHzの高周波電力200Wを投入し、この状
態を5分間保持した後、5分間でB2H6/SiH4
5×10-7の流量割合まで減少するように混合ガス
を逐次調整して導入し支持体1に厚さ7μm、B/
B+Siの層最大値が5×10-2atom%、C/C+
Siが1.0atom%のアモルフアス炭化シリコンから
なる第1ブロツキング層2を成膜した。 次いで、同一高周波電力、同一反応圧の状態で
B2H6/SiH4、CH4/SiH4の流量割合を変えずに
5分間保持した後、5分間でCH4/SiH4を約0.01
%にまで減少するようにSiH4、B2H6及びCH4
混合ガスを逐次調整して導入し、第1ブロツキン
グ層2上に厚さ2μm、B/B+Siの層最高値が1
×10-4atom%、C/C+Siの層最高値が1.0atom
%のアモルフアスシリコンからなる第2ブロツキ
ング層3を連続的に成膜した。 次いで、同一高周波電力、同一反応圧の状態
で、B2H6/SiH4、CH4/SiH4の流量割合を夫々
5×10-7、約0.01%と変化させずにSiH4、B2H6
及びCH4の混合ガスを2時間導入し、第2ブロツ
キング層3上に厚さ15μm、B/B+Si=1×
10-4atom%、C/C+Si=0.01atom%のアモル
フアス炭化シリコンからなる光導電性膜4を連続
的に成膜した。 次いで、高周波電力の印加を停止し、10分間で
B2H6/SiH4の流量割合が1×10-7、CH4/SiH4
の流量割合が約300%とに夫々減、増するように
SiH4、B2H6及びCH4を逐次調整して導入し、最
後の一分間だけ高周波電力200Wを投入して光導
電性層4上に厚さ0.1μm、B/B+Siの層最大値
が5×10-4atom%、C/C+Siの層最大値が
20atom%の表面被覆層5を連続に成膜して感光
体を製造した(第1図図示)。なお、こうした感
光体の厚み方向のエネルギーモデルを示すと、第
2図の如くなる。また、各層の成膜に際しての
SiH4、B2H6、CH4の流量モデルを第3図に示
す。なお、第3図中の〓〓〓はSiH4、〓〓〓は
B2H5(2000ppm)、〓〓〓はB2H6(20ppm)、〓〓
〓はCH4で、これらガスは下記表の如き流量に設
定される。
[Technical Field of the Invention] The present invention relates to a photoconductive member sensitive to light (electromagnetic waves such as ultraviolet to visible, infrared, X-rays, and gamma rays). [Technical background of the invention and its problems] Photoconductive materials constituting photoconductive layers of solid-state image sensors, electrophotographic photoreceptors, etc. have a high specific resistance in the dark (usually low 10 13 Ωcm or more),
In addition, it is necessary that the material has a property that its specific resistance decreases when irradiated with light. To explain the principle using electrophotography as an example, first, an electric charge is applied to the surface of a photoreceptor by corona discharge. Next, when the photoreceptor is irradiated with light, pairs of electrons and holes are created, and one of them neutralizes the charge on the surface. For example, if the photoreceptor is positively charged, it is neutralized by electrons among the pairs generated by light irradiation, and a positively charged latent image is formed on the surface of the photoreceptor. Next, visualization is achieved by attracting toner charged to the opposite polarity to the surface of the photoreceptor by Coulomb force. At this time, in order to avoid toner being attracted to the photoconductor due to the toner charge even if there is no charge, the potential of the developer is set high so that an electric field in the opposite direction to the electric field due to the charge is generated between the photoconductor and the developer. A so-called developing bias process is performed. In the electrophotography described above, the photoreceptor is required to satisfy the following conditions.
In other words, firstly, the charge generated by corona discharge is retained until light irradiation, and secondly, the electron-hole pair generated by light irradiation does not recombine, and one neutralizes the surface charge. Furthermore, it is required that the other side instantly reach the support of the photoreceptor. By the way, amorphous chalcogenide-based materials have conventionally been used as photoconductive materials. Amorphous chalcogenide has characteristics such as being easily formed into a large area and having excellent photoconductivity. However, such amorphous chalcogenide has a light absorption band close to the visible to ultraviolet range, and in practical terms, it has low sensitivity to light in the visible range, low hardness, and short lifespan when applied to electrophotography. Various problems arose. For this reason, amorphous silicon (hereinafter referred to as a-Si) has recently been used as a photoconductive material.
The use of is attracting attention. a-Si has a wide absorption wavelength range, is panchromatic, and has high sensitivity. It also has high hardness, and when applied to electrophotographic photoreceptors, it is expected to have a lifespan more than 10 times longer than conventional ones. Furthermore, it is harmless to the human body, and has many advantages when compared to single crystal silicon, such as being inexpensive and easily obtainable over a large area. However, a-Si has a low specific resistance in the dark (hereinafter referred to as dark resistance), usually between 10 8 Ωcm and 10 10 Ω.
cm, and a device that forms an electrostatic latent image, such as an electrophotographic photoreceptor, is unable to retain charges on its surface. Therefore, in an example where a-Si is applied to electrophotography,
A high resistivity a-Si layer containing N, C, O, etc. added between the photosensitive layer and the support, or a p-type, n-type a-
Attempts have been made to provide a Si layer to prevent carrier injection from the support. However, the latter a-Si
When using layers, a p-type a-Si layer that blocks electrons and allows holes to pass is used in the case of a positive charge, and an n-type a-Si layer is used in the case of a negative charge. A photoreceptor having such a structure can have a high charging ability. However, in the former structure, if the a-Si layer doped with N, C, and O is thickened, it also blocks the passage of carriers flowing from the photosensitive layer to the support, resulting in a problem that the residual potential becomes high. On the other hand, when the a-Si layer is made thinner, dielectric breakdown occurs due to development bias. In the latter structure p
The former problem does not occur even if the thickness of the a-Si layer is increased. However, the a-Si layer
The addition of group elements makes the layer p-type, and the addition of group A elements makes it n-type, but the addition of these impurities causes strain in the layer. When such an a-Si layer is used as a blocking layer and a photoconductive layer is laminated thereon, the strain of each layer is different, resulting in inconveniences such as delamination. Also,
Similar problems arise with surface coating layers that are laminated to the photoconductive layer. Furthermore, a photoconductive member having a structure combining both of the above-mentioned a-Si layers has also been proposed (Japanese Unexamined Patent Application Publication No. 1983-1999).
No. 177156). That is, this photoconductive member was made by sequentially laminating a p-type or n-type a-Si layer and an a-Si layer doped with N, C, O, etc. on a support, and further laminating a photosensitive layer thereon. It is something. However, in the case of such a photoconductive member, if the a-Si layer added with N, C, O, etc. is thickened, the residual potential will naturally increase. If the layer is made thinner, dielectric breakdown may occur. [Objective of the Invention] The present invention was made in view of the above circumstances, and aims to provide a long-life photoconductive member that can improve chargeability and retention ability to the same level or higher than conventional ones, and prevents peeling between layers. It is something to do. [Summary of the Invention] The present invention provides a photoconductive member in which a blocking layer, a photoconductive layer, and a surface layer are sequentially laminated on a support. , C, group A or group A, and H or a halogen. Between these layers, near the interface between the blocking layer and the photoconductive layer, the C
The concentration of Group A or Group A decreases continuously from the blocking layer toward the photoconductive layer, and the concentration of Group A or Group A decreases in the vicinity of the interface between the photoconductive layer and the surface layer. is characterized in that it increases continuously from the photoconductive layer toward the surface layer. The blocking layer may be a single layer, but it is more preferably two layers. in this case,
The concentration of Group A or Group A elements in the first blocking layer (on the support side) and the second blocking layer can be adjusted to make the optical bandgap of the second blocking layer a little wider than that of the first blocking layer. It is preferable to set the first blocking layer to be higher than the second blocking layer because it is advantageous in terms of improving the retention ability. Next, one method of manufacturing the photoconductive member of the present invention will be explained. First, a conductive support is placed in a vacuum reaction vessel,
A vacuum of 10 -3 to 10 -4 torr is created in the reaction vessel using a mechanical booster pump and an oil diffusion pump. At this time, the support is maintained at a temperature of 100 to 400°C. Next, a gas containing Si atoms, e.g.
SiH 4 , Si 2 H 6 , SiF 4 etc. and group A elements or group A
Doping gas containing group elements, and if necessary
A gas containing C atoms such as CH 4 is introduced at the desired mixing ratio, the exhaust speed of the exhaust system is adjusted so that the pressure is approximately 0.1 to 1 torr, and the system waits until a steady state is reached. Then, between the electrodes in the reaction vessel
A blocking layer, a photoconductive layer, and a surface coating layer are sequentially formed on the support by applying high frequency power of 13.56 MHz. At this time, by sequentially adjusting the ratio of the doping gas or the ratio of the gas containing C atoms as necessary, it is possible to continuously change the ratio of the constituent elements near the interface of each layer. Note that by exciting the doping gas in advance with electromagnetic waves such as microwaves, it is possible to improve doping efficiency and film formation rate. Accordingly, the photoconductive member according to the present invention has a blocking layer containing at least Si and a common constituent element of Group A, a photoconductive layer, and a surface coating layer laminated in sequence on a support, and Since the structure has a portion where the ratio of the constituent elements continuously changes near the interface of each layer, it is possible to reduce the strain difference between each layer, prevent delamination, and achieve a long life.
In addition, by changing the layer structure from the support side to a blocking layer, a photoconductive layer, and a surface coating layer that at least commonly contain Si, group A, and group A, charging ability and retention ability equivalent to conventional ones can be achieved. A photoconductive member can be obtained having the following. Note that the blocking layer is divided into two layers, and the second
By adjusting the content of conductive impurities in the blocking layer so that the optical bandgap is smaller than that of the first blocking layer, and by making the first and second blocking layers of amorphous silicon carbide containing C, It is possible to obtain a photoconductive member that has significantly higher chargeability and retention ability than conventional ones. Furthermore, by forming the photoconductive layer of p-type or n-type amorphous silicon carbide containing group A or group A and C, the specific resistance can be reduced to 10 11 to 10 11 .
It has a high mobility of 10 13 Ωcm, and has excellent characteristics comparable to that of ordinary amorphous silicon. In other words, when amorphous silicon carbide is made into an undoped intrinsic semiconductor, the specific resistance is often low, and even if a blocking layer is provided, the carriers generated by exposure are not limited to the thickness direction.
It also tends to run horizontally, causing blurred images. Note that amorphous silicon carbide is a material in which the bond between Si and C is extremely small compared to the bond between Si and Si or Si and H. [Embodiments of the Invention] Next, embodiments of the present invention will be described with reference to the drawings. First, the conductive support 1 made of Al was placed in a vacuum reaction vessel, and the inside of the reaction vessel was evacuated to 10 −3 to 10 −4 torr using a mechanical booster pump and an oil rotary pump. At this time, the support 1 was maintained at a temperature of 100 to 400°C. Next, SiH 4 , B 2 H 6 and CH 4 were introduced into the reaction vessel so that the flow rate of B 2 H 6 /SiH 4 was 1×10 -3 and the flow rate of CH 4 /SiH 4 was 8% . A mixed gas was introduced, and the exhaust speed of the exhaust system was adjusted so that the reaction pressure was 0.5 torr. Continuing, when the reaction pressure reaches a steady state, between the electrodes of the reaction vessel
After applying 200 W of 13.56 MHz high frequency power and maintaining this state for 5 minutes, the mixed gas was adjusted sequentially so that the flow rate ratio of B 2 H 6 /SiH 4 decreased to 5 × 10 -7 in 5 minutes. Introduced into support 1 with a thickness of 7 μm, B/
The maximum layer value of B+Si is 5×10 -2 atom%, C/C+
A first blocking layer 2 made of amorphous silicon carbide containing 1.0 atom % of Si was formed. Next, under the same high frequency power and the same reaction pressure,
After holding the flow rate of B 2 H 6 /SiH 4 and CH 4 /SiH 4 for 5 minutes without changing it, CH 4 /SiH 4 was reduced to about 0.01% in 5 minutes.
A mixed gas of SiH 4 , B 2 H 6 and CH 4 was successively adjusted and introduced so as to reduce the amount of the blocking layer to 1%, and the layer thickness was 2 μm and the maximum value of B/B+Si was 1.
×10 -4 atom%, maximum value of C/C+Si layer is 1.0 atom
% of amorphous silicon was continuously formed. Next, under the same high-frequency power and the same reaction pressure, SiH 4 and B 2 were injected without changing the flow rate ratios of B 2 H 6 /SiH 4 and CH 4 /SiH 4 to 5×10 -7 and approximately 0.01 % , respectively. H 6
A mixed gas of
A photoconductive film 4 made of amorphous silicon carbide of 10 -4 atom% and C/C+Si=0.01 atom% was continuously formed. Then, stop applying high frequency power and leave it for 10 minutes.
The flow rate ratio of B 2 H 6 /SiH 4 is 1×10 -7 , CH 4 /SiH 4
The flow rate ratio decreases and increases to approximately 300%, respectively.
SiH 4 , B 2 H 6 and CH 4 were sequentially adjusted and introduced, and a high frequency power of 200 W was applied for the last minute to form a layer with a thickness of 0.1 μm and a maximum value of B/B+Si on the photoconductive layer 4. 5×10 -4 atom%, the maximum layer value of C/C+Si is
A photoreceptor was manufactured by continuously forming a 20 atom % surface coating layer 5 (as shown in FIG. 1). Incidentally, an energy model in the thickness direction of such a photoreceptor is shown in FIG. 2. In addition, when forming each layer,
Figure 3 shows flow models for SiH 4 , B 2 H 6 and CH 4 . In addition, 〓〓〓 in Fig. 3 is SiH 4 and 〓〓〓 is
B 2 H 5 (2000ppm), 〓〓〓 is B 2 H 6 (20ppm), 〓〓
〓 is CH 4 , and the flow rates of these gases are set as shown in the table below.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によれば帯電能並び
に保持能が従来と同等乃至それ以上向上され、か
つ層間剥離を防止して耐用寿命が向上された電子
写真の感光体等として有効な光導電性部材を提供
できる。
As detailed above, according to the present invention, the photoconductive material is effective as an electrophotographic photoreceptor, etc., in which charging ability and holding ability are improved to the same level or higher than conventional ones, and delamination is prevented and the service life is improved. It can provide sex members.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例において造られた感光
体の断面図、第2図は第1図の感光体の厚さ方向
のエネルギーモデルを示す図、第3図は実施例の
各層の成膜に際してのSiH4、B2H6、CH4の流量
モデルを示す図である。 1……支持体、2……第1ブロツキング層、3
……第2ブロツキング層、4……光導電性層、5
……表面被覆層。
FIG. 1 is a cross-sectional view of a photoconductor manufactured in an example of the present invention, FIG. 2 is a diagram showing an energy model in the thickness direction of the photoconductor in FIG. 1, and FIG. 3 is a diagram showing the structure of each layer in the example. FIG. 3 is a diagram showing a flow rate model of SiH 4 , B 2 H 6 , and CH 4 during membrane formation. 1...Support, 2...First blocking layer, 3
...Second blocking layer, 4...Photoconductive layer, 5
...Surface coating layer.

Claims (1)

【特許請求の範囲】[Claims] 1 支持体上にブロツキング層と、光導電層と、
表面層とが順次積層されてなる光導電部材におい
て、ブロツキング層、光導電層及び表面層のすべ
ての層が、Cと、第A族又は第A族と、H又
はハロゲンとを添加したアモルフアスシリコン層
からなり、これら各層間について前記ブロツキン
グ層と光導電層との界面近傍では前記C及び第
A族又は第族の濃度が前記ブロツキング層から
光導電層に向つて連続的に減少し、前記光導電層
と表面層との界面近傍では前記C及び第A族又
は第A族の濃度が前記光導電層から表面層に向
つて連続的に増加していることを特徴とする光導
電部材。
1 A blocking layer, a photoconductive layer on a support,
In the photoconductive member in which the blocking layer, the photoconductive layer and the surface layer are sequentially laminated, all of the blocking layer, the photoconductive layer and the surface layer are made of amorphous amorphous atom added with C, group A or group A, and H or halogen. The concentration of the C and Group A or Group A continuously decreases from the blocking layer toward the photoconductive layer in the vicinity of the interface between the blocking layer and the photoconductive layer between these layers. A photoconductive member, characterized in that near the interface between the photoconductive layer and the surface layer, the concentration of the C and group A or group A continuously increases from the photoconductive layer toward the surface layer.
JP18263683A 1983-09-30 1983-09-30 Photoconductive member Granted JPS6073628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18263683A JPS6073628A (en) 1983-09-30 1983-09-30 Photoconductive member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18263683A JPS6073628A (en) 1983-09-30 1983-09-30 Photoconductive member

Publications (2)

Publication Number Publication Date
JPS6073628A JPS6073628A (en) 1985-04-25
JPH0535425B2 true JPH0535425B2 (en) 1993-05-26

Family

ID=16121753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18263683A Granted JPS6073628A (en) 1983-09-30 1983-09-30 Photoconductive member

Country Status (1)

Country Link
JP (1) JPS6073628A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61223848A (en) * 1985-03-29 1986-10-04 Shindengen Electric Mfg Co Ltd Electrohpotographic sensitive body
JPS62170968A (en) * 1986-01-23 1987-07-28 Hitachi Ltd Amorphous silicon electrophotographic sensitive body and its production
JPS62257172A (en) * 1986-05-01 1987-11-09 Shindengen Electric Mfg Co Ltd Electrophotographic sensitive body
JPS63271356A (en) * 1987-04-30 1988-11-09 Kyocera Corp Electrophotographic sensitive body

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486341A (en) * 1977-12-22 1979-07-09 Canon Inc Electrophotographic photoreceptor
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5888115A (en) * 1981-11-17 1983-05-26 Canon Inc Photoconductive component
JPS5895875A (en) * 1981-12-01 1983-06-07 Canon Inc Photoconductive member
JPS58106876A (en) * 1981-12-19 1983-06-25 Tokyo Denki Daigaku Photoelectric transducer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5486341A (en) * 1977-12-22 1979-07-09 Canon Inc Electrophotographic photoreceptor
JPS5614241A (en) * 1979-07-16 1981-02-12 Matsushita Electric Ind Co Ltd Electrophotographic receptor
JPS57119357A (en) * 1981-01-16 1982-07-24 Canon Inc Photoconductive member
JPS5888115A (en) * 1981-11-17 1983-05-26 Canon Inc Photoconductive component
JPS5895875A (en) * 1981-12-01 1983-06-07 Canon Inc Photoconductive member
JPS58106876A (en) * 1981-12-19 1983-06-25 Tokyo Denki Daigaku Photoelectric transducer

Also Published As

Publication number Publication date
JPS6073628A (en) 1985-04-25

Similar Documents

Publication Publication Date Title
US4656110A (en) Electrophotographic photosensitive member having a photoconductive layer of an amorphous material
JPS59185346A (en) Photoconductive member
JPH0535425B2 (en)
JPS6194054A (en) Photoconductive member
JPH058420B2 (en)
US4724193A (en) Photoconductive membrane for exhibiting photoconductivity upon illumination by electromagnetic light in the visible to ultraviolet range
JPS61126559A (en) Photoconductive material
JPH0554673B2 (en)
JPS61138958A (en) Photoconductive material
JPS61126557A (en) Photoconductive material
JPS61126560A (en) Photoconductive material
JPS61177465A (en) Photoconductive member
JPS61134768A (en) Photoconductive element
JPH0616178B2 (en) Photoconductive member
JPH0743543B2 (en) Photoconductive member
JPS61138957A (en) Photoconductive material
JPS61177466A (en) Photoconductive member
JPS61177467A (en) Photoconductive member
JPS59185345A (en) Photoconductive member
JPS59185343A (en) Photoconductive member
JPS61177464A (en) Photoconductive member
JPS60119568A (en) Photoconducting member
JPS60128457A (en) Photoconductive member
JPS6183543A (en) Photoconductive material
JPS59185344A (en) Photoconductive member